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1
Introduction

A network is a set of items (vertices) connected by edges. In the real world many systems take

the form of network such as the World Wide Web, the internet, social networks of acquaintances,

networks of citations between papers, neural networks, metabolic networks, food webs etc. These

networks exhibit a number of statistical properties that we have to study in order to understand them.

First we have to de�ne the properties that characterize the structure of networks and then create

models of networks that can help us understand the meaning of these properties. Many network

models have been proposed but we will extensively analyze the small world model which is based one

the "small-world phenomenon" - the principle that we are all linked by a short chain of acquaintances

as was proved by the studies of Stanley Milgram in the 1960's. After exploiting the advantages of

the small world model we will study the epidemic behavior in such a model. This master thesis is

structured as follows: In section 2 we give an introduction to site and bond percolation and give

an example of how percolation works on 1 and 2 dimensional lattices. In section 3 we give a small

introduction to some theoretic preliminaries along with the most basic small world models proposed

so far. In section 4 we extensively study the site and bond percolation problem on a Newman-Watts

small world model and �nally on section 5 we study the greedy routing problem on the r-Harmonic

small world model.
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2
What Is Percolation?

2.1 General Introduction

Percolation theory is a �eld mostly studied by physicists but covers a wide range of applications

useful in other sciences like chemistry, mathematics and materials science. It was introduced to

answer questions like:

• If we put a porous rock underwater, will the water reach it's center?

• How far from each other should we plant trees in an orchard (forest) in order to minimize the

damages from a �re outburst?

• How fast will an infectious disease spread? How long before it causes a pandemic?

One of its most popular applications is the behavior of �uids in porous media, mostly used to improve

the productivity of natural gas and oil wells. In physics, percolation theory is used to study the �ow

of electricity in two dimensional random resistor networks. Percolation models are used in biology

to study evolution and also in social sciences to study phenomena like how fast a rumor can spread.

In general, percolation is used to study dynamical systems and thus considered a branch of statistical

mechanics. Percolation systems go through phase transitions particularly around a critical point or

threshold. What is most interesting about percolation theory is that it provides a simple model of

random media yet realistic towards each application.
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2.2 Sites And Lattices

Consider a square lattice, i.e. an in�nite array of squares, denoted by Z2. (Figure 2.1(a)1). A

fraction of squares are �lled with a dot in the center, while the other squares are left empty as in

Figure 2.1(b). We now de�ne a cluster as a group of neighbor squares occupied with these dots.

These clusters are encircled in Figure 2.1(c).

(a) (b) (c)

Figure 2.1: De�nition of percolation and its clusters

Squares are called neighbors (or nearest neighbor sites) if they have one side in common but not if

they only touch one corner (next nearest neighbors). (Figure 2.2)

Nearest neighbor sites

Next nearest neighbor sites

Figure 2.2: Neighbors of a site in a square lattice

All sites within one cluster are connected to each other by one unbroken chain of nearest neighbor

links from one occupied square to an occupied neighboring square. Percolation theory deals with the

number and properties of these clusters. The �rst question arising is: how are these dots distributed

on the square lattice? The answer is that the occupation status of any square on the lattice is inde-

pendent of the occupation status of the its neighbors, i.e. each square is randomly, independently,

occupied with a probability p, 0 ≤ p ≤ 1. That means, if we have N squares (with N being a very

large number) then the expected number of occupied squares is pN and the expected number of

unoccupied or empty squares are the remaining (1− p)N .

We concentrate here with the case of random percolation. Each site of a very large lattice is occupied

randomly with probability p independent of its neighbors. Percolation theory deals with the clusters

thus formed.

1For obvious reasons the following �gures will be of �nite dimensions.
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In Figure 2.32 we see an example of how percolation works on a two dimensional lattice. For small

values of the occupation probability (p = 0.15, 0.30, 0.45) some disconnected parts are distinguished

in the lattice, but for p ≥ 0.59 we can see that one cluster extends from top to bottom and from

left to right of the lattice without intermediate gaps. We say that this cluster percolates through

the system. Near that concentration pc, where for the �rst time a cluster is formed, a lot of peculiar

phenomena are observed. These aspects are called critical phenomena and the theory attempting to

describe them is the scaling theory.

p = 0.15 p = 0.30

p = 0.45 p = 0.59

Figure 2.3: Example of site percolation

2Example generated with MATLAB c⃝
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2.3 Lattices

So far we've seen examples of percolation only on square lattices but in reality there are many

di�erent lattices or other two or three dimensional structures (graphs in general) upon which we

study percolation phenomena. In two dimensions we also have the triangular lattice (Figure 2.4(a))

where every intersection of lines is a lattice site and the honeycomb (or hexagonal) lattice where the

centers of the triangles are lattice sites (Figure 2.4(b)).

