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Abstract

Defeasible conditionals of the form ‘if A then normally B’ are usually interpreted with the
aid of a ‘normality’ ordering between possible states of affairs: A = B is true if it happens
that in the most ‘normal’ (least exceptional) A-worlds, B is also true. Another plausible
interpretation of ‘normality’ introduced in nonmonotonic reasoning dictates that A = B is
true iff B is true in ‘most’ A-worlds. A formal account of ‘most’ in this majority-based
approach to default reasoning has been given through the usage of weak filters and weak
ultrafilters, capturing at least, a basic core of a size-oriented approach to defeasible reasoning.
In this paper, we investigate defeasible conditionals constructed upon a notion of ‘overwhelming
magority’, defined as ‘truth in a cofinite subset of w’, the first infinite ordinal. One approach
employs the modal logic of the frame (w,<), used in the temporal logic of discrete linear
time. We introduce and investigate conditionals, defined modally over (w, <); several modal
definitions of the conditional connective are examined, with an emphasis on the nonmonotonic
ones. An alternative interpretation of ‘majority’ as sets cofinal (in w) rather than cofinite
(subsets of w) is examined. For all these modal approaches over (w, <), a decision procedure
readily emerges, as the modal logic KD4LZ of this frame is well-known and a translation of
the conditional sentences can be mechanically checked for validity. A second approach employs
the conditional version of Scott-Montague semantics, in the form of w-many possible worlds,
endowed with neighborhoods populated by its cofinite subsets. Again, different conditionals
are introduced and examined. Although it is difficult to obtain a completeness theorem (since
it is not easy to capture ‘cofiniteness-in-w’ syntactically) this research reveals the possible
structure of ‘overwhelming magority’ conditionals, whose relative strength is compared to (the
conditional logic ‘equivalent’ of) KLM logics and other conditional logics in the literature.
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Chapter 1

Introduction

Conditional Logic is primarily concerned with the logical and semantic analysis of the rich
class of conditional statements, identified with the sentences conforming with the ‘if X then
Y’ structure. The topic has roots in antiquity and the medieval times but its contemporary
development seems to start with F. Ramsey in the ’30s and has blossomed after the late 60s
[AC14]. There exist various conditionals of interest in Philosophy, Logic, Computer Science
and Artificial Intelligence, including counterfactual conditionals, causal conditionals, deontic
conditionals, normality conditionals (see [CACH96] for a broad overview of applications); they
represent different linguistic constructions with a common structural form (‘if ... then’) and
the aim of the field is to provide a unifying formal logical account that accurately captures
their essential meaning.

Artificial Intelligence has been interested in conditional logics for default reasoning already
from the '80s (see the work of J. Delgrande [Del87, Del88]) counterfactual reasoning (M.
Ginsberg, [Gin86]) and ‘normality conditionals’ in nonmonotonic reasoning [Bel90, Bou94].
The reader is referred to the handbook article of J. Delgrande [Del98] for a broad overview
of conditional logics for defeasible reasoning. The investigations on the intimate relation of
conditional logics to nonmonotonic reasoning have been further triggered by the seminal work
of S. Kraus, D. Lehmann and M. Magidor [KLM90, LM92|, whose framework (KLM) has
become the ‘industry standard’ for nonmonotonic consequence relations. There exist various
possible-worlds semantics for conditional logics (see [Nut80, Del98]) and a connection to modal
logic (known from D. Lewis’ work [Lew73]) which has been further explored by the modal
construction of ‘normality conditionals’ [Lam91, Bou94].

A logic of ‘normality conditionals’ for default reasoning, attempts to pin down the principles
governing the statements of the form ‘if A, then normally B is the case’. ‘Normally’ is
susceptible to a variety of interpretations. One is based on a ‘normality’ ordering between
possible worlds: A = B is true if it happens that in the most ‘normal’ (least exceptional) A-
worlds, B is also true [Lam91, Bou94]. Another, more recent one [Jau08] interprets ‘normally’
as a ‘majority’ quantifier: A = B is true iff B is true in ‘most’ A-worlds. Questions of
‘size’ in preferential nonmonotonic reasoning have been firstly introduced by K. Schlechta
[Sch95, Sch97]; the notion of ‘weak filter’ that emerged (as a ‘core’ definition of ‘large’ subsets)
has been employed also in modal epistemic logics [KMZ14].



A majority-based account of default conditionals, depends heavily on what counts as a ‘ma-
jority’ of alternative situations, what is a ‘large’ set of possible worlds. It is difficult to state a
good definition that would work for both the finite and the infinite case; the notions of weak
filters and weak ultrafilters that have been used capture the minimum requirements of such a
notion [Sch97, KMZ14]. In this paper, we experiment with a notion of ‘overwhelming magjor-
ity’, combined with the widely accepted intuition that (A = B) could or should mean that
(A A B) is more plausible than (A A —=B). We define conditionals of this form to (essentially)
mean that AA B is true in ‘almost all’ (‘all, but finitely many’) points in the countable modal
frame (w, <) (the first infinite ordinal, strictly ordered under <), whose modal axiomatization
(the normal modal logic KD4LZ) is known as the ‘future’ fragment of the temporal logic
of discrete linear time [Gol92, Seg70]. This majority conditional is modally defined and this
readily provides a decision procedure, as a modal translation of conditional formulas can be
checked for validity in (w, <) using any of the proof procedures known for KD4LZ. We exam-
ine the properties of this conditional, in particular with respect to the (conditional incarnation
of the) ‘conservative core’ of defeasible reasoning set by the KLM framework. The paradigm of
‘overwhelming majority’ in our work is consistently represented with cofinite subsets of w. En
route, we discuss variants: trying cofinal (rather than cofinite) subsets of w, and/or varying
the modal definition of the conditional connective. Then, we discuss the possibility of defining
conditional over cofinite subsets of w in the neighborhood semantics for conditional logics;
we prove that the conditionals defined can be very weak, even compared to the conditionals
introduced in [Del06].

The paper is organized as follows: In Chapter 2 we provide the necessary background material,
establishing notation and terminology. Chapter 3 contains the main results of this paper and
is divided into two sections. In 3.1 we give the basic definitions of our approach and examine
the conditional logic 3 of ‘majority default conditionals’ over (w, <). Furthermore, we explore
variants and their interaction with Monotonicity, as well as an alternative conditional logic
w. 3.2 comprises of an investigation of some additional logics defined using minimal (Scott-
Montague) semantics and our results are summarized in a table at the end of the section.
Finally, we conclude in Chapter 4 with some interesting questions for future research.



Chapter 2

Background

2.1 Modal Logic

We assume a language L of classical propositional logic, built upon the known connectives
{=,A,V,—,=} over a countable set ® = {p1,pa,...} of propositional variables. The language
Lo of propositional modal logic extends £ with a modal necessity operator [JA. We assume
that the reader is acquainted with the basics of propositional Modal Logic; for details consult
[BARVO1, Gol92]. A dual possibility operator is defined by ¢ A = -[O0-A.

Modal Logics are sets of formulas from L, containing all propositional tautologies, and
closed under the rules of Modus Ponens (MP) A’AT_)B and Uniform Substitution (US).
A normal modal logic is a modal logic containing the axiom

K. OAAD(A — B) —» OB

and closed under the Rule of Necessitation

We denote by KAjA2... A, the normal modal logic axiomatized by the axioms Aj...Ay.
A formula B is a theorem of logic A (denoted by k5 B) iff B € A.

Normal Modal Logics are interpreted over relational possible-worlds models or Kripke
models. A Kripke frame § = (W, R) consists of a set of possible worlds W and a binary
relation R C W x W. We say that a world w ‘sees’ a world v iff wRv. A valuation V
determines which propositional variables are true inside each possible world. Given a valuation
V', a Kripke model 9 is the triple (W, R, V). Within a world w, the propositional connectives
{—,A,V,—,=} are interpreted classically, while JA is true at w iff it is true in every world
‘seen’ by w, i.e. M w = OA iff (Vo € W)(wRv — M, v = A). A formula A is said to be
valid in a model M (M | A) iff it is true at every world w € W of M. A formula A is valid
in a frame § (§ = A) iff it is valid in every model M of §. A formula A is valid in a class
of frames C' iff it is valid in every frame § of C. We will denote by || Aljogn the set of worlds
w € W in which A is true at model M, i.e. ||Aljgp = {w € W | M, w = A}. If the model M is



obvious, the subscript is usually dropped and we denote it simply by ||A|. General Frames
are possible-worlds frames § = (W, R, X), where X is a subset of 2"V closed under union,
intersection, complement and the operator OY = {w € W | (Vu € W)(wRu - v € Y)}. A
Kripke model M = (W, R, X, V') (an admissible model) based on the general frame § requires
that V draws its valuations for propositional variables (and provably for every wif) from the
set X of admissible valuations (see [BARVO1]).

A normal modal logic A is sound with respect to a class C of frames iff -5 A implies C' = A.
A is complete with respect to C iff C' = A implies o A. A logic A is determined by a class
C of frames iff it is both sound and complete with respect to C.

We are going to make use of the following fact (see [Gol92, Seg70]). It is well known that the
frame (w, <) of the natural numbers with their natural strict ordering is axiomatized by the
logic €2, where €2 is an abbreviation for the normal modal logic K4DLZ, axiomatized by:

4. 0OA—0ODA
D. OA — 0A
L. O(AAOA— B)VO(BAOB — A)

Z. O(0A— A) — (00A - 0O4)

The logic © has been investigated in the context of axiomatizing the ‘future’ fragment of
discrete linear time. We will extensively exploit below that o A iff (w, <) | A.



2.2 Conditional Logics

The language L£_. of propositional conditional logic extends £ with a binary conditional con-
nective (A = B), interpreted for our purposes as ‘A normally implies B’ (also interpreted in
the literature as a counterfactual conditional, causal conditional, indicative conditional, etc).
The reader is referred to [Nut80] for more details; see also [Poz10].

The systems of conditional logic are defined as sets closed under certain rules and possessing
certain axioms. Important rules include:

RCEA. (A:>C'f)1 = (BB:>C)

RCK. (C:Al(A/\l /\ A gjz,)l)_;B(C:B)
RCEC. (c*;»ff)1 = éBC=>B)

RCE. ﬁ;—g

Important axioms comprise:

ID. A=A
CUT. (AAB = C) A (A=B) — (A=C)

AC.  (A=B) A (A=C) = (AAB = C)

CC.  (A=B) A (A=C) - (A = BAC)

Loop. (Ao=A; A ... A Ag=Ag) — (Ag=Ap)
OR.  (4=C) A (B=C) — (AVB = C)

CV.  (A=B) A ~(A=-C) - (AAC = B)
CSO. (A=B) A (B=A) - (A=C) = (B=C))
CM. (A= BAC) — (A=B) A (A=C)

MP. (A=B) — (A—B)



MOD. (~A=A) — (B=A)
CA.  (A=B) A (C=B) — (ANC = B)
CS. (AN B)— (A=B)
CEM. (A=B)V (A=-DB)

SDA. (AVB = C) — (A=C) A (B=C)

Principles of interest to the study of ‘normality’ conditionals:

Transitivity (A=B) A (B=C) — (A=0)
Weak Transitivity (A=B) A (B=C) = (A=C)
Monotonicity (A=B) — (ANC = B)

Weak Monotonicity (A=B) = (AANC = B)
Modus Ponens AN (A=B) - B

Weak Modus Ponens A A (A=B)= B

Here are some important logics from the literature (see [Nut80]):

e CU = RCEC+RCEA +RCK+1ID+AC+CUT
e CE = RCEC+RCEA +RCK+1ID+AC+CUT +CA
e V = RCEC+RCEA+RCK+ID+AC+CUT+CA+CV



2.3 KLM Logics

The KLM approach [KLM90, LM92] to nonmonotonic reasoning (NMR) emerged in the
early '90s from a study of nonmonotonic consequence relations and their connection
to the preferential semantics for NMR. We only provide the basic facts in the interests of
demonstrating their connection to the conditional logics defined; see the original articles for
details.

In this section, we work with the language £ of propositional logic and the new formation
rule (in the metalanguage): A fv B denotes a (KLM) default conditional or a nonmonotonic
derivability relation (A, B € £). The following rules are sometimes called Gabbay - Makinson
conditions:

REF. A r\,A
RW. M LLE. M
c |’VB B P\’C

oM. AP apbe cur anspo apes
ANB fvc A PVC

Loop. o P o AND. M
Ao }VA’“ A }VB/\C

RM. abo o OR. Apc spe

A |’V—\B AVB |’VC

The KLM logics comprise the following systems, from the strongest to the weakest: R (Ra-
tional), P (Preferential), CL (Loop-Cumulative) and C (Cumulative).

e R consists of the propositional calculus plus REF, LLE, RW, CM, AND, OR, RM.
e P results from R by dropping RM.
e CL results from P by dropping OR and adding Loop and CUT.

e C, the weakest, results from CL by dropping Loop.

The following correspondences are known; [CL92, Poz10], see also Table 1, page 64:

e R corresponds to the ‘flat’ fragment of conditional logic V (CE + CV).

e P corresponds to the ‘flat’ fragment of conditional logic named CE.



e C corresponds to the ‘flat’ fragment of CU.