(a) Triangular Lattice (b) Honeycomb Lattice

Figure 2.4: Other lattices in two dimensions

We de�ned the square lattice through the centers of the squares (Figure 2.5(a)). We could have also

de�ned it equivalently through the points where the lines cross (square corners) as in Figure 2.5(b).

(a) Square Centers (b) Square Corners

Figure 2.5: Square Lattices

In three dimensions we have the simple cubic lattice (Figure 2.6(a)), the body centered cubic (BCC)

lattice (Figure 2.6(b)), the face-centered cubic (FCC) lattice (Figure 2.6(c)), the diamond lattice and

others. For dimensions higher than 3 we study the hypercubic lattice.

(a) Simple Cubic Lattice (b) BCC: Body-Centered Cubic Lattice (c) FCC: Faced-Centered Cubic Lattice

Figure 2.6: Cubic Lattices
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2.4 Site Percolation, Bond Percolation

For all the aforementioned lattices, each site is randomly and independently occupied with proba-

bility p, 0 ≤ p ≤ 1 and empty (unoccupied) with probability (1 − p). Clusters are thus formed as

groups of neighboring occupied sites. So far we've de�ned site percolation. Its counterpart is called

bond percolation and its de�ned as follows. In bond percolation every lattice site is occupied. Each

line can be an open bond with probability p, 0 ≤ p ≤ 1 or a closed bond with probability (1− p). A

cluster is then a group of sites connected by open bonds (Figure 2.7).

It has to be noticed that when measuring the size of a cluster, one has to de�ne whether one counts

the site content or the bond content. For example the 3rd encircled cluster in Figure 2.7 consists of

two occupied sites connected with an open bond to each other and with closed bonds to all other

neighboring sites. This is called a cluster of size two in site percolation but it is called a cluster of

size one in bond percolation.

Solid Lines: Open Bonds

Dashed Lines: Closed Bonds

1

2

3

Figure 2.7: Bond percolation on the square lattice

2.5 Percolation Threshold

The percolation threshold pc is the critical fraction of lattice squares that must be occupied in order

to create a continuous path of nearest neighbors from one side of the lattice to the opposite side3.

• For all p > pc there is a cluster extending from one side of the system to the other, whereas

• for p < pc no such in�nite cluster exists.

Computer simulations do not allow in�nite computations, so essentially this is an asymptotic value.

Any e�ective threshold values obtained numerically or experimentally have to be carefully extrapo-

lated to in�nite system size. The ideal case is when one has a mathematically exact calculation for

pc where no such extrapolation is needed. Mathematical methods to calculate the exact percolation

threshold are restricted to at most two dimensions because of our experience in the �eld of phase

transition where 3-dimensional problems in general cannot be solved exactly. The review of Essam

(1972), as well as Kesten (1982) explain how 2-dimensional thresholds can be derived mathematically

for many simple lattices. Progress is not easy in this �eld. For the square bond percolation problem,

it took about two decades from the �rst numerical estimates in 1960 to a mathematical proof that

3In random graphs this process is called the emergence of a giant component as we will see later in this text.
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yield the exact threshold pc =
1
2 . We also know pc =

1
2 for the triangular site percolation, pc = 2 sin π

18

for the triangular bond percolation, and pc = 1−2 sin π
18 for the honeycomb bond percolation problem

(Table 2.1).

Lattice Site Percolation Bond Percolation

Honeycomb 0,6962 0,65271

Square 0,592746 1
2

Triangular 1
2 0,34729

Diamond 0,43 0,388

Simple Cubic 0,3116 0,2488

BCC 0,246 0,1803

FCC 0,198 0,119

d=4 Hypercubic 0,197 0,1601

d=5 Hypercubic 0,141 0,1182

d=6 Hypercubic 0,107 0,0942

d=7 Hypercubic 0,089 0,0787

Table 2.1: Site and bond percolation thresholds in di�erent lattices

In all of the above examples clusters are de�ned as groups of nearest neighbors which are occupied or

connected with open bonds. One may allow next-nearest neighbors to form clusters, so in the square

lattice site percolation problem, diagonally occupied sites may also form clusters. One can also add

long range contacts (or shortcuts) in a lattice and then study percolation phenomena. In the latter

case, percolation thresholds tend to zero if the connection range goes to in�nity. One may even get

rid of the lattice and look at circles distributed randomly on a piece of paper! Finally percolation

phenomena can be studied in many types of graphs as is the case with small-world networks where

in an initial ring lattice structure, long range contacts are introduced according to some probabilistic

experiment.

2.6 Exact Solution In One Dimension

The percolation problem in one dimension can be solved exactly and some aspects of that solution

seem to be valid for higher dimensions.

Consider an in�nite long chain where lattice sites are placed in �xed distances (Figure 2.8). Each

site is occupied with probability p. A cluster is thus formed by successive occupied sites that have

no empty site between them. To separate one cluster from the other clusters formed in the lattice,

the left and right end neighbors of the cluster must be empty sites. As shown in Figure 2.8, the

central cluster consists of �ve occupied sites and the left and right neighbor sites of this cluster are

empty sites. As mentioned earlier each site is occupied with probability p, thus the probability of a

site being empty is (1− p).

12



Occupied site

Empty site

Figure 2.8: Percolation clusters in an one dimensional lattice

Since all sites are occupied randomly, and random percolation consists of statistically independent

events, the probability4 of two arbitrary sites being occupied is p2, for 5 being occupied is p5 and

for s sites being occupied the probability is ps. The probability of having an empty neighboring

site is (1− p) and the events that the two ends of a cluster are empty are statistically independent,

therefore the total probability that a �xed lattice site is the left end of a 5-cluster is p5(1− p)2.

The next step is to calculate the number of 5-clusters in the whole chain. If the total length of the

chain is L, with L→ ∞, much larger than the cluster length, then the total number of 5-clusters - if

we ignore the small number of sites at the end of the chain for which there is no place for 5 occupied

and 2 empty sites - is Lp5(1− p)2. From now on it is practical to talk about the number of clusters

per lattice site, which is:

Total number of 5-clusters

Lattice sites
=
L · p5(1− p)2

L
= p5(1− p)2

This number is independent of the lattice size L and equals the probability that a �xed site is the

end of a 5-cluster. We can also generalize this number in the case of clusters of size s. We de�ne ns
to be the number of clusters of size s per lattice site:

ns = ps(1− p)2 (2.1)

This normalized cluster number equals the probability in an in�nite chain, of an arbitrary site being

the left end of the cluster. The probability that an arbitrary site is part (and not only the left end)

of an s-cluster is nss, because now that site can be any of the s sites of the cluster. Moreover a single

occupied site with two empty neighbors is a cluster of size unity. Thus every occupied site in the

chain belongs to a cluster. The probability that an arbitrary occupied site belongs to any cluster, is

equal to the probability p that it is occupied, i.e.:

∞∑
s=1

nss = p (p < pc) (2.2)

This can be also veri�ed using a trick to calculate a sum by expressing it as a derivative

d

dx

∞∑
i=1

fi(x) =

∞∑
i=1

d

dx
fi(x), (2.3)

by the following simple proof:

4Using the product property of probabilities of independent events
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∞∑
s=1

nss
(2.1)
=

∞∑
s=1

ps(1− p)2s = (1− p)2
∞∑
s=1

pss = (1− p)2
∞∑
s=1

p
d(ps)

dp

(2.3)
= (1− p)2p

d(
∑∞

s=1 p
s)

dp

= (1− p)2p
d(
∑∞

s=0 p
s − 1)

dp
= (1− p)2p

d( 1
1−p)

dp
= (1− p)2p

1

(1− p)2
= p

The last step is to calculate the percolation threshold. For p = 1 every site is occupied forming a

cluster of size L. For p < 1 a chain of length L will have on average (1−p)L empty sites. As L→ ∞
at �xed p, (1 − p)L also tends to ∞. Thus there will be at least one empty site somewhere in the

chain breaking the sequence of continuous occupied sites. In other words there is no one-dimensional

percolating cluster for p < 1. Therefore the percolation threshold is unity.

pc = 1

2.7 Average Cluster Size

So far we know that the probability that an arbitrary site (occupied or not) belongs to a cluster

of size s is nss and the probability that an arbitrary site belongs to any �nite cluster is
∑∞

s=1 nss.