A ‘translation’ of the KLM conditions to conditional logic principle is known from [CL92|. It
is readily checked in the correspondence shown in Table 1, at page 64.



2.4 Modal approaches to Default Conditionals

The most famous modal approach in order to define a conditional logic of normality is due to
Boutilier and Lamarre using the modal logic S4, axiomatized by:

K. OAAD(A— B) —» OB
T. 04— A

4. 0JA—-0O0OA

In [Lam91, Bou94| they define a normality ordering in sets of possible worlds, where ‘world
u sees the world v’ is translated as ‘v is more normal (or less exceptional) than w’. The
conditional statement A = B which is interpreted as ‘if A then normally B’ is defined as

follows:
(A= B) =45 0OA—=OAANTOA—= B)))

Through this definition, the desired interpretation of ‘B is true in the most normal worlds
where A is also true’ becomes clear and the conditional logic of normality that is defined is
shown to be equivalent with the modal logic S4 mentioned above. This is achieved by defining
the necessity operator JA to be a shorthand for (wA = A) and, accordingly, the possibility
operator QA to be a shorthand for =(4 = —A).

The conditional logics defined by this intuition are shown to contain many important axioms
that are considered essential in the study of normality statements of this kind and to not
contain others that are rather undesirable (a good example is the principles of interest to
the study of ‘normality’ conditionals mentioned above, against their weak counterparts). The
cumulative results that have been shown can be again easily checked in Table 1, page 64, where
they can also be compared with other known attempts in the literature that have been made
in order to define such logics.

10



Chapter 3

‘Overwhelming Majority’
Conditionals

We wish to define (variants of) a default conditional of the form ‘A normally implies B’.
The fundamental question is to provide a concrete interpretation of the statement ‘normally’.
Earlier approaches resort to ‘normality’ orderings ([Del88, Lam91, Bou94]: A = B is true iff
B is true in the most normal A-worlds), and considerations of ‘size’ ([Jau08]: A = B is true iff
B is true in ‘many’ (‘most’) A-worlds). Another fundamental intuition dictates that (A A B)
is ‘preferred’ over (A A —=B) for (A = B) to be true; another, similar view, is that (A — B) is
more ‘normal’ than (A — —=B) [Boc01].

In this paper, we design ‘majority default’ conditionals based on this intuition - note that we
consistently work with the infinite set w of possible worlds:

e A = B is an ‘overwhelming majority’ conditional, in the sense that B is true in a
very large set of A-worlds. We consider as ‘large’ the cofinite subsets of w (and ‘small’
the finite ones). Obviously, this is an (extreme, but) intuitively acceptable form of
‘overwhelming majority’. We remind the reader that a set is cofinite iff its complement
is finite (with respect to w in this context).

e A = B is true , either vacuously (if there are no ‘many’ A-worlds) or essentially: iff
I|A A B|| is much larger (it is a cofinite set) than [|[A A =B||.

Throughout this chapter, we will be working with the set w of countably many possible worlds,
with the aim of providing different accounts of ‘A normally implies B’ (A = B) as ‘B is true
in all, but finitely many, A-worlds’.

3.1 Conditionals modally defined over (w, <)

Our first approach is to define a ‘majority’ conditional over the frame (w, <) of natural num-
bers, strictly ordered under <. Conforming to the intuition(s) expressed above, we will define

11



(A = B) as shorthand for:

(A= B) =45 O0-AV OOAAB)
The import of such a modal definition over (w,<) is that either there do not exist ‘many’
A-worlds (A settles down to be false, at some ‘point’) or there exist ‘overwhelmingly many’
‘points’ in which A A B is true (A A B is true in a cofinite subset of w). To state properly the

conditional logic induced by this definition , we proceed to define the following translation of
conditionals to the (mono)modal language L£r:

Definition 3.1.1 We recursively define the following translation ()* : Lo — Lg

=
We proceed to define the logic Q of ‘majority default conditionals’ over (w, <):

= =
Definition 3.1.2 [Conditional Logic ©]. The logic © consists of all formulae A € L,
such that: .
Aeq iff (w,<)EA" iff FqA*

The second equivalence follows from the completeness of 2 = K4DLZ with respect to the
frame (w, <).

Fact 3.1.3 Let 9t be a model of § = (w, <) and n € w an arbitrary world. We will say that
M, n = (A = B) iff one of the following holds:

(i) (3ng > n)(Vne >ng) M,ng = -4
(ii) (ng > n)(Yng > ngz) M,ng = AN B

12



Some comments on the definition of 3 are in order. This model-theoretic modal definition of
the conditional has the advantage that it is a clear ‘majority’ definition, easy to understand,
with an intuitively acceptable ‘largeness’ condition. It captures ‘cofinite’ subsets of w in an
easy manner, in contrast to the difficulty of capturing this axiomatically. Further on, and
perhaps more important, a decision procedure readily emerges from the definition:

=
To check whether a conditional (A = B) is in , simply check whether (A = B)* has a
tableaux proof in K4DLZ; such a proof procedure exists.

On the other hand, the ordering in (w, <) has not any clear ‘preference’ meaning here. It
implicitly provides a ‘temporal’ change flavour in the conditional defined, see below on the
invalidity of ID.

=
Let us proceed to check the properties of Q. Throughout the proofs, § refers to (w, <) and all
models 91 are based on that frame.

=
Theorem 3.1.4 The logic :

1. is closed under the rules RCEA, RCK and RCEC

2. contains the axioms CUT, AC, CC, Loop, OR, CSO, CM, CA, Transitivity,
Weak Transitivity and Weak Modus Ponens

Proor. RCEA: Let M |= (A = B). We have to show that
ME=(A=C)=(B=C)

Assume an arbitrary state n € w, such that 9, n |= (A = C). Then, either:

(i) (Fn1 > n)(Yng > n1) M, ne = -4, or

(ii) (Ing > n)(Vng > n3z) M, ng = (AANC)
Case (i): By M = (A = B) we also have that (Vng > ny) MM, ne = (A = —B). This gives
that (In1 > n)(Vne > n1) M, ne = -B, and M, n = (B = C) follows.
Case (ii): Similarly, by 9 = (A = B) we obtain

(Vng >ng) Mng = (ANC =BAC)
It follows that (Ing > n)(Vns > n3) M, n4 = (B A C), and thus M, n = (B = C).
So, if M, n = (A = C), then M, n |= (B = C), which gives that
MnEA=C)— (B=C)

13



Similarly, M, n = (B = C) — (A = C). Since the world n was arbitrarily chosen, the proof
is complete.

RCK: Let M = (A1 A ... AN A,) — B. We have to show that

ME=C=>44N...NC=A4,) > (C= B)

Assume an arbitrary state n € w, such that M, n = (C = A1 A...ANC = A,). Obviously,
M,n = (C= A;)and ...and M, n = (C = A,). Then, either:

(i) (3ng > n)(Vng > ng) M, ng = -C, or

(ii) (Ing > n)(Yng > n3)(M,ng = (C A Ay) and ...and M, ng = (C A Ay)), which means
that (Ing > n)(Vng >nz) Mna = (CANATN...NAY)

Case (i): By definition, M, n = (C = B) follows.
Case (ii): By M = (A1 A ... A A,) — B we obtain
(Vng >ng) Mg =E(CANALN...NA,) - CAB
It follows that (Ing > n)(VYng > n3) M, ng = (C A B), and thus M, n = (C = B).
So, if M,n = (C= A1 N...NC = A,), then M,n |= (C = B), which gives that

MnE(C=AN...NC=A,) = (C= B)

Since the world n was arbitrarily chosen, the proof is complete.

RCEC: Let 9 = (A = B). We have to show that

M (C= A) = (C = B)

Assume an arbitrary state n € w, such that 9, n |= (C' = A). Then, either:

(i) (3n1 > n)(Yna > ny) M, ne = —C, or
(ii) (Inz > n)(Vng > ng) M,ng = (C AN A)

Case (i): By definition, M, n = (C = B) follows.
Case (ii): By 9 = (A = B) we obtain

(Vg >n3) M,ng = (CANA=CAB)

14



It follows that (Ins > n)(Vng > n3) M, ny = (C A B), and thus M, n = (C = B).
So, if M, n |= (C = A), then M, n |= (C = B), which gives that
MnE=(C=A) — (C=B)

Similarly, 9, n = (C = B) — (C = A). Since the world n was arbitrarily chosen, the proof
is complete.

CUT: We have to show that

SE(AANB=C)AN(A=B)—= (A=C)

Assume an arbitrary state n € w, such that M,n = (AA B = C) A (A = B), where M is a
model of §. Obviously, M, n = (AA B = C) and M,n = (A = B). Then, either:

(i) (Fn1 > n)(Yng > ny) M, ne = -4, or
(ii) (Ing > n)(Vng >nz) Mng = (AANBAC)

Case (i): By definition, M, n = (A = C) follows.
Case (ii): We also have that (VYn4 > n3) MM, ng = (AAC), and thus M, n = (A= C).
So, if M, n = (AAB = C)A (A= B), then M,n |= (A = C), which gives that

MnE(ANB=C)N(A=B)— (A=C)

Since the world n and model 9 were arbitrarily chosen, the proof is complete.

AC: We have to show that

SEA=B)ANA=>C)— (ANB=C)

Assume an arbitrary state n € w, such that M, n = (A = B) A (A = C), where 1 is a model
of §. Obviously, M, n = (A= B) and M, n |= (A = C). Then, either:

(i) (3n1 > n)(Vng >n1) M, ny = -4, or

(ii) (Ing > n)(Vng > n3)(M,ny = (A A B) and M,ny = (A A C)), which means that
(Ing > n)(Yng > n3) M,ng = (AANBAC)

Case (i): We also have that (Vna > ny) MM, na = —(A A B), and thus M, n = (AN B = C).

15



Case (ii): By definition, 9, n = (A A B = C) follows.
So, if M,n = (A= B) A (A= C), then M,n = (AA B = C), which gives that

MnEA=>B)NA=C)—=(ANB=C)

Since the world n and model 9t were arbitrarily chosen, the proof is complete.

CC: We have to show that
§EA=B)ANA=>C)— (A=BAC)

Assume an arbitrary state n € w, such that MM, n = (A = B) A (A = C), where 91 is a model
of §. Obviously, M, n = (A = B) and M, n |= (A = C). Then, either:

(i) (Fn1 > n)(Yng > ny) M, ne = A, or

(ii) (3ng > n)(Yng > n3)(M,ngs = (AA B) and M, ny = (A A C)), which means that
(3713 > ’I’L)(VTM > 713) M, ng ’: (A AN B A C)

Case (i): By definition, M, n = (A = B A C) follows.
Case (ii): Similarly, by definition, 9, n = (A = B A C) follows.
So, if M, n = (A= B) A (A= C), then M,n = (A= BAC), which gives that

Mn = (A= B)A(A=C) > (A= BAC)

Since the world n and model 9 were arbitrarily chosen, the proof is complete.

Loop: We have to show that

S’:(A0:>A1/\.../\Ak:>140)—)(A0:>Ak)

Assume an arbitrary state n € w, such that MM, n = (Ag = A1 A ... A A = Ap), where I is
a model of §. Then, either:

(i) (3ng > n)(Vn2 > ny) M, ng = Ay, or
(ii) (Ing > n)(Yng > n3g)(M,ng = (Ao A A1) and ...and M, ny = (Ar A Ap)), which means
that (Hng > n)(Vn4 > ng)m, Ny ): (AO ANALTAN.A Ak)

Case (i): By definition, M, n = (Ao = Aj) follows.

16



Case (ii): We also have that (Vng > n3) M, ng = (Ap A Ag), and thus M, n = (Ao = Ag).
So, it M, n = (Ag = A1 A ... AN A = Ap), then M, n = (Ag = Ay), which gives that

f.)ﬁ,n):(A0:>A1/\.../\Ak:>A0)—>(A0:>Ak)

Since the world n and model 9t were arbitrarily chosen, the proof is complete.

OR: We have to show that

SEA=C)AN(B=C)— (AvB=2C)

Assume an arbitrary state n € w, such that M, n = (A = C)A (B = C), where 9 is a model
of §. Obviously, M, n = (A = C) and M,n = (B = C). Then one of the following must
hold:

Ing > n)(Vng > nq) M, ne = (WA A -DB)

) ( ) ) (

(i) (3ng > n)(Vng > nz) M,ng = (FAANBAC)
) (3ns > n)(VYng > ns) M,ng = (~FBAANC)
) ( ) ) (

Vng > ny 9ﬁ,n8): A/\B/\C)

Case (i): Equivalently, we have that (Vna > n;) M, ny = -(AV B), and M, n = (AV B = C)
follows.

Cases (ii) - (iv): We also have that (Vnsges > n3s7) M naes = (AV B) A C, and thus
M,nE=(AVB=C).

So, if M, n = (A= C)A(B=C), then M,n = (AV B = C), which gives that

MnEA=C)AN(B=C)—= (AVvB=C(C)

Since the world n and model 9t were arbitrarily chosen, the proof is complete.