Therefore the probability that the cluster to which an occupied site belongs contains exactly s sites

is:

ws =
nss∑∞
s=1 nss

(2.4)

Now we can de�ne the mean cluster size S as the probability of hitting some cluster site. We can

calculate the mean cluster size S explicitly:

S =
∞∑
s=1

wss
(2.4)
=

∞∑
s=1

nss
2∑∞

s=1 nss
cc

∞∑
s=1

nss
2

p

(2.1)
=

∞∑
s=1

ps(1− p)2s2

p

=
(1− p)2

p

∞∑
s=1

s2ps =
(1− p)2

p

( ∞∑
s=1

s2ps − sps +

∞∑
s=1

sps
)

=
(1− p)2

p

(
p2

∞∑
s=1

s(s− 1)ps−2 + p

∞∑
s=1

sps−1

)
=

(1− p)2

p

(
p2

∞∑
s=1

d2(ps)

dp2
+ p

∞∑
s=1

d(ps)

dp

)
=

(1− p)2

p

(
p2
d2(

∑∞
s=1 p

s)

dp2
+ p

d(
∑∞

s=1 p
s)

dp

)
=

(1− p)2

p

(
p2
d2(

∑∞
s=0 p

s − 1)

dp2
+ p

d(
∑∞

s=0 p
s − 1)

dp

)
=

(1− p)2

p

(
p2
d2( 1

1−p)

dp2
+ p

d( 1
1−p)

dp

)
=

(1− p)2

p

(
p2
d( 1

(1−p)2
)

dp2
+ p

1

(1− p)2

)
=

(1− p)2

p

(
p2

2

(1− p)3
+ p

1

(1− p)2

)
=

2p

1− p
+ 1 =

1 + p

1− p
, (p < pc) (2.5)

The mean cluster size diverges as we approach the percolation threshold. If there exists an in�nite

cluster above the threshold, then slightly below there exist very large (�nite) clusters. This implies

that slightly below the threshold, a suitable average over these clusters is also getting very large.
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2.8 Percolation In 2 Dimensions

Calculating the exact percolation threshold in one dimension was quite an easy task, but we cannot

apply the same principles in higher dimensions. Consider a square lattice as in Figure 2.9.

Figure 2.9: Clusters of sizes 1 and 2

The probability that an arbitrary occupied site

is a cluster of size 1 is: n1 = p(1 − p)4, where

p is the probability of the site being occupied,

(1 − p)4 is the probability that its four nearest

neighbors are empty and the occupation status

of these �ve sites happens independently. We

can easily calculate the average number of clus-

ters of size 2 per lattice site. That is: n2 =

2p2(1 − p)6, where p2 is the probability of two

sites being occupied, (1 − p)6 is the probability

their six nearest neighbors being empty, the oc-

cupation status of these sites happens indepen-

dently and the pair can be oriented either horizontally or vertically, i.e. we have two con�gurations of

a cluster of size 2 (Figure 2.9). For higher cluster sizes it is not easy to calculate their average number

and that is because there are plenty of cluster con�gurations (di�erent shapes and various rotations)

called lattice animals5. For example in Figure 2.10 there is a list of the 19 cluster con�gurations on

the square lattice for s = 4 along with their correspondent probabilities.

Configurations:

Probability:

2 8 4 4 1

4p4(1 − p)8 4p4(1 − p)8
p

4(1 − p)82p4(1 − p)10 8p4(1 − p)9

Figure 2.10: Cluster con�gurations and probabilities for s = 4

Thus the average number of clusters of size 4 is:

n4 = 2p4(1− p)10 + 8p4(1− p)9 + 4p4(1− p)8 + 4p4(1− p)8 + p4(1− p)8

For s = 5 there exist 63 con�gurations and up to s = 24, on the square lattice, there are approxi-

mately 1013 con�gurations so it is not e�ective to count these cluster animals. Instead, we classify

them according to the number of empty neighbors each of them has. The number of empty neighbors

of a cluster, denoted by t, is called its perimeter . The number of lattice animals with size s and

perimeter t is denoted by gst. Now we can express the average number of clusters of size s per lattice

site as:

ns =
∑
t

gstp
s(1− p)t (2.6)

5As they are named in [29]
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This formula ia valid for every type of lattice. The di�cult part is to calculate gst, i.e. �nding all

possible con�gurations and analyze them. That is why, for general s and t, the percolation problem

has not yet been solved exactly.

Instead, we have approximate solutions using asymptotic values on the quantities involved. For

instance, the perimeter t, averaged over all con�gurations of a given size s, seems to be proportional

to s, for s → ∞. Therefore we can classify these con�gurations according to the ratio α = t
s . For

α < 1−pc
pc

, the number of lattice animals gst (of size s and perimeter t) varies as [ (α+1)α+1

αα ]s for large

s. Hence the total number of cluster animals, of size s, gs =
∑

t gst increases exponentially with s:

gs ∝ s−θcs where c = constant. In 2 dimensions θ = 1, in 3 dimensions θ = 3
2 and for dimensions

> 3 we have θ = 5
2 . Now from Equation 2.6 we have that the averages over clusters of a �xed size

s, correspond (in the limit p→ 0) to averages over lattice animals, since the factor (1− p)t tends to

unity and thus can be omitted.

16



3
Models Of The Small-World

3.1 Milgram's Experiment

One of the �rst quantitative studies of the structure of social networks was performed in the late

1960's by a Harvard social psychologist named Stanley Milgram [16]. Milgram was interested in the

average distance between two people and conducted the following experiment:

Milgram distributed letters addressed to a stockbroker acquaintance of his in Boston, Massachusetts,

to few hundred randomly selected people in Omaha, Nebraska, considering Boston to be the farthest

destination from Nebraska. The letters, targeting the stockbroker in Boston, were to be sent from

people of Nebraska to people they knew on a �rst-name basis. The best strategy was to sent the

letter to a person one thought was closer in some social sense (maybe a stockbroker in Boston or a

friend in Massachusetts) to the stockbroker in Boston. Meanwhile Milgram was receiving copies of

the letters informing him of the intermediate steps the letters followed. The result was that thirty �ve

percent (35%) of the letters reached their destination and the median number of steps these letters

took was 5.5 rounding up to 6. A large fraction of the letters never reached their destination and

were discarded from the computation of the average distance, so the ones reached their destination

only provide an upper bound on the distance.

Though it was implicit in his work, Milgram did not use the term �six degrees of separation�. This

term was introduced by John Guare in his play titled �Six Degrees of Separation�. A character in

the play claims that:

...Everybody on the planet is separated only by six other people. Six degrees of separation.

Between us and everybody else on the planet. The president of the United States. A

gondolier in Venice...It's not just the big names. It's anyone. A native in a rain forest.

A Tierra del Fuegan. An Eskimo. I am bound to everyone on this planet by a trail of
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six people. It's a profound thought.

Milgram generalized the results of his experiment to connect with a chain of six any two randomly

chosen people from anywhere in the world. This result is referred to as the small-world phenomenon.

In a second study, Milgram [14] used essentially the same method to examine the distance of whites

in Los Angeles and a mixed white-black target population in New York, and found similar statistics.

Later in 1997, Tjaden and Wasson studied the least distance in the actors graph (The Oracle Of

Bacon - http://oracleofbacon.org/). The actors graph linked with an edge any two actors (actresses)

appearing in the same movie. The objective was to �nd the shortest paths between any two actors

in the graph. This could be done e�ciently by using Kevin Bacon as an intermediate step. This

strategy lead to the concept of a �Bacon number �, meaning the number of links of the shortest path

connecting any actor to Kevin Bacon. The distribution of Bacon numbers given in the following

table shows that most actors have a small Bacon number:

Bacon number 0 1 2 3 4 5 6 7 8

Number of actors 1 1673 130.852 349.031 84.615 6.718 788 107 11

Table 3.1: Bacon number distribution

The mean distance from Kevin Bacon (as computed using the values from the above table) is 2,94,

thus any two actors can be linked by a path through Kevin Bacon in an average of 6 steps.

Albert Barabási and his collaborators, studying the same problem, computed the average distance

from each person to all of the others in the actors graph and they found that Rob Steiger, with an

average distance of 2,53, was the best choice for an intermediate while Kevin Bacon was found in

the 876th place...

Another example of a small-world network is the collaboration graph of mathematics, in which two

people are connected if they co-authored a paper. This graph, constructed by Jerrold Grossman [11]

in 1997 has 337.454 vertices (84.115 of them isolated) and 496.489 edges. Discarding the isolated

vertices the remaining graph has a giant component with 208.200 vertices and 16.883 components

with 45.139 vertices. The best intermediate here is Paul Erdös, who wrote more than 500 papers

with more than 500 co-authors. The average Erdös number is 4.7 while the largest Erdös number

is 15. Based on a random sample, the average distance between two authors was estimated at 7,37.

(These numbers are most likely to change, because in the 1940's 91% of papers in mathematics had

only one author, while in the 1990's only 54% did.)