CSO: We have to show that

SEA=BANB=A)—(A=C)=(B=0))

Assume an arbitrary state n € w, such that MM, n = (A = B) A (B = A), where 91 is a model
of §. Obviously, M, n = (A= B) and M, n = (B = A). Then, either:

(i) (Fn1 > n)(Yng > n1) M, ne = (HAAN-B), or
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(ii) (3ng > n)(Vng > nz) M,ng = (AN B)
Case (i): By definition, M, n = (A= C)and M,n = (B=C),soMn = (A= C)=(B=
() follows.

Case (ii): Let M,n = (A = C). Then it follows that (Inz > n)(Vng > n3) M,ns = (AN C),
because it cannot be the case that (Ing > n)(¥Yng > n3) M, ny = -A. By (Inz > n)(Vng >
n3) M, n4 = (A A B) we obtain

(Ing > n)(Yng > n3) M,ng = (BAC)

It follows that M, n = (B = C), and thus M,n = (A = C) — (B = C). Similarly,
MnE(B=C)—(A=C),and thus M,n = (A= C)=(B=C).

So, if M,n = (A= B)AN(B=A), then M,n = (A= C)=(B= C), which gives that

MnE=(A=B)AN(B=A4) - (A=C)=(B=10))

Since the world n and model 91 were arbitrarily chosen, the proof is complete.

CM: We have to show that
SEA=BANC)—=(A=B)NA=C)

Assume an arbitrary state n € w, such that 9, n = (A = B A C), where 9 is a model of §.
Then, either:

(i) (3n1 > n)(Vng >n1) M, ny = -4, or

(ii) (Ing >n)(Vng >n3z) Mng = (AANBAC)
Case (i): By definition, M,n = (A= B)and M,n = (A= C),soM,n = (A= B)N(A=C)
follows.

Case (ii): We also have that (Vng > ng) MM, ns = (AA B) and (Vng > n3) M,ng = (AN C),
soMnkE= (A= B)and M,n = (A= C), and thus M, n = (A= B)A (A= C).

So, if M, n = (A= BAC), then M,n = (A= B)A (A= C), which gives that
MnE(A=BANC)—> (A= B)N(A=C)

Since the world n and model 9t were arbitrarily chosen, the proof is complete.

CA: We have to show that
SE(A=B)AN(C=B)— (ANC = B)
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Assume an arbitrary state n € w, such that 9, n = (A = B) A (C = B), where 9 is a model
of §. Obviously, M,n = (A = B) and M, n = (C = B). Then one of the following must
hold:
Vng > 711) M, no }: (_\A AN _\C)
Vng > n3) M, 1y ): (ﬁA/\C/\B)
Vng > n5) M, ng |: (—|C/\A/\B)

) (

e s N

Vng > ny7) M, ng = (AANC A B)

Cases (i) - (iii): We also have that (Ynaa6 > ni135) M, noae = (A A C), and thus M, n =
(ANC = B).

Case (iv): By definition, M, n = (A A C = B) follows.
So, it M, n = (A= B)A(C = B), then M, n = (AN C = B), which gives that

MnE (A= B)AN(C=B)— (ANC = B)

Since the world n and model 2t were arbitrarily chosen, the proof is complete.

Transitivity: We have to show that
SEA=B)ANB=C)—=(A=0C)
Assume an arbitrary state n € w, such that M, n = (A = B) A (B = C), where M is a model

of §. Obviously, M, n = (A = B) and M, n = (B = C). Then one of the following must
hold:

(i) (3n1 > n)(Yne > ng) M, ne = (HAAN-DB)
(ii) (3ng >n)(Vng >nz) M,ng = (FANBAC)
(iii) (Ins > n)(Vng > ns) M,ng = (AANBAC)

Cases (i) - (ii): We also have that (Vngo4 > ni3) M, no4 = —A, and M, n = (A = C) follows.
Case (iii): Similarly, we also have that (Vng > ns) M, ng = (AAC), and thus M, n = (A = C).
So, if M,n = (A= B)A(B=C), then M, n |= (A= C), which gives that

MnE(A=B)AN(B=C)— (A=C)
Since the world n and model 9t were arbitrarily chosen, the proof is complete.
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Weak Transitivity: We have to show that
SEA=B)ANB=C)=(A=C0C)
Assume an arbitrary state n € w and 9t a model of §. We have that M, n = (A= B)A (B =
C) = (A = C) iff one of the following holds:
(i) (3ny >n)(Vng >ny1) Mng =-(A= B)V-(B=C),or
(ii) (Ing >n)(Vng >nz) Mny = (A= B)AN(B=C)AN(A=C)
Let (i) be false, that is let (Vn; > n)(3ng > n1) M, n2 = (A = B) A (B = C) (x). We will
show that (ii) has to be true. By (%) we have that (¥n; > n)(3na > n1) such that both the
following disjunctions hold:
o (Ins > ng)(Vng > ns) M, ne = -A or (Ins > na)(Vneg > ns) M, ne = (AN B)
e (Ing > n2)(VYng > ns) M, ng = =B or (Ins > n2)(Vng > ns) M, ng = (BAC)

This means that one of the following must hold:

(a) (an > ’I’L)(E|n5 > nl)(Vng > TL5) M, ng ‘: (—|A VAN —\B)
(b) (Vn1 >n)(Ins > n1)(¥Yng > ns) M,ne = (FAANBAC)
(c) (Yn1 > n)(Ins > n1)(Yng > ns) M,ng = (AANBAC)

All of these cases give us that
(Vni >n) Mn E(A=B)A(B=C)AN(A=C)
Consequently, we also have that
(Fnz >n)(Yna >n3) Mnys =(A=B)AN(B=C)AN(A=C)
which is exactly (ii). So one of (i) or (ii) must hold, which means that

MnE=(A=B)AN(B=C)= (A= C)

Since the world n and model 9 were arbitrarily chosen, the proof is complete.

Weak Modus Ponens: We have to show that
SEAN(A=B)=1B

Assume an arbitrary state n € w and 9t a model of §. We have that 9, n = AN(A= B) = B
iff one of the following holds:
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(1) (3n1 > n)(Vng >ny) M,ng = -AV (A= B), or
(ii) (Ing > n)(Vng >n3) Mny =AN(A= B)AB
Let (i) be false, that is let (Yn; > n)(3Ing > n1) M, ne = AN (A = B) (x). We will show that
(ii) has to be true. By (*) we have that (Vn; > n)(3ng > n1) such that 9, ny = A and
(Ins > na)(Vneg > ns) M, ng = -A or (Ins > na)(Vng > ns) M,ng = (AN B)

This means that
(Vn1 > n)(Ins > n1)(Yng > ns) M,ng = (AN B)

This gives us that
(Vny >n) M,n = (A= B)

From the last two, we also obtain
(Inz > n)(Yng >n3) Mna = AN(A= B)AB
which is exactly (ii). So one of (i) or (ii) must hold, which means that

MnE=ANA=B)=B

Since the world n and model 9 were arbitrarily chosen, the proof is complete. |

=
Having the intention to describe € in full detail, we proceed now to identify the rules and
axioms not present in this majority logic.

=
Theorem 3.1.5 The logic Q:

1. is not closed under the rule RCE

2. does not contain the axioms ID, CV, MP, MOD, CS, CEM, SDA, Monotonicity,
Weak Monotonicity and Modus Ponens

Proor. RCE: We have to show that
MpE=(A— B) and M= (A= B)
for some model 2 of F.

Let M = (w, <, V) be a model of § such that V(A) = {n|n is even} and V(B) = w. Then
(Vn € w) M,n = (A — B), because (Vn € w) M, n = B. Thus M = (A — B).
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But for an arbitrary state n € w we have that

(Yn1 > n)(Ing >n1) Mne = A and (Vng > n)(Ing > n3) M,ngy = -A

It follows then that 9%, n = (A = B) and consequently 9 (= (A = B).

ID: We have to show that
S (A= A)

Let M = (w, <, V) be a model of §F such that V(A) = {n|n is even}. Then for an arbitrary
state n € w we have that

(Vn1 >n)(Ing >ny) Mna = A and (Vnz > n)(Ing > n3) M,ng = -A

It follows then that 9%, n = (A = A) and the proof is complete.

CV: We have to show that
SEA=B)AN-(A=>-C)— (ANC = B)

Let M = (w, <, V) be a model of § such that V(A) = V(B) = w and V(C) = {n|n is even}.
Then (Vn € w) M,n = (A A B), so for an arbitrary state n € w we have that

(Fn1 > n)(Yna > ny) M,ng = (AN B)
and thus M, n = (A = B).
Additionally, for an arbitrary world n € w we have that

(Vns > n)(Ing > n3) M,yng = (ANC)
which gives M, n = (A = —C), or equivalently I, n = —(A = -C).

Consequently we have
M,nE= (A= B)AN-(A=-C)

But for n € w, M, n = (AN C = B), because we have that

(Vns > n)(Ing > n3) M,ng = (AANC) and (Vns > n)(Ing > ns) M, ng = -C

It follows then that 9, n = (A = B)A—(A = -C) — (AAC = B) and the proof is complete.

MP: We have to show that
S~ (A= B)— (A— B)
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Let M = (w, <, V) be a model of § such that V(A) = w and V(B) = w — {n}. Then we have
that
(In1 > n)(Yna > n1) M,ng = (AN B)

so by definition M, n = (A = B).
But MM, n = (A — B), because M, n = (A A -B).

It follows then that 9, n = (A = B) — (A — B) and the proof is complete.

MOD: We have to show that
SE(HA=A) — (B=A)

Let M = (w, <, V) be a model of § such that V(A) ={n € w|n >n1} and V(B) = {n|n is

even}. Then we have that

(ng > n1)(Vnz > ng) M,ng = A
so by definition M, n; = (A = A).
But M, ny = (B = A), because

(Vng > n1)(3ns > ng)M,ns = B and (Vng > n1)(3Iny > ng)M, ny = -B

It follows then that 9%, ny = (mA = A) — (B = A) and the proof is complete.

CS: We have to show that
§¥E(AANB)— (A= B)

Let 9 = (w, <, V) be a model of § such that V(A) = w and V(B) = {n|n is even}. Then for
an arbitrary even world n we have that 9, n = (A A B). But M, n = (A = B), because

(Vni >n)(3na >n1) Mne = A and (Vnz > n)(Ing > n3) M, ng =B

It follows then that M, n = (A A B) — (A = B) and the proof is complete.

CEM: We have to show that

§# (A= B)V (A= -B)

Let M = (w, <, V') be a model of § such that V(A) = w and V(B) = {n|n is even}. Then for
an arbitrary state n € w we have that 9, n = (A = B) and M, n [~ (A = —B), because
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(Vni1 >n)(Ing >n1) Mng = A

(Vng > n)(3Ing > nz) M,ng = B

(Vns > n)(3Ing > ns) M, ne = B

It follows then that 9, n = (A = B) V (A = —B) and the proof is complete.

SDA: We have to show that
SEAVB=C)—= (A=>C)N(B=C)
Let M = (w, <, V) be a model of § such that V(A) = {n|n is even} and V(B) = V(C) = w.
Then for an arbitrary state n € w we have that 9, n = (AV B = C), because
(In1 > n)(Yna > ny) M,ne = (BAC)

and consequently
(Elnl > n)(Vng > nl) M, no ’: (A vV B) ANC

But M, n = (A = C), because
(Vns > n)(Ing > n3) M,yng = A and (Vns > n)(Ing > ns) M,ng = -A
and thus M, n = (A= C)A (B=C).

It follows then that M, n = (AV B = C) — (A= C) A (B = C) and the proof is complete.

Monotonicity: We have to show that
¥ (A= B)— (ANC = B)
Let M = (w, <, V) be a model of § such that V(A) = V(B) = w and V(C) = {n|n is even}.
Then (Vn € w) M, n = (A A B), so for an arbitrary state n € w we have that
(In1 > n)(Yna > ny) M,ng = (AN B)
and thus M, n = (A = B).
But M, n = (AN C = B), because

(Vnz > n)(Ing > n3) M,ng = (AANC) and (Vns > n)(Ing > ns) M, ng = -C

It follows then that 2, n = (A = B) — (A A C = B) and the proof is complete.
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Weak Monotonicity: We have to show that
SEA=B)=(ANC=B)
Let M = (w, <, V) be a model of § such that V(A) = V(B) = w and V(C) = {n|n is even}.

( w
For an arbitrary state n € w we have that MM, n | (A = B) = (AAC = B) iff one of the
following holds:

(i) (3ng > n)(Vng >n1) M, ng = —-(A= B)
(ii) (3ng >n)(Vng >nz) Mny = (A= B)AN(ANC = B)

Case (i): By construction we have that (Vn € w) M, n = (A A B), so by definition
(Vn € w) M,n = (A= B)
This gives us that (Vn € w) M, n = =(A = B) and the case (i) cannot hold.
Case (ii): By construction we have that
(Vns > n)(Ing > ns) M,ng = (AAC) and (Vny > n)(Ing > ny) M, ng = -C
so by definition (Vn € w) M, n = (A A C = B) and the case (ii) cannot hold.

It follows then that 9, n [~ (A = B) = (AA C = B) and the proof is complete.

Modus Ponens: We have to show that

SEAN(A=B)— B

Let M = (w,<,V) be a model of § such that V(A) = {n} and V(B) = (). Then M,n = A
and by definition 9, n = (A = B), which gives M,n = AN (A = B).

But 9, n = B by construction.