Similar studies that were conducted by Tom Remes in 1997 for baseball players who have played on

the same team and by the New York Times (Kirby and Sahre, 1998) with the names of those who

had tangled with Monica Lewinsky, also con�rmed the surprising result of six degrees of separation.

Besides social networks, small-world properties have also been shown for other networks [32] such

as the neural network of the worm Caenorhabditis Elegans (or abbreviated as C.Elegans), where an

edge joins two neurons if they are connected by a synapse or a gap junction, the neural network of
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the cerebral cortex, as well as the power grid of the western United States, where vertices represent

generators, transformers and substations and edges represent high voltage transmission lines between

them. Another example of network exhibiting the small-world properties is the World Wide Web

studied by Barabási and Albert [3] and Barabási, Albert and Jeong [15] whose vertices are docu-

ments and whose edges are links. They estimated that the average distance between vertices scaled

with the size of the graph as 0.35 + 2.06 log n, thus for n = 8× 108 web pages they obtained 18.59,

meaning that any two randomly chosen web pages are on average 19 clicks away from each other.

So far we presented examples of networks showing the small-world properties and reviewed some

of their interesting statistics but the small-world phenomenon has not yet been de�ned precisely.

In other words we don't have a speci�c set of rules a network must obey in order to exhibit the

small-world behavior. A �rst observation is that small-world networks have similar properties with

random graphs and to better understand the models of the small-world, some elements of graph

theory [8] and random graphs [7] will be inserted here.

3.2 Graph Theoretic Preliminaries

3.2.1 Basic De�nitions

De�nition. A graph is a pair G = (V,E) of sets satisfying E ⊆ [V ]2, V ∩ E = ∅. The elements of

E (edges or bonds) are 2-element subsets of V (vertices or nodes or sites).

The number of vertices if a graph G is it's order and is denoted by |G|. Graphs are �nite or in�nite
according to their order. The number of edges of a graph G is called the size of the graph and is

denoted by ||G||.

De�nition. A multigraph is a pair (V,E) of disjoint sets (of vertices and edges) together with a

mapping E → V ∪ [V ]2 assigning to every other edge either one or two vertices, its ends. Thus

multigraphs can have loops and multiple edges.

Let G = (V,E) be a non-empty graph. The set of neighbors of a vertex v in G is denoted by ΓG(v).

More generally, for U ⊆ V , the neighbors in V \U of vertices in U are called neighbors of U and are

denoted by Γ(U).

De�nition. The degree gG(v) = d(v) of a vertex v is the number |E(v)| of edges at v (not for

multigraphs) and this equals the number of neighbors of v. A vertex of degree 0 is isolated.

De�nition. Minimum-Maximum degree, regular graph, complete graph.

• The number δ(G) = min{d(v) | v ∈ V } is the minimum degree of the graph G.

• The number ∆(G) = max{d(v) | v ∈ V } is the maximum degree of the graph G.

• If all vertices of G have the same degree k, then G is k-regular or just regular.

• If all the vertices of G are pairwise adjacent, then G is complete.

• A complete graph on n vertices is a Kn and has exactly
(
n
2

)
= n(n−1)

2 edges.
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• The number d(G) := 1
|V |

∑
v∈V d(V ) is the average degree of V .

• Clearly δ(G) ≤ d(G) ≤ ∆(G).

De�nition. The coordination number z of a vertex v is the number of edges that have v as an end-

point. The coordination number of a vertex v di�ers from it's degree only in the case of multigraphs,

otherwise it is the same.

De�nition. The degree sequence of an undirected graph is the non-increasing sequence of its vertex

degrees. The degree sequence is graph invariant so isomorphic graphs have the same degree sequence.

3.2.2 Characteristic Path Length

A path is a non-empty graph P (V,E) of the form V = {x0, x1, . . . , xk}, E = {x0x1, x1x2, . . . xk−1xk}
where the xi's are all distinct. The vertices x0 and xk that are linked by P are called its ends and

the vertices x1, . . . , xk−1 are called the inner vertices of P .

De�nition. The length of a path is the number of its edges. A path of length k is denoted by P k.

If P = x0 . . . xk−1 is a path and k ≥ 3 then the graph R := P + xk−1x0 is called a cycle or a ring.

The length of a ring its number of edges (or vertices). The ring of length k is denoted by Rk.

De�nition. A non-empty graph is called connected if any two of its vertices are linked by a path in

G.

De�nition. The distance dG(v, u) between two vertices v and u is the length of the shortest v − u

path in G. If no such path exists, we set dG(v, u) := ∞.

De�nition. The diameter of a graph G is the maximum distance between any two vertices in G

and is denoted by diam(G).

As we've seen so far, researchers of small-world networks were mostly interested in the average

distance in a graph rather than the maximum distance, i.e. the diameter. The computation of

a closed form expression for the average distance is restricted to connected graphs because of the

obvious problems imposed by the in�nite path lengths in disconnected graphs.

De�nition. The characteristic path length of a graph G, denoted by L(G) or just L, is the average

distance between any two vertices of G.

The above de�nition implies that one has to calculate �rst the shortest path lengths for each vertex

v ∈ V to every other vertex in the graph. That is to calculate d(v, u),∀v, u ∈ V (G), v ̸= u and then

�nd d̄v for every v ∈ V (G). Finally, the characteristic path length is the median of all {d̄v}. As

mentioned before, for various classes of graphs it is di�cult to �nd a closed form expression for the

characteristic path length so one has to resort to the explication of upper and lower bounds upon

this quantity.
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3.2.3 Characteristic path length L of regular lattices

Consider a regular lattice with n vertices where each vertex is connected to all of it's neighbors at

distance at most k. That is to say we have a 2k-regular lattice G of n vertices. It su�ces to �nd the

average d(v, u),∀v, u ∈ V (G), v ̸= u for some vertex v ∈ V (G), since d̄v is the same for all vertices

in V (G). Starting from vertex v, there are 2k vertices for which there exist shortest paths of length

1 to v, 2k vertices for which there exist shortest path of length 2 to v, and so on, until we visit all

n − 1 vertices of the graph. These exist unique integers q and r such that n − 1 = 2k · q + r with

0 ≤ r < 2k and q = ⌊n−1
2k ⌋, meaning that there are 2k vertices at distance ⌊n−1

2k ⌋ from v and the

remaining (if any) r = rem(n−1, 2k) vertices will be at distance ⌊n−1
2k ⌋+1 from vertex v. Therefore,

the characteristic path length of a 2k-regular graph, as a function of n, k, is:

L(n, k) :=
2k ·

∑⌊n−1
2k

⌋
i=1 i+ r · (⌊n−1

2k ⌋+ 1)

n− 1
, 0 ≤ r < 2k (3.1)

Example. Consider a regular lattice with n = 24 vertices and k = 3 as in Figure 3.1, and a

vertex v ∈ V (G). There are 2k = 6 vertices at distance 1 from v, the next 6 vertices are at

distance 2 from v and the next 6 vertices are at distance ⌊n−1
2k ⌋ = ⌊236 ⌋ = 3. The remaining

r = rem(n− 1, 2k) = rem(23, 6) = 5 vertices will be at distance ⌊n−1
2k ⌋+ 1 = ⌊236 ⌋+ 1 = 4.

1

1

1

2

2

2

3

3

3

4

1

1

1

2

2

2

3

3

3

v

4

4
4

4

Figure 3.1: A regular lattice with n = 24 vertices and k = 3

Therefore the characteristic path length in this particular graph is:

L(24, 3) :=
6 ·

∑⌊ 23
6
⌋

i=1 i+ 5 · (⌊236 ⌋+ 1)

23
=

6 ·
∑3

i=1 i+ 5 · (3 + 1)

23
=

56

23
≈ 2, 4348

In Figure 3.2 we can see the plot of Equation 3.1 (generated with MATLAB c⃝) for lattices with

n = 1 . . . 100 vertices and di�erent values of k, varying from 1 to 20. It's easy to see that the

characteristic path length grows linearly with the number of vertices and drops as k takes higher

values.
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Figure 3.2: Characteristic path length of regular lattices (n = 1 . . . 100, k = 1, 2, 3, 4, 5, 20)

3.2.4 Clustering Coe�cient

Another essential property of small-world networks is its clustering. In social networks, clustering

is interpreted as the tendency of one person's circle of acquaintances to overlap. A person's friends

are most likely being friends with each other. As a result, social networks, and therefore small-world

networks, present some level of cliquishness which can be measured by a quantity de�ned as the

clustering coe�cient [31]. The concept of clustering coe�cient has its roots in sociology, appearing

under the name �fraction of transitive triples" [30].

De�nition. The clustering coe�cient Cv of the neighborhood ΓG(v) quanti�es the extend to which

vertices adjacent to any vertex v are adjacent to each other. More precisely:

Cv =
|E(ΓG(v))|(|ΓG(v)|

2

) (3.2)

where |E(ΓG(v))| is the number of edges in the neighborhood of v, and
(|ΓG(v)|

2

)
is the total number

of possible edges in ΓG(v).