It follows then that 9%, n = A A (A= B) — B and the proof is complete. ||

Observe that ?2} does not contain the ID axiom. This might appear strange; after all ‘reflezivity
seems to be satisfied universally by any kind of reasoning based on some notion of consequence’
[KLM90, p. 177] and defeasible conditionals are designed to incarnate some form of defeasible
consequence. Yet, in the same sense as observed in [KLM90], conditionals that do not satisfy
it ‘probably express some notion of theory change’. It seems that failure of ID is due to
the unavoidable ‘temporal’ flavour of (w, <), whose ordering directly reminds the setting of
discrete linear time. However, this seems appropriate for conditionals incorporating a notion
of ‘temporal’ causation, in the form ‘if X, then normally it should be the case that Y holds
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in the future’ - “normally, a strong earthquake implies a permanent change in future building
codes”. Nevertheless, failure of ID is not a happy incident and it seems natural to consider
alternative modal definitions of the conditional connective that would enforce the validity of
ID. Below, we demonstrate that some plausible attempts to validate ID unfortunately result
into a monotonic conditional logic.

As a first attempt, it seems natural to constrain the set of valuations, using the known recipe
of general frames. For the rest of this section, to facilitate the exposition, we will use the
symbol (A = B) for the monotonic conditional(s) we define below.

Definition 3.1.6 Let § = (w, <, X) be the general frame obtained by setting the set X of
admissible valuations to be the set of finite and cofinite subsets of w. We assume again that
A = B as previously to be a shorthand for 0T0-A v OO(A A B). That is

A= B iff 0O0-AvV OO(AAB)

Note that X is well-defined, as it is closed under the boolean algebra operators and the modal
operator (see [BARVO1, p. 30]).

Proposition 3.1.7 The conditional defined in Definition 3.1.6 satisfies Monotonicity, i.e.

§E=(A= B) = (AAC = B)

PROOF. Assume an arbitrary state n € w, such that M, n = (A = B), where 9 is a model
of §. Then, either:

(i) (Fn1 > n)(VYng > n1) M, ne = A, or
(ii) (3ng > n)(Vng > nz) M,ng = (AN B)

Case (i): We also have that (Vny > ny) MM, ny = -(AAC), and thus M, n = (AANC = B).

Case (ii): For a proposition C, since ||C|| € X, one of the following must hold:

(a) (Ins > n)(Vng > ns) M, ng E -C
(b) (377,7 > n)(Vng > 7”L7) M, ng |: C

In (a), we also have that (Yng > ns) M, ne = ~(A A C), and thus M,n = (AN C = B).
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In (b), by (ii) we obtain (Inz > n)(Vng > n3) M,ng = (AANBAC), and M, n = (AANC = B)

follows.
So, if M, n = (A = B), then M,n = (AAC = B), which gives that

MnE=(A=>B)— (ANC = B)
Since the world n and model 9 were arbitrarily chosen, the proof is complete. ||

This phenomenon persists, even if we go back to (w, <) and attempt to provide alternative
modal definitions of the conditional. Not all of them conform to the ‘true in all, but finitely
many, worlds’ intuition, but they demonstrate the possibility of different variants.

Theorem 3.1.8 Assume the following definitions:

() A= B =g 00-A vV OO(AAB)

)
(ii) A= B =def O00—-A v OO(A A B)
(i) A= B =g O0(A — B)

)

(iv) A= B =def O0(A — B)

All = conditionals defined above satisfy Monotonicity.

PrROOF. In each case, we have to show that

§E=(A= B) = (AAC = B)

(i): Assume an arbitrary state n € w, such that 9, n = (A = B), where 9 is a model of §.
Then, either:

(i) (Vn1 > n)(3ng > n1) M, ne = -A, or
(ii) (Yn3 > n)(3Ing > ng) M,ny = (AN B)

Case (i): We also have that (Iny > nq) M, ne = (A A C), and thus M,n = (AANC = B).

Case (ii): For a proposition C one of the following must hold:

(a) (Vns > n)(Ing > ns) M, ng E -C
(b) (Iny > n)(Yng > n7) M,ng =C
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In (a), we also have that (Ing > ns) M, neg = (A A C), and thus M,n = (AN C = B).

In (b), by (ii) we obtain (VYn3 > n)(Ing > n3) M,ny = (AANBAC), and M, n = (AANC = B)

follows.
So, if M, n = (A = B), then M,n = (AAC = B), which gives that
MnkE= (A= B)— (ANC = B)

Since the world n and model 2 were arbitrarily chosen, the proof is complete.

(ii): Assume an arbitrary state n € w, such that 9, n = (A = B), where 9 is a model of §.
Then, either:

(i) (Vn1 > n)(3ng > ni) M, ne = -4, or
(ii) (Ing > n)(Vng > ng) M, ny = (AN B)

Case (i): We also have that (Ing > ng) M, ne = (A A C), and thus M, n = (AAC = B).

Case (ii): For a proposition C one of the following must hold:

(a) (Vns > n)(Ing > ns) M, neg = -C
(b) (3n7 > n)(VYng > n7) M,ng =C

In (a), we also have that (Ing > ns) M,ng = (A A C), and thus M, n = (AN C = B).

In (b), by (ii) we obtain (Ing > n)(Vng > ng) M,ny = (AABAC), and M,n = (ANC = B)
follows.

So, if M, n = (A = B), then M,n = (AAC = B), which gives that
MnE(A=B)— (ANC = B)

Since the world n and model 9t were arbitrarily chosen, the proof is complete.

(iii): Assume an arbitrary state n € w, such that 9, n = (A = B), where 9 is a model of §.
By definition, this means that
(In1 > n)(Yna > ng) M,ne = (A — B)
By propositional logic, we have that (Vn € w) M,n = (A — B) - (ANC — B).
From these, we obtain

(Elnl > n)(Vn2 > nl) M, no ): (A/\C — B)
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and M, n = (AN C = B) follows.
So, if M, n = (A = B), then M,n = (AAC = B), which gives that
MnkE=(A=B)— (ANC = B)

Since the world n and model 9 were arbitrarily chosen, the proof is complete.

(iv): Assume an arbitrary state n € w, such that 9, n = (A = B), where 9 is a model of §.
By definition, this means that
(Vni1 > n)(Ing > ny) M,ne = (A — B)

By propositional logic, we have that (Vn € w) M,n = (A — B) - (ANC — B).
From these, we obtain

(Vni > n)(3ng >ny) Mne = (ANC — B)
and M, n = (AN C = B) follows.
So, if M, n = (A = B), then M,n = (AAC = B), which gives that

Mnl= (A= B) — (AANC = B)

Since the world n and model 9 were arbitrarily chosen, the proof is complete. ||

3.1.1 An alternative: cofinal vs cofinite in (w, <)

In this subsection, we discuss a possible alternative. Instead of working with the (obviously
large) cofinite subsets of w, we will attempt to work with cofinal subsets: S C w is cofinal in
w iff for every n € w there exists an s € S, such that n < s.

We proceed to define the conditional (A = B) as follows:

(A = B) =def OO-A Vv DO(A AN B)

Definition 3.1.9 [Conditional Logic 3] The logic @ consists of all formulae A € L,
such that: N
Acw iff (w, <) ): A* iff bFgaprz A*

where A* is the obvious translation defined similarly to Definition 3.1.1.
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Fact 3.1.10 Let 9t be a model of § = (w, <) and n € w an arbitrary world. We will say that
M, n = (A = B) iff one of the following holds:

(i) (Fn1 > n)(Vng >ng) M, ng =-A
(ii) (Vng >n)(3na >n3) M,y = ANB

The logic w turns out to be quite interesting.

Theorem 3.1.11 The logic i}:

1. is closed under the rules RCEA, RCEC and RCE

2. contains the axioms ID, CUT, Loop, OR, CV, CM, MOD, CEM and
Weak Modus Ponens

Proor. RCEA: Let M = (A = B). We have to show that

ME(A=C)=(B=0C)
Assume an arbitrary state n € w, such that 9, n |= (A = C). Then, either:

(i) (3n1 > n)(Vng >n1) M, ny = -4, or
(i) (Yng > n)(Ing > nz) M, ng = (AANC)

Case (i): By M = (A = B) we also have that (Vng > n;) MM, ny = (WA = —B). This gives
that (Ing > n)(Vne > n1) M, ne = -B, and M, n = (B = C) follows.

Case (ii): Similarly, by 9 = (A = B) we obtain

(3ng > n3z) Mg =E(ANC =BAC)
It follows that (Vng > n)(3ng > n3) M, ng = (B A C), and thus M, n = (B = C).
So, if M, n = (A= C), then M, n = (B = C), which gives that

MnE(A=C)— (B=C)
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Similarly, M, n = (B = C) — (A = C). Since the world n was arbitrarily chosen, the proof
is complete.

RCEC: Let 9 = (A = B). We have to show that

ME=(C=A)=(C=B)
Assume an arbitrary state n € w, such that 9, n |= (C' = A). Then, either:

(i) (3ny > n)(¥Yne > n1) M, ny = -C, or
(ii) (Vn3 >n)(Ing > ng) M,ng = (C A A)

Case (i): By definition, M, n = (C = B) follows.
Case (ii): By 9 |= (A = B) we obtain
(Ing > ng) Mny = (CANA=CAB)
It follows that (Vns > n)(3Ing > n3) M, ny = (C A B), and thus M, n = (C = B).
So, it M, n = (C = A), then M, n = (C = B), which gives that
M,n = (C=A)— (C= DB)

Similarly, 9, n = (C = B) — (C = A). Since the world n was arbitrarily chosen, the proof
is complete.

RCE: Let M = (A — B). We have to show that

ME= (A= B)
Assume an arbitrary state n € w. Then, either:

(1) (3n1 > n)(Vng >nq) M, ny = A, or
(i) (Vng >n)(Ing >nz) Mng = A

Case (i): By definition, M, n = (A = B) follows.
Case (ii): By 9 = (A — B) we obtain
(Vng >n)(Ing > nz)(M,ng = A and M,ny = A — B)

It follows that (Vng > n)(3n4 > n3) M, n4 = (A A B), and thus M, n = (A = B).
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So in either case M,n = (A = B). Since the world n was arbitrarily chosen, the proof is
complete.

ID: We have to show that
FE (4= 4)

Assume an arbitrary state n € w and 9t a model of §. Then, either:

(1) (3n1 > n)(Vng >n1) M, ny = -A, or
(ii) (Yng >n)(Ing >ng) Mny = A
In both cases, by definition 9, n = (A = A). Since the world n and model 9t were arbitrarily

chosen, the proof is complete.

CUT: We have to show that

SEAANB=C)AN(A=B)— (A=0)

Assume an arbitrary state n € w, such that M,n = (AN B = C) A (A = B), where M is a
model of §. Obviously, M, n = (AA B = C) and M,n = (A = B). Then, either:

(i) (Fn1 > n)(Yng > n1) M, ng = A, or
(i) (Yng >n)(Ing >nz) M ng = (AANBAC)

Case (i): By definition, I, n = (A = C) follows.
Case (ii): We also have that (3ns > n3) M, n4 = (A A C), and thus M, n = (A = C).
So, if M, n = (AANB = C)A (A= B), then M,n |= (A = C), which gives that

MnE(ANB=C)N(A=B)— (A=0)

Since the world n and model 9t were arbitrarily chosen, the proof is complete.

Loop: We have to show that

3):(A0:>A1/\/\Ak:>AQ)—>(A0:>Ak)

Assume an arbitrary state n € w, such that M, n = (Ag = A1 A ... A A = Ap), where I is
a model of §. Then, either:
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(i) (3ng > n)(Vng > ny) M, ng = Ay, or
(i) (Yng > n)(Ing > n3) M,ng = (Ap A A1) and ...and (Vng > n)(Ing > n3) M,ny =
(A A Ao)
Case (i): By definition, M, n = (A9 = Aj) follows.

Case (ii): We need only that (Vns3 > n)(3Ing > nz) M, ng = (Ao A Ag), and thus M, n =
(Ao = Ay).

So, if M, n = (Ag = A1 A ... N A = Ap), then M, n = (Ag = Ay), which gives that
fm,n): (A0:>A1/\.../\Ak:>A0) — (A0:>Ak)

Since the world n and model 9t were arbitrarily chosen, the proof is complete.

OR: We have to show that
FEMA=C)AN(B=C)—= (AVvB=C0C)

Assume an arbitrary state n € w, such that M, n = (A = C)A (B = C), where M is a model
of §. Obviously, M, n = (A = C) and M, n = (B = C). Then one of the following must
hold:

(i

Case (i): Equivalently, we have that (Vna > n;) M, ny = -(AV B), and M, n = (AV B = C)
follows.

Cases (ii) - (iv): We also have that (Inseg > n3s7) M naes = (AV B) A C, and thus
MnE(AVB=C).

So, if M,n = (A= C)A(B=C), then M,n = (AV B = C), which gives that
MnEA=>C)N(B=C)— (AvB=2C)

Since the world n and model 9t were arbitrarily chosen, the proof is complete.

CV: We have to show that
SEA=B)AN=(A=-C)— (ANC = B)
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Assume an arbitrary state n € w, such that MM, n = (A = B) A ~(A = —C), where M is a

model of §. Obviously, M, n = (A = B) and M, n [~ (A = —C). The only way this can be
achieved is if

(Vn1 >n)(Ing >n1) M,ng = (AAB) and (Inz > n)(Vng > n3) M,ng = (mAVC)
But then we also have
(Vn1 > n)(3ng >ny) Mna = (AANBAC)
and, by definition, M, n = (A A C = B) follows.
So, if M, n = (A= B) A =(A = —=C), then M,n = (AAC = B), which gives that

MnE(A=B)A-(A=-C)— (ANC = B)

Since the world n and model 9t were arbitrarily chosen, the proof is complete.

CM: We have to show that
SEA=BANC)=(A=B)N(A=C(C)

Assume an arbitrary state n € w, such that 9, n = (A = B A C), where 9 is a model of §.
Then, either:

(i) (Fn1 > n)(Yng > ny) M, ne = -A, or
(ii) (Vng > n)(EIn4 > ng) M, 1y |: (A AN B A C)

Case (i): By definition, M,n = (A= B)and M, n = (A= C),soM,n = (A= B)N(A=C)
follows.

Case (ii): We also have that (Ing > ng) M, ns = (AA B) and (Ing > n3) M,ng = (AN C),
soMnkE= (A= B)and M,n = (A= C), and thus M, n = (A= B)A (A= C).

So, if M, n = (A= BAC), then M,n = (A= B)A (A= C), which gives that

MnE(A=BANC)— (A= B)AN(A=C0)

Since the world n and model 9 were arbitrarily chosen, the proof is complete.

MOD: We have to show that

SE(-A=A)— (B=A)

34



Assume an arbitrary state n € w, such that 9, n = (-A = A), where 9 is a model of §. The
only way this can be achieved is if

(In1 > n)(Yne > ny) Myny = A

For the proposition B one of the following must hold:

(i) (3ng > n)(VYng > nz) M, ny = -B, or
(ii) (Yns > n)(Ing > ns) M, ng = B

Case (i): By definition, M, n = (B = A) follows.

Case (ii): By (3n1 > n)(Vng > n1) M, ne = A we also have that (Vns > n)(Ing > ns) M, ng =
(BAA), and thus M, n = (B = A).

So, if M, n = (—A = A), then M, n |= (B = A), which gives that
MnkE= (A= A) - (B=A)

Since the world n and model 2 were arbitrarily chosen, the proof is complete.

CEM: We have to show that
SE(A=B)V(A= -B)

Assume an arbitrary state n € w, such that 9, n = (A = B), where 9 is a model of §. The
only way this can be achieved is if

(Vn1 > n)(Ing > ny) M,ny = A and (Ing > n)(Vng > n3) M, n4 = (A V -B)
But then we also have
(Vn1 > n)(3ng > ny) M,ne = (AN -B)
and, by definition, 9, n = (A = —B) follows.
So, if M, n = (A = B), then M, n = (A = —B), which gives that
M,nE=-(A= B) = (A= -DB)

Since the world n and model 9 were arbitrarily chosen, the proof is complete.

Weak Modus Ponens: We have to show that
SEAN(A=B)=1B

Assume an arbitrary state n € w and 9t a model of §. We have that 9, n = AN(A= B) = B
iff one of the following holds:
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(1) (3n1 > n)(Vng >ny) M,ng = -AV (A= B), or
(ii) (Yng >n)(3ng >nz) Mna =AN(A= B)A\B
Let (i) be false, that is let (Yn; > n)(3Ing > n1) M, ne = AN (A = B) (x). We will show that
(i) has to be true. By (*) we have that (¥n; > n)(3nz > n;) such that 9, ny = A and
(Ins > n2)(Vng > ny) M, ng = —A or (Vns > na)(Ing > ns) M,ng = (AN B)

This means that
(Vns > n)(3Ing > ns) M, neg = (AN B)

This gives us that
(Yny >n) M,n; E (A= B)

From the last two, we also obtain
(Vng >n)(3Ing > nz) M,ngs =AN(A= B)AB
which is exactly (ii). So one of (i) or (ii) must hold, which means that

MnE=ANA= B)=B

Since the world n and model 9 were arbitrarily chosen, the proof is complete. |

Theorem 3.1.12 The logic 3:

1. is not closed under the rule RCK

2. does not contain the axioms AC, CC, CSO, MP, CA, CS, SDA, Transitivity,
Weak Transitivity, Monotonicity, Weak Monotonicity and Modus Ponens

Proor. RCK: For n = 2: We have to show that
gﬁli(Al/\Ag—)B) and i)ﬁl#(CéAl)/\(CéAQ)—)(CéB)
for some model 9 of §.

Let M = (w,<,V) be a model of § such that V(4;) =
is odd}, V(B) = 0 and V(C) = w. Then (Vn € w) M,
(Vn € w) M,n | (-A1 V-A4z). Thus M = (A1 A Ay — B).

{n|n is even}, V(43) = {n|n
n A1 N Ay — B), because

For an arbitrary state n € w we have that

(Vn1 > n)(3Ing > ny) Myng = (C A Ap) and (VYng > n)(Ing > n3) M,nyg = (C A As)
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This gives M, n |= (C = A1) and M, n |= (C = Az), which means that
Mn k= (C=A)AN(C = Ay)
But 9, n = (C = B), because we have that
(Vns > n)(Ing > ns) M,ng = C and (Iny > n)(Vng > n7) M, ng = (—-C V -B)

It follows then that 9, n = (C = A1) A (C = Ay) — (C = B) and consequently 9 (= (C' =
AN (C = Az) — (C = B).

AC: We have to show that
SEA=B)ANA=C)— (ANB=C)
Let M = (w, <, V) be a model of §F such that V(A) = w, V(B) = {n|n is even} and V(C) =
{n|n is odd}. Then for an arbitrary state n € w we have that
(Vn1 > n)(3ng >n1) Mng = (AAB) and (Yng > n)(Ing > n3) M,ng = (ANC)

This gives
MnE (A= B) and MnfE (A= 0C)

and consequently
MnE (A= B)AA=C)

But M, n = (AA B = C), because
(Vn1 > n)(Ing > ny) M,na = (AAB) and (Ins > n)(Vng > ns) M, ng = (AANBAC)

It follows then that M, n = (A= B) A (A= C) — (AA B = C) and the proof is complete.

CC: We have to show that
SEA=>B)ANA=C)—= (A= BAC)
Let M = (w, <, V) be a model of § such that V(A) = w, V(B) = {n|n is even} and V(C) =
{n|n is odd}. Then for an arbitrary state n € w we have that
(Vn1 >n)(3ng >ng) Mne = (AAB) and (Vns > n)(Ing > ng) Mng = (ANC)

This gives
MnE(A=B) and MnE= (A= C)

and consequently
MnE(A=B)ANA=C)
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But M, n & (A= B AC), because
(Vns > n)(Ing > ns) M,neg = A and (3Iny > n)(Vng > ny) M,ng = (AANBAC)

It follows then that 9, n = (A= B) A (A= C) — (A= B AC) and the proof is complete.

CSO: We have to show that
SEA=B)AN(B=A) > (A=0C)=(B=0)
Let M = (w, <, V) be a model of §F such that V(A) = w, V(B) = {n|n is even} and V(C) =
{n|n is odd}. Then for an arbitrary state n € w we have that
(Vn1 >n)(3ng >ny) Mne = (AAB) and (Ynz > n)(Ing > ng) Myng = (ANC)

This gives
MnE=(A=B), MnlE(B=A4) and M,n = (A= C)

and consequently

MnE(A=B)AN(B=A) and Mn=A=C

But M, n = (B = C), because
(Vns > n)(3Ing > ns) M,ng = B and (Iny > n)(Vng > n7)M,ng = (=B V =C)

It follows then that M, n = (A= B)A(B=A) — ((A = C) — (B = ()) and the proof is
complete.

MP: We have to show that
SFE (A= B)— (A— B)

Let M = (w, <, V) be a model of § such that V(A) = w and V(B) = w — {n}. Then we have
that
(Vn1 > n)(3Ing > ng) M,ne = (AN B)

so by definition M, n = (A = B).
But 9, n = (A — B), because M, n = (A A -B).

It follows then that 9%, n = (A = B) — (A — B) and the proof is complete.

CA: We have to show that

SE(A=B)AN(C=B)—= (ANC = B)
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Let M = (w, <, V) be a model of § such that V(A) =w —{n=3k|kew}, V(B)=w—{n=
3k —1|k € w}and V(C) =w —{n =3k — 2|k € w}. Then for an arbitrary state n € w we
have that

(Vn1 > n)(3ng > n1) M,ne = (AAB) and (VYng > n)(Ing > n3) M,ny = (C A B)

This gives
M,nE (A= B) and M,n = (C = B)

and consequently
M,nk= (A= B)A(C = B)

But MM, n = (AN C = B), because
(Vns > n)(3Ing > ns) M,ne = (ANC) and (Iny > n)(Vng > ny) M, ng = ~(AANBAC)

It follows then that 9, n = (A = B) A (C = B) — (A A C = B) and the proof is complete.

CS: We have to show that
SE(ANB) — (A= B)

Let M = (w, <, V) be a model of § such that V(A) = {n|n is even} and V(B) = {n}, where
n is an arbitrary even world. Then we have that 9, n = (A A B). But M, n = (A = B),
because

(Vn1 >n)(Ing >n1) Mng = A and (Vng > n)(Ing > nz) M,ng = (HAV -B)

It follows then that 9, n = (A A B) — (A = B) and the proof is complete.

SDA: We have to show that
SE(AVB=C)—= (A=C)AN(B=C)
Let M = (w, <, V) be a model of § such that V(A) = {n|n is even}, V(B) =w and V(C) =
{n|n is odd}. Then for an arbitrary state n € w we have that 0, n = (AV B = C), because
(Vn1 > n)(3Ing > ng) M,ne = (BAC)

and consequently
(Vni >n)(3ne >ny) Mna = (AVB)AC

But M, n = (A = C), because
(Vng > n)(Ing > nz) M,ng = A and (Ins > n)(Vng > ns) M,ng E AV -C

and thus M, n = (A= C)A (B=C).
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It follows then that M, n = (AV B = C) — (A= C) A (B = C) and the proof is complete.

Transitivity: We have to show that
§EA=B)ANB=C)—=(A=C0C)
Let M = (w, <, V) be a model of §F such that V(A) = {n|n is even}, V(B) = w and V(C) =
{n|n is odd}. Then for an arbitrary state n € w we have that
(Vn1 > n)(3ng >n1) Mny = (AAB) and (Yng > n)(Ing > n3) M,ny = (BAC)

This gives
M,nE= (A= B) and M,n = (B=C)

and consequently
MnE= (A= B)AN(B=C)

But M, n £ (A = C), because
(Vns > n)(Ing > ns) M,ng = A and (Iny > n)(Vng > ny) M,ng E (AN C)

It follows then that 9, n = (A = B) A (B = C) — (A = () and the proof is complete.

Weak Transitivity: We have to show that
§EA=B)ANB=C)=(A=0C)
Let M = (w, <, V) be a model of § such that V(A) = {n|n is even}, V(B) = w and V(C)

{n|n is odd}. For an arbitrary state n € w we have that M,n = (A = B)A (B = C) =
(A = C) iff one of the following holds:

(i) (Fn1 >n)(Yne >n1) M,ne =—~(A= B)V~(B=C)
(i) (Yng >n)(Ing >n3) Mny = (A= B)AN(B=C)AN(A=C)

Case (i): By construction we have that
(Vni1 >n)(3ng > ny) Myne = (AAB) and (Yng > n)(Ing > ng) M,ng = (BAC)

so by definition
(Vnew)MnE (A= B)AN(B=C)

This gives us that (Vn € w) M, n = —(A = B)V ~(B = C) and the case (i) cannot hold.
Case (ii): By construction we have that

(Vns > n)(3Ing > ns) M,ng = A and (Iny > n)(Vng > ny) M,ng = -(ANC)
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so by definition (Vn € w) M, n = (A = C') and the case (ii) cannot hold.

It follows then that M, n = (A= B) A (B = C) = (A = () and the proof is complete.

Monotonicity: We have to show that
§¥E(A=DB)— (ANC=B)
Let M = (w, <, V) be a model of §F such that V(A) = w, V(B) = {n|n is even} and V(C) =
{n|n is odd}. Then for an arbitrary state n € w we have that
(Vn1 > n)(3Ing > ny) M,ng = (AN B)
and thus M, n = (A = B).
But M, n = (AN C = B), because

(Vnz > n)(3ng > n3) M,ng = (AANC) and (Ins > n)(Yneg > ns) M,ng = (AANBAC)

It follows then that 9, n = (A = B) — (A A C = B) and the proof is complete.

Weak Monotonicity: We have to show that
§#E(A=B)= (ANC = B)
Let M = (w, <, V) be a model of § such that V(A) =w, V(B) = {n|n is even} and V(C) =

{n|n is odd}. For an arbitrary state n € w we have that M,n = (A = B) = (AANC = B)
iff one of the following holds:

(i) (Fn1 > n)(Yng > n1) M, ne = -~(A= B)
(ii) (Yng >n)(Ing >ngz) Mny = (A= B)AN(ANC = B)

Case (i): By construction we have that (Vn; > n)(3na > n1) M, ne = (AA B), so by definition
(Vn € w) M,n = (A= B)
This gives us that (Yn € w) MM, n = —(A = B) and the case (i) cannot hold.
Case (ii): By construction we have that
(Vn3 > n)(3Ing > nz) M,ng = (ANC) and (Ins > n)(Vng > ns) M,ng = —~(AANBAC)
so by definition (Vn € w) M,n = (A A C = B) and the case (ii) cannot hold.