Given |ΓG(v)| vertices, there can be at most
(|ΓG(v)|

2

)
edges between them. Hence Cv is the fraction

of the edges that actually occur in the neighborhood of v divided by the number of all edges that

could possibly exist, i.e. as in the complete K|ΓG(v)| subgraph. Equivalently, Cv is the probability

that two vertices in ΓG(v) will be connected by a path.

Example. Suppose we want to compute the clustering coe�cient of vertex v in Figure 3.3.

We have ΓG(v) = {v1, v2, v3, v4}, |ΓG(v)| = 4 and |E(ΓG(v))| = 3 as we can see from Figure 3.3.

Therefore the clustering coe�cient of vertex v is:

Cv =
|E(ΓG(v))|(|ΓG(v)|

2

) =
3(
4
2

) =
1

2
.
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v1

v2

v3v4

v

Figure 3.3: Clustering coe�cient computation in a graph G

Clustering coe�cient - example graphs

By its de�nition, a clustering coe�cient takes values between 0 and 1.

• Cv = 0 for a vertex v implies that the neighbors of this vertex have no edges between them.

This is expected when v is the center of an asterisk as in Figure 3.4(a).

• Cv = 1 for a vertex v implies that every neighbor of v is connected to every other neighbor of

v thus forming the complete subgraph as in Figure 3.4(b).

vv

(a) (b)

Figure 3.4: Examples of (a) Cv = 0 and (b) Cv = 1

De�nition. The clustering coe�cient of a graph G is C = C̄v averaged over all vertices v ∈ V (G).

• C = 1 would imply that the corresponding graph consists of n
(k+1) disconnected, but individu-

ally complete subgraphs (Figure 3.5(a)) or that the whole graph is a clique (Figure 3.5(b)).

• C = 0 would imply that no neighbor of any vertex v is adjacent to any other neighbor of v,

thus we expect to see a tree-like structure as in Figure 3.6 and / or isolated vertices.
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(b)(a)

K12

K5 ∪K3 ∪K4

Figure 3.5: Graphs with clustering coe�cient C = 1

Figure 3.6: A graph with clustering coe�cient C = 0

3.2.5 Clustering coe�cient C in regular lattices

For regular lattices we have an exact calculation of the clustering coe�cient C which is a function

of the degree (coordination number) z of the vertices. Consider a one-dimensional lattice of in�nite

length.

• For z = 2, (k = 1) (Figure 3.7) we have C = 0. It is obvious that the neighbors of each vertex

are not connected with each other.

z = 2

v

· · · · · ·

Figure 3.7: A one-dimensional lattice with each site connected to its 2 nearest neighbors

• For z = 4, (k = 2) (Figure 3.8) we have:

Cv =
|E(ΓG(v))|(|ΓG(v)|

2

) =
(z − 2) + (z − 3)(

z
2

)
• For z = 6, (k = 3) (Figure 3.9), we have:
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z = 4

v

· · · · · ·

(z-2) edges

(z-3) edges

Figure 3.8: A one-dimensional lattice with each site connected to its 4 nearest neighbors

Cv =
(z − 2) + (z − 3) + (z − 4)(

z
2

) .

z = 6

v

· · · · · ·

(z-2) edges

(z-3) edges

(z-4) edges

Figure 3.9: A one-dimensional lattice with each site connected to its 6 nearest neighbors

• . . . and so on. For general z we have:

Cv =
(z − 2) + (z − 3) + · · ·+ [z − ( z2 + 1)](

z
2

) =

∑ z
2
+1

i=2 (z − i)(
z
2

) =

∑ z
2
+1

i=2 (z − i)− (z − 1)(
z
2

)
=

∑ z
2
+1

i=1 z −
∑ z

2
+1

i=1 i− (z − 1)(
z
2

) =
z( z2 + 1)− ( z

2
+1)( z

2
+1+1)

2 − (z − 1)
z(z−1)

2

= . . . =
3

4

(z − 2)

(z − 1)

Averaged over all nodes of the lattice we have C = 3
4
(z−2)
(z−1) . As z → ∞, the clustering coe�cient

C tends to 3
4 .

3.2.6 Degree Distribution

One additional property small-world networks have, is related to the distribution of the degrees of

the network.

De�nition. The degree distribution P (k) of a network is de�ned