It follows then that 2, n = (A = B) = (A A C = B) and the proof is complete.
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Modus Ponens: We have to show that
SEAN(A=B)— B
Let M = (w,<,V) be a model of § such that V(A) = {n} and V(B) = (). Then M,n = A
and by definition M, n = (A = B), which gives M,n = AA (A = B).
But 9, n & B by construction.

It follows then that 9%, n = AA (A = B) — B and the proof is complete. ||

3.2 Majority Conditionals over w equipped with neighborhoods
of cofinite subsets

In this section, we return to the original ‘cofinite-as-large’ intuition and we take a more ‘tra-
ditional’ approach. We resort to the minimal (Scott-Montague) semantics for conditionals
introduced by Chellas [Che75], and we discuss variants of truth assignment to conditional
statements in worlds whose neighborhoods contain cofinite (large) subsets of w. Models in this
section are based on a frame § = (w, f), where

frwx2¥ 2%

maps worlds (n € w) and propositions (sets of possible worlds, also subsets of w), to neighbor-
hoods of cofinite subsets of w.

Comment: The conditional logics defined in the rest of this section are rather weak, compared
to the previous ones and other known logics from the literature, since they only contain some
basic rules and very few axioms. This can also be seen quite clearly in Table 1, at page 64.

Definition 3.2.1 [Conditional Logic 31] Let ;‘L}l be the logic consisting of all A € L_,
valid in § = (w, f), where a conditional is evaluated as follows:
For a model M over §, M, n = (A = B) iff either

(i) there exists S C ||—-A[| such that S € f(n,||A]|), or

(ii) there exists T C ||A A BJ| such that T' € f(n, || A||)

Theorem 3.2.2 The logic 1?11:
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1. is closed under the rules RCEA and RCEC

2. contains the axiom CM

Proor. RCEA: Let M = (A = B). This means that ||A]| = ||B|, |24 = ||-B|| and
|AAC| =|BAC|. We have to show that

ME(A=C)=(B=0C)

Assume an arbitrary state n € w, such that 9, n |= (A = C). Then, either:

(i) there exists S C ||-A| such that S € f(n,||4]), or

(ii) there exists T C ||A A C|| such that T' € f(n, ||A]||)

Case (i): By ||A]| = ||B|| and ||-A]|| = ||=B|| we also have that there exists S C ||-B]| such
that S € f(n,||B]|) and by definition, M, n = (B = C) follows.

Case (ii): Similarly, by ||A|| = ||B| and ||AAC| = ||BAC| we obtain that there exists
T C||BAC| such that T € f(n,||B]|) and thus M, n = (B = C).

So, if M, n = (A = C), then M, n = (B = C), which gives that

MnEA=C)—= (B=C0C)

Similarly, M, n = (B = C) — (A = (). Since the world n was arbitrarily chosen, the proof
is complete.

RCEC: Let M = (A = B). This means that ||[C A A|| = ||C A B||. We have to show that

ME (C= A) = (C = B)

Assume an arbitrary state n € w, such that 9, n = (C' = A). Then, either:

(i) there exists S C ||=C|| such that S € f(n,||C]]), or

(ii) there exists T' C ||C' A A|| such that T' € f(n,||C]||)

Case (i): By definition, we also have that 9, n |= (C = B).

Case (ii): By ||C A A|| = ||C A BJ| we obtain that there exists T C ||[C' A B|| such that T €
f(n,||C]) and thus M, n = (C = B).
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So, if M, n |= (C = A), then M, n |= (C = B), which gives that
M,n = (C=A) — (C=B)

Similarly, 9, n = (C = B) — (C = A). Since the world n was arbitrarily chosen, the proof
is complete.

CM: We have to show that
SEA=BANC)=(A=B)AN(A=C(C)

Assume an arbitrary state n € w, such that MM, n = (A = B A C), where 9 is a model of §.
Then, either:

(i) there exists S C ||-A| such that S € f(n,||4]), or

(i) there exists T' C ||A A B A C|| such that T € f(n,|A]|)
Case (i): By definition, M, n = (A= B)and M, n = (A= C),soM,n = (A= B)N(A=C)
follows.

Case (ii): We also have that there exists T C ||AA B A C|| C ||A A B|| such that T' € f(n,| A])
and there exists 7' C ||[AABAC| C ||AAC| such that T' € f(n,||A]|). By definition then,
M,n = (A= B) and M,n = (A= C), and thus M, n = (A= B) AN (A= C).

So, if M, n = (A= BAC), then M,n = (A= B)A (A= C), which gives that
MnE(A=BANC)—> (A= B)AN(A=C0)

Since the world n and model 9t were arbitrarily chosen, the proof is complete. [ |

Theorem 3.2.3 The logic ﬁl:

1. is not closed under the rules RCK and RCE

2. does not contain the axioms ID, CUT, AC, CC, Loop, OR, CV, CSO, MP,
MOD, CA, CS, CEM, SDA, Transitivity, Weak Transitivity, Monotonicity,
Weak Monotonicity, Modus Ponens and Weak Modus Ponens

Proor. RCK: For n = 2: We have to show that

EJJI\:(Al/\Ag—>B) and m%(C:>A1)/\(C:>A2)—>(C:>B)
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for some model I of §.

Let M = (w, f,V) be a model of § such that V(A;) =w — {n1}, V(A2) =w — {n2}, V(B) =
w—A{ny,n2}, V(C) = w and for an arbitrary world n € w let f(n,||C||) = {w—{n1},w—{na}}.
Then (Vn € w) M, n = (A1 A A2 — B), because

M,ny = -A1, Mng E—-Ay and (Vn # ny,ng) Mn = B
and thus M | (A1 A As — B).
By definition, we also have that 9, n = (C = A;) and M, n | (C = As), which means that
M,n = (C= A1) A (C = Ay)

But 9, n = (C = B), because we have that

there is no S C ||=C| such that S € f(n, ||C||) and

there is no T' C ||C' A BJ| such that T € f(n, [|C]|)

It follows then that M, n = (C = A1) A (C = Az) — (C = B) and consequently 9 (= (C =
Al) VAN (C:> Ag) — (C = B)

RCE: We have to show that
ME=(A— B) and M= (A= B)
for some model 9 of §.

Let M = (w, f, V) be a model of § such that V(A) = {n|n is even} and V(B) = w. Then
(Vn € w) M,n = (A — B), because (Vn € w) M,n = B. Thus M = (A — B).

But we have that both ||=A| and ||A A B|| are not co-finite, so for an arbitrary world n € w

there is no S C ||—~A|| such that S € f(n,| A||) and

there is no T' C ||A A B|| such that T' € f(n, || A||)

It follows then that 9%, n = (A = B) and consequently 9t (= (A = B).

ID: We have to show that
S (A= A)

Let M = (w, f,V) be a model of § such that V(A) = {n|n is even}. Then we have that both
|A|| and ||—A]|| are not co-finite, so for an arbitrary world n € w
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there is no S C ||=A|| such that S € f(n,|A||) and

there is no T' C || A|| such that T' € f(n,||4]|)

It follows then that 9%, n [~ (A = A) and the proof is complete.

CUT: We have to show that
SEANB=>C)N(A=B)— (A=0)
Let M = (w, f, V) be amodel of § such that V(A) = w, V(B) =w—{n1}, V(C) = w—{n2} and
for an arbitrary world n € w let f(n, ||[AA B||) = {w — {n1,n2}} and f(n, ||4]]) = {w —{ni}}.
By definition then, we have that
MnE(ANB=C) and M,n | (A= B)
and thus M, n = (AANB = C) A (A= B).

But M, n = (A = C), because

there is no S C |- A|| such that S € f(n,||A|]) and

there is no T' C ||A A C|| such that T € f(n,| Al

It follows then that 9, n = (AN B = C)A (A= B) — (A= C) and the proof is complete.

CC: We have to show that

SEA=B)ANA=C)— (A= BAC(O)
Let M = (w, f, V) be a model of § such that V(A) =w, V(B) =w —{m}, V(C) =w — {na2}
and for an arbitrary world n € w let f(n, ||A]|) = {w—{n1},w—{n2}}. By definition then, we

have that
MnE (A= B) and MnfE (A= C0C)

and thus M, n = (A= B)A (A= C).

But M, n = (A= B AC), because

there is no S C ||~A|| such that S € f(n,|A||) and

there is no 7' C ||A A B A C|| such that T' € f(n, ||A||)
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It follows then that M, n = (A= B) A (A= C) - (A= B AC) and the proof is complete.

Loop: For k = 2: We have to show that
5 175 (A() = Al) AN (Al = Az) A (AQ = A()) — (AQ = Ag)
Let M = (w, f, V) be a model of § such that V(4y) = w, V(A1) =w—{n1}, V(42) = w—{n2}
and for an arbitrary world n € w let f(n, ||Ao]|) = {w — {n1}}, f(n,|A1]) = {w — {n1,n2}}
and f(n,||Az||) = {w — {n2}}. By definition then, we have that
M, n ): (A() = Al), M, n ): (Al = AQ) and M, n ): (A2 = Ao)
and thus M, n = (Ao = A1) A (A1 = Az) A (Az = Ap).

But M, n & (Ag = As), because

there is no S C ||[—=Ap|| such that S € f(n, || Ao|) and

there is no 7' C ||Ag A Az|| such that T' € f(n, || Aol|)

It follows then that 9, n = (Ag = A1) A (A1 = A2) A (A = Ag) = (Ao = A2z) and the proof
is complete.

CSO: We have to show that
SEA=B)AN(B=A) - (A=C)=(B=0))
Let M = (w, f, V) be amodel of § such that V(A) =w, V(B) =w—{n1}, V(C) = w—{n2} and

for an arbitrary world n € wlet f(n, ||A|) = {w—{n1},w—{n2}} and f(n,||B]|) = {w—{ni}}.
By definition then, we have that

MnE(A=B), MnE(B=A4) and MnE=(A=C)
and thus M, n = (A= B)A (B= A) and M,n = (A= C).

But 9, n = (B = C), because
there is no S C || B|| such that S € f(n,|B||) and
there is no T' C ||[B A C|| such that T' € f(n,|B||)

It follows then that M, n = (A= B)A (B = A) - (A= C) — (B = ()) and the proof is
complete.
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MP: We have to show that
S (A= B)— (A— B)

Let M = (w, f, V) be a model of § such that V(A) =w, V(B) = w — {n} and for the world n
let f(n,||A]]) = {w — {n}}. By definition then, we have that 9, n = (A = B).

But 9, n = (A — B), because M, n = AN -B.

It follows then that 9, n = (A = B) — (A — B) and the proof is complete.

CS: We have to show that
SE(AANB) — (A= B)

Let MM = (w, f,V) be a model of § such that V(A4) = V(

B) = {n} and for the world n let
f(n,]|A]|) = {w}. By definition then, we have that 0, n = (A A B).

But 9, n = (A = B), because
there is no S C |- A|| such that S € f(n,||A||) and

there is no T'C ||A A B|| such that T' € f(n, ||A]||)

It follows then that 9, n = (A A B) — (A = B) and the proof is complete.

CEM: We have to show that

SHE(A=B)V (A= -B)

Let M = (w, f,V) be a model of §F such that V(A) = V(B) = {n|n is even} and for an
arbitrary state n € w let f(n,||Al]) = {w}. Then we have that 9M,n = (A = B) and
M, n = (A= —B), because

there is no S C ||-A[| such that S € f(n,||A])
there is no T' C ||A A B|| such that T' € f(n, ||A]||)
there is no R C ||A A =B|| such that R € f(n, ||A]|)
It follows then that 9, n = (A = B) V (A = —B) and the proof is complete.
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Transitivity: We have to show that
SEA=B)ANB=>C)—=(A=C0)
Let M = (w, f, V) be a model of § such that V(A) =w, V(B) =w — {1}, V(C) =w — {na}

and for an arbitrary world n € w let f(n, ||A]|) = {w —{ni}} and f(n, ||B]|) = {w — {n1,n2}}.
By definition then, we have that

M,nE= (A= B) and M,n = (B=C)
and thus M, n = (A= B)A (B=C).

But 9, n = (A = C), because

there is no S C ||—~A|| such that S € f(n,|Al|) and

there is no T' C ||[A A C|| such that T € f(n, ||A])

It follows then that 9, n = (A = B) A (B = C) — (A = () and the proof is complete.

Weak Transitivity: We have to show that
FEA=B)ANB=C)=(A=C0C)
Let M = (w, f, V) be a model of § such that V(A) =w — {n1}, V(B) =w — {na}, V(C) =w
and for n* € w let the following hold:
(i) (vnew—{n"}) f(n,[Al) = {w = {n1},w = {n1,n2}}, while f(n*, [[A[]) = {w}

(ii) (Vn € w—{n"}) f(n,||Bl]) = {w — {na}}, while f(n", [|B]) = {w}
(iii) (Vn € w) f(n, (A= B)A(B=CO)]) ={w}

By definition then, we have that
A= B|=|B=C|=]A=C|=w—{n"}
This means that

(A= B)A(B=C)A(A= O)| =w—{n"} (1) and [[~(4= B)v~(B=C)| = {n'} (2)

For an arbitrary state n € w we have that M, n = (A= B) A (B = C) = (A = C) iff one of
the following holds:
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(a) there exists S C |[=(A = B) V ~(B = C)|| such that S € f(n,[[(A= B)A(B=C)|)
(b) there exists T' C |[(A = B)AN(B = C)AN(A = C)|| such that T € f(n,|[(A= B)A (B =

)
Case (a): By (2) and (iii) there isno S C ||=(A = B) V =(B = C)|| such that S € f(n, ||[(A =
B)A (B = O)]).
Case (b): By (1) and (iii) there isno T' C ||(A = B) A (B = C) A (A= C)|| such that T €

fn |
It follows then that 9, n = (A = B) A (B = C) = (A = () and the proof is complete.

—~

A= BYA(B = O)|).

Weak Monotonicity: We have to show that
§FE(A=DB)=(ANC = B)
Let M = (w, f,V) be a model of § such that V(A) = w — {n1}, V(B) = V(C) = w and for
n* € w let the following hold:
(i) (vnew—{n"}) f(n,[A]) = {w = {n1}}, while f(n", [A]l) = {w}
(i) (Vnew—{n"}) f(n,[ANC]) = {w = {n1}}, while f(n*, [AAC]) = {w}
(iii) (Vn ew) f(n,[[(A= B)|) = {w}

By definition then, we have that
|A= Bl = |AAC = B| =w— {n")
This means that
(A= B)A(AAC = B)ll =w—{n} (1) and [|+(A = B)| = {n*} (2)

For an arbitrary state n € w we have that 9, n | (A = B) = (AAC = B) iff one of the
following holds:

(a) there exists S C ||=(A = B)|| such that S € f(n,||A = BJ)

(b) there exists T'C ||(A= B) A (AAC = B)|| such that T' € f(n,|A = B||)

Case (a): By (2) and (iii) there is no S C ||=(A = B)|| such that S € f(n, |4 = BJ|).

Case (b): By (1) and (iii) there is no T'C ||(A = B) A (AA C = B)|| such that
T e f(n,[[A= BJ).

It follows then that 2, n = (A = B) = (A A C = B) and the proof is complete.
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Modus Ponens: We have to show that

SEAN(A=B)— B
Let M = (w, f, V) be a model of § such that V(A) = w, V(B) = w — {n} and for the world n
let f(n,||A|]) = {w—{n}}. Then M, n = A and by definition M, n = (A = B), which gives
M,nE=AN(A= B).
But 9, n £ B by construction.

It follows then that 9, n = A A (A = B) — B and the proof is complete.

Weak Modus Ponens: We have to show that
SEAN(A=B)=1B

Let M = (w, f,V) be a model of § such that V(A) =w — {n1} and V(B) = w and for n* € w
let the following hold:

(i) (vnew—{n"}) f(n, [[A]]) = {w = {n1}}, while f(n*, [A]]) = {w}
(i) (vn€w) f(n,[AN(A= B)) = {w}

By definition then, we have that
A= Bl =w—{n"}
This means that
IAN(A= B)AB|| =w—{n1,n*} (1) and ||-AV (A= B)|| ={n1,n"} (2)

For an arbitrary state n € w we have that 9,n = A A (A = B) = B iff one of the following
holds:

(a) there exists S C ||[7AV —(A = B)|| such that S € f(n,||[AA (A= B)|)

(b) there exists T'C ||AA (A= B) A B|| such that T' € f(n, ||AA (A= B)||)

Case (a): By (2) and (ii) thereisno S C ||[mAV =(A = B)|| such that S € f(n,|AA(A = B)|).

Case (b): By (1) and (ii) there isno T' C ||AA (A = B) A B|| such that T' € f(n,[|[AA (A =
B

It follows then that 9%, n = A A (A = B) = B and the proof is complete.
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AC, OR, CV, MOD, CA, SDA, Monotonicity: For all these axioms the counterexample
is obvious. For an arbitrary world n € w just let f(n,||Al), f(n,|=Al), f(n,||B|), f(n,[C]),
f(n,JAABJ), f(n,||[AV B||) and f(n,||AAC||) be different from one another, according to
the respective axiom, and all are invalid in n. |

Now for another variant. While the previous logic took subsets of truth sets to be included in
a neighborhood, here we take only the truth sets themselves.

Definition 3.2.4 [Conditional Logic nziz] Let ﬁz be the logic consisting of all A € £_.
valid in § = (w, f), where a conditional is evaluated as follows:
For a model M over §, M, n = (A = B) iff either

(i) I-All € f(n, [Al}), or

(i) [lAA Bl € f(n, [ All)

Theorem 3.2.5 The logic ﬁz is closed under the rules RCEA and RCEC

Proor. RCEA: Let M | (A = B). This means that |4 = ||B|, ||-A|| = |[-B] and
|AANC| =||BAC|. We have to show that

ME(A=C)=(B=0C)
Assume an arbitrary state n € w, such that 9, n |= (A = C). Then, either:

(i) [I=All € f(n, [ A]), or

(i) |[AAC] € fn Al
Case (i): By ||A]| = ||B|| and ||=A|| = ||-B]|| we also have that ||-B]| € f(n,|B]|) and by
definition, M, n = (B = C) follows.

Case (ii): Similarly, by ||A|| = ||B]| and ||[AA C|| = ||B A C|| we obtain [|[BAC| € f(n,|B])
and thus M, n = (B = C).

So, if M, n = (A = C), then M, n = (B = C), which gives that
MnEA=C)— (B=C)
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Similarly, M, n = (B = C) — (A = (). Since the world n was arbitrarily chosen, the proof
is complete.

RCEC: Let M = (A = B). This means that [|[C A A|| = ||C A B||. We have to show that
ME(C=A)=(C= B)

Assume an arbitrary state n € w, such that 9, n |= (C' = A). Then, either:

(i) [I=Cl € f(n, IC]]), or
(i) [[CA A€ flnlICI)

Case (i): By definition, we also have that 9, n = (C = B).
Case (ii): By ||C A A|| = ||C A B|| we obtain ||C A B|| € f(n, ||C||) and thus MM, n = (C = B).
So, if M, n = (C = A), then M, n = (C = B), which gives that

M,n = (C=A) — (C=B)

Similarly, 9, n = (C = B) — (C = A). Since the world n was arbitrarily chosen, the proof
is complete. [ |

Theorem 3.2.6 The logic u:i;:

1. is not closed under the rules RCK and RCE

2. does not contain any of the axioms ID, CUT, AC, CC, Loop, OR, CV, CSO,
CM, MP, MOD, CA, CS, CEM, SDA, Transitivity, Weak Transitivity,
Monotonicity, Weak Monotonicity, Modus Ponens and Weak Modus Ponens

Proor. RCK, RCE, ID, CUT, AC, CC, Loop, OR, CV, CSO, MP, MOD, CA, CS,
CEM, SDA, Transitivity, Weak Transitivity, Monotonicity, Weak Monotonicity,
Modus Ponens, Weak Modus Ponens: The counterexamples of all these rules and axioms

are identical to the respective cases of the logic m,;. The counterexample of the axiom CM
follows.

CM: We have to show that
SEA=BANC)— (A=B)ANA=C0C)
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Let M = (w, f,V) be a model of § such that V(A) =w, V(B) =w —{m}, V(C) = w — {na}
and for an arbitrary world n € w let f(n, ||A||) = {w — {n1,n2}}. By definition then, we have
that

MnE= (A= BAC)

But 9, n = (A = B), because
[=All & f(n, [[A]]) and [[AA B & f(n, | A])

It follows then that M, n = (A = BAC) — (A= B) A (A = C) and the proof is complete. ll

Before proceeding to the last definition, let § = (w, f), where
frwx2v = 2%

maps worlds and propositions, to neighborhoods of cofinite subsets of w and the following two
hold:

(i) If S e f(n,X) and S C T then T € f(n,X) (upwards closed)
(ii) If S,T € f(n,X) then SNT € f(n,X) (closed under intersections)

The function f is well defined, because if S is cofinite and S C T then 7' is also cofinite and
if S, T are cofinite then S NT is also cofinite.

Definition 3.2.7 [Conditional Logic 33] Let 33 be the logic consisting of all A € L,
valid in § = (w, f), where a conditional is evaluated as follows:
For a model M over §, M, n = (A = B) iff either

(i) [I=All € f(n, [Al), or
(ii) [[AA B € f(n, [l Al)

Fact 3.2.8 If we replaced (i) and (ii) in the above definition with:

(i) there exists S C ||-A| such that S € f(n,||A])
(ii) there exists T' C ||A A B|| such that T' € f(n,||4]||)

then the definition of (A = B) would be equivalent, because of the condition (i) in the
definition of f.
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Theorem 3.2.9 The logic 33:

1. is closed under the rules RCEA, RCK and RCEC

2. contains the axioms CC and CM

ProOF. RCEA: Let M | (A = B). This means that ||4| = ||B|, ||-A|l = |[[-B] and
|AAC| =|BAC|. We have to show that

ME(A=C)=(B=0)
Assume an arbitrary state n € w, such that 9, n |= (A = C). Then, either:

(i) [I~All € f(n, [ A]), or

(i) [[AAC] € fn [[Al)
Case (i): By [|A|| = ||B|| and ||-A|| = ||-B|| we also have that ||[=B]|| € f(n,||B]|) and by
definition, M, n = (B = C) follows.

Case (ii): Similarly, by [|A|| = ||B|| and ||A A C|| = ||B A C|| we obtain |BAC|| € f(n,|B])
and thus M, n = (B = C).

So, if M,n = (A= C), then M, n |= (B = C), which gives that
MnEA=C)— (B=C)

Similarly, M, n = (B = C) — (A = C). Since the world n was arbitrarily chosen, the proof
is complete.

RCK: Let M = (A1 A...ANA,) — B. This means that ||[C A A; A...ANA,|| C||C A BJ. We
have to show that
ME=C=>44N...NC=A4,) > (C= B)

Assume an arbitrary state n € w, such that M, n = (C = A1 A ... ANC = A,). Obviously,
M,n = (C= A;)and ...and M, n |= (C = A,). Then, either:

(i) [I=Cll € f(n, lIC]]), or

(ii) [|[C A A1l € f(n,||C]]) and ...and ||C A Ay]| € f(n,]|C|]). By the condition (ii) in the
definition of f, this gives ||C' A A1 A ... A Ayl € f(n, ||C|])
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Case (i): By definition, we also have that 9, n = (C = B).

Case (ii): By [[CAA1A...ANA,]| C||C A BJ and the condition (i) in the definition of f, we
obtain [|[C' A B|| € f(n,||C]|) and thus M, n = (C = B).

So, if M,n=(C= A1 N...NC = A,), then M, n |= (C = B), which gives that

MnE(C=A4N...NC=A,) - (C= B)

Since the world n was arbitrarily chosen, the proof is complete.

RCEC: Let M |= (A = B). This means that ||[C A A|| = ||C' A BJ|. We have to show that

M (C = A) = (C = B)

Assume an arbitrary state n € w, such that 9, n |= (C' = A). Then, either:

(i) [I=Cll € f(n, lIC]), or
(i) [CA Al € fnlCl)

Case (i): By definition, we also have that 9, n = (C = B).

Case (ii): By ||C A A|| = ||C A B|| we obtain ||C A B|| € f(n,||C||) and thus MM, n = (C = B).

So, if M, n = (C = A), then M, n = (C = B), which gives that
MnE=(C=A) — (C=B)

Similarly, M, n = (C = B) — (C = A). Since the world n was arbitrarily chosen, the proof
is complete.

CC: We have to show that

SEA=BANA=C)— (A= BANO)

Assume an arbitrary state n € w, such that MM, n = (A = B) A (A = C), where M is a model
of §. Obviously, M, n = (A= B) and M, n = (A = C). Then, either:

(i) [I=All € f(n, [ Al), or
(i) |[AA B € f(n,[Al) and [AAC] € f(n, [|A])
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Case (i): By definition, MM, n |= (A = B A C) follows.

Case (ii): By the condition (ii) in the definition of f, we also have that ||[AABA C| €
f(n, |A|]), and thus M, n = (A= BAC).

So, if M, n = (A= B)AN(A=C), then M,n = (A= BAC), which gives that
MnE(A=B)AN(A=C)— (A= BAC)

Since the world n and model 9 were arbitrarily chosen, the proof is complete.

CM: We have to show that
SEA=BANC)—= (A=B)AN(A=C)
Assume an arbitrary state n € w, such that 9, n = (A = B A C), where 9 is a model of §.
Then, either:
(i) [I~All € f(n, [ Al), or
(i) [[AABAC] € f(n,[lAl)

Case (i): By definition, M, n = (A= B)and M, n = (A= C),soM,n = (A= B)AN(A=C)
follows.

Case (ii): We also have that |[AABAC| C ||AAB]| and |[AANBAC| C [|[AAC|. By
condition (i) in the definition of f, this gives

AN B| € f(n,[[A]) and [AANC] € f(n, [|A])

By definition then, MM, n = (A = B) and M,n = (A = C), and thus M, n = (A= B)A (A =
Q).

So, if M, n = (A= BAC), then M, n = (A= B)A (A= C), which gives that
MnE(A=BANC)—= (A= B)AN(A=C)

Since the world n and model 9t were arbitrarily chosen, the proof is complete. ||

Theorem 3.2.10 The logic 33:

1. is not closed under the rule RCE

2. does not contain the axioms ID, CUT, AC, Loop, OR, CV, CSO, MP,
MOD, CA, CS, CEM, SDA, Transitivity, Weak Transitivity, Monotonicity,
Weak Monotonicity, Modus Ponens and Weak Modus Ponens

57



Proor. RCE: We have to show that
ME=(A— B) and M= (A= B)
for some model 9 of §.

Let M = (w, f, V) be a model of § such that V(A) = {n|n is even} and V(B) = w. Then
(Vn € w) M, n = (A — B), because (Vn € w) M,n = B. Thus M = (A — B).

But we have that both ||[=A|| and ||[A A B|| are not co-finite, so for an arbitrary world n € w

I=A[l & f(n,[[Al]) and JAA BJ[ & f(n, Al

It follows then that 9%, n = (A = B) and consequently 9 = (A = B).

ID: We have to show that
S~ (A= A)

Let 9 = (w, f,V) be a model of § such that V(A) = {n|n is even}. Then we have that both
|Al| and ||—A|| are not co-finite, so for an arbitrary world n € w

[=Al & f(n, [|A]l) and [|A[| & f(n, [|A]])

It follows then that 9%, n = (A = A) and the proof is complete.

CUT: We have to show that

SFEAANB=C)N(A=B)—= (A=C0C)
Let 9 = (w, f,V) be a model of § such that V(A) = V(B) =w, V(C) =w — {n1} and for an
arbitrary world n € w let f(n,||Al|) = {w} and f(n,||AA B|) = {w,w — {n1}}. By definition

then, we have that
MnE(ANB=C) and M,n | (A= B)

and thus M, n = (AANB = C) A (A= B).

But M, n = (A = C), because
I=All & f(n, [[A]l) and [[AACI[ & f(n, [ Al])

It follows then that 9, n = (AN B = C)A (A= B) — (A = C) and the proof is complete.
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Loop: For k = 2: We have to show that
5 l# (A[) = Al) VAN (Al = AQ) AN (AQ = Ag) — (A(] = Ag)
Let M = (w, f, V) be a model of § such that V(4y) = w, V(A1) =w—{m}, V(42) =w—{na2}

and for an arbitrary world n € w let f(n, [[Aol|) = {w,w—{n1}}, f(n, [|A1]]) = {w,w—{n1},w—
{ne},w —{n1,n2}} and f(n,||Asz||) = {w,w — {na2}}. By definition then, we have that

M,n = (Ao = A1), Mn = (A1 = A2) and M,n = (A2 = A)
and thus M, n = (Ao = A1) A (A1 = Az) A (Az = Ap).

But M, n & (Ag = Asz), because

= Aoll & F(n, [|Aoll) and [|Ag A Azl & F(n, [|Aol[)

It follows then that 9, n = (Ag = A1) A (A1 = A2) A (A = Ag) — (Ap = Aaz) and the proof
is complete.

CSO: We have to show that
SEA=B)ANB=A) = (A=C)=(B=20)
Let M = (w, f,V) be a model of § such that V(A) =w, V(B) =w — {m}, V(C) = w — {na}

and for an arbitrary world n € w let f(n,||A]]) = {w,w — {n1},w — {n2},w — {n1,n2}} and
f(n,||B|) = {w,w — {n1}}. By definition then, we have that

MnE(A=B), MnE(B=A4) and MnE=(A=C)
and thus M, n = (A= B)A (B= A) and M,n | (A= C).

But 9, n = (B = C), because
=Bl & f(n,|[B|l) and |[BAC|[ & f(n, ||Bl])
It follows then that M, n = (A= B)AN(B=A) — (A= C) — (B = ()) and the proof is
complete.
MP: We have to show that
§FE (A= B)— (A— D)

Let M = (w, f,V) be a model of § such that V(A) = w, V(B) = w — {n} and for the world n
let f(n,||A]) = {w,w —{n}}. By definition then, we have that M, n = (A = B).

But M, n = (A — B), because M, n = AN -B.
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It follows then that 9, n [~ (A = B) — (A — B) and the proof is complete.
CS: We have to show that
S (AANB) — (A= B)

Let MM = (w, f,V) be a model of § such that V(A) = V(B) = {n} and for the world n let
f(n,|A||) = {w}. By definition then, we have that 9, n = (A A B).

But 9, n [~ (A = B), because
I=All & f(n, [|All) and [|AA BJ| & f(n, [ All)

It follows then that 9%, n = (A A B) — (A = B) and the proof is complete.

CEM: We have to show that

§¥E (A= B)V (A= -B)

Let M = (w, f,V) be a model of §F such that V(A) = V(B) = {n|n is even} and for an
arbitrary state n € w let f(n,||Al]]) = {w}. Then we have that 9, n = (A = B) and
M, n ~= (A= —B), because

[=Al & f(n, 1A, [AA Bl & f(n, [|A]]) and AN =B & f(n, ||[Al])

It follows then that 9%, n = (A = B) V (A = —B) and the proof is complete.

Transitivity: We have to show that
S§EA=B)ANB=C)—=(A=C0C)
Let M = (w, f, V) be a model of § such that V(A) =w, V(B) =w—{m}, V(C) =w — {n2}
and for an arbitrary world n € w let f(n,||4|]) = {w,w — {n1}} and f(n,||B]]) = {w,w —
{n1},w —{n2},w — {ni1,n2}}. By definition then, we have that
M,nE= (A= B) and M,n = (B=C)
and thus M, n = (A= B)A (B=C).

But 9, n = (A = C), because

I=All & f(n, [|A]l) and [AAC| & f(n, [[A]l)
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It follows then that M, n = (A= B) A (B = C) — (A = C) and the proof is complete.

Weak Transitivity: We have to show that
§EA=B)ANB=C)=(A=C0C)
Let M = (w, f,V) be a model of § such that V(A) =w — {n1}, V(B) =w — {na}, V(C) =w
and for n* € w let the following hold:
(i) (vn € w—{n"}) f(n, |Al]) = {w,w—{n1},w—{n2},w—{n1,na}}, while f(n", [[A]) = {w}

(ii) (Vn € w—{n"}) f(n,|Bl]) = {w,w = {na}}, while f(n", [|Bl}) = {w}
(iii) (Vn € w) f(n, (A= B)A (B = CO)|) ={w}

By definition then, we have that
A= B||=[B=C|=|A=C|=w-{n"}
This means that

(A= B)A(B=C)A(A=O)| =w—{n"} (1) and [~(4= B)v~(B = C)| = {n'} (2)

For an arbitrary state n € w we have that MM, n = (A= B) A (B = C) = (A = C) iff one of
the following holds:

(a) [[7(A= B)V~(B=C)| € f(n[l(A= B)N(B=C))
(b) (A= B)A(B=C)N(A=C)| € f(n (A= B)A(B=C))
Case (a): By (2) and (iii) we have |-(A = B) V(B = C)|| € f(n,|[(A= B) A (B = CO)|)).

Cz;‘si()e (b): By (1) and (iii) we have ||[(A = B)A(B=C)A (A= C)|| € f(n,||(A= B)A(B =
a)p)-

It follows then that M, n [~ (A= B) A (B = C) = (A = () and the proof is complete.

Weak Monotonicity: We have to show that

¥ (A= B)=(ANC = B)

Let M = (w, f,V) be a model of § such that V(A) = w — {n1}, V(B) = V(C) = w and for
n* € w let the following hold:

(i) (vnew—{n"}) f(n,[A]) = {w,w = {n1}}, while f(n", [[A]]) = {w}
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(i) (vn € w—{n"}) f(n, [AAC]) = {w,w—{n1}}, while f(n*, [[AAC]) = {w}
(iif) (Vn € w) f(n,[|A= Bl) = {w}

By definition then, we have that
|IA= B||=||AANC = B||=w—{n"}
This means that

(A= B)AN(ANC = B)|=w—{n"} (1) and [~(A= B)|| ={n"} (2)

For an arbitrary state n € w we have that M, n = (A = B) = (AA C = B) iff one of the
following holds:

(a) [[=(A= Bl € f(n A= Bl)
(b) I(A= B)AN(AANC = B)|| € f(n,[|A= BJ)

Case (a): By (2) and (iii) we have |~(A = B)| & f(n,||A = B||).
Case (b): By (1) and (iii) we have ||[(A= B)A (AANC = B)|| € f(n,||A= B|).

It follows then that 9, n = (A = B) = (A A C = B) and the proof is complete.

Modus Ponens: We have to show that
SFEANA=B)— B
Let M = (w,<,V) be a model of § such that V(A) = w and V(B) = w — {n} and for the

world n let f(n,||A]]) = {w,w — {n}}. Then M,n = A and by definition M, n = (4 = B),
which gives MM, n = AA (A= B).

But 9, n & B by construction.

It follows then that 9, n = A A (A = B) — B and the proof is complete.

Weak Modus Ponens: We have to show that

§#EANA=B)=B

Let M = (w, f,V) be a model of § such that V(A) =w — {n1} and V(B) = w and for n* € w
let the following hold:

(i) (vnew—{n"}) f(n, [Al) = {w,w = {n1}}, while f(n*, [[A]]) = {w}

62



(i) (vn €w) f(n, [AN(A= B)) = {w}

By definition then, we have that
A= Bl =w—{n"}
This means that

IAA (A= BYAB||=w—{n1,n*} (1) and ||=AV (A= B)|| = {n,n*} (2)

For an arbitrary state n € w we have that 9,n = A A (A = B) = B iff one of the following
holds:

(a) [~AV (A= B)| € f(n,[[AN (A= B)|)
(b) [[AA(A= B)AB| € f(n,[|AN(A= B)|)

Case (a): By (2) and (ii) we have ||mAV =(A = B)| € f(n,[|[AAN (A= B)|).
Case (b): By (1) and (ii) we have ||[AA (A= B)AB| € f(n,||AA (A= B)|).

It follows then that 9, n = A A (A = B) = B and the proof is complete.

AC, OR, CV, MOD, CA, SDA, Monotonicity: For all these axioms the counterexample
is obvious. For an arbitrary world n € w just let f(n,||Al), f(n,|=A4l), f(n,||B|), f(n,[|C]),
f(n,JAANBJ), f(n,||[AV B||) and f(n,||AAC||) be different from one another, according to
the respective axiom, and all are invalid in n. [ |

The following table summarizes our results and shows clearly the relation of our model-
theoretically defined logics to some of the well-known conditional logics in the literature.

The position of the conditional logics defined in this paper can be easily identified in the
last column. Note that on the left of the table we have the KLM systems, with the the first
column comprising of the axioms and rules and the second column the Cumulative, Loop-
Cumulative, Preferential and Rational systems respectively. The rest of the table consists of
conditional logics (known and new) with the most important axioms and rules listed in the
third column. Furthermore, the correspondence between the axioms and rules of the KLM
systems and the first 9 of the conditional logics can be readily seen. The same holds for the
KLM systems themselves with respect to the first 3 conditional logics (with the exception of
the KLM system CL) as was already noted at 2.3, on page 8. The logics CT4 and C4 were
also already discussed in 2.4 as the conditional logics of normality defined by Boutilier and
Lamarre respectively. The logic NP was introduced by James P. Delgrande in 1987 [Del87]
and was one of the first attempts of defining a normality conditional. Finally, the quite weak
logics A and C are due to Victor Jauregui [Jau08] and James P. Delgrande [Del03] respectively.

In the table we have made it easily recognizable which axioms are valid in each logic or system
and which are not. We have only indicated the ones that are specifically proven to be valid or
invalid and have left blank the cases where it is not suggested anywhere in the literature. A
tick means that a logic possesses the axiom (or rule) and a shaded box, that it does not.
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Chapter 4

Conclusions

In this paper, we have worked on a majority-based account of normality conditionals, based
on the intuition that a cofinite subset of w is obviously much larger than its complement. The
attempt of defining conditionals modally over the frame (w, <) has the obvious advantage that
its modal axiomatization directly leads to a (for instance, tableaux-based) decision procedure,
through an obvious translation. The other direction of employing Scott-Montague type se-
mantics with neighborhoods of cofinite subsets, demonstrates the flexibility of the approach,
as even weak logics can be defined by tuning the truth definitions.

The expected difficulty of obtaining a complete axiomatization, is partly due to the fact that
conditional logic lacks the sophisticated model-theoretic machinery of modal logics that allows
to prove the completeness result for the logic of (w,<) (p-morphisms, bulldozing, cluster
analysis of transitive frames, etc.). The experimentation with cofinite sets as the guiding
principle behind ‘overwhelming majority’ is however very instructive, as it allows to delineate
the core rules of such an approach.

It is interesting to check, as a question that readily emerges form this work, the nonmonotonic
consequence relations that emerge from these conditionals and also try to place them exactly
in the universe of conditional logics (e.g [Nut80]).
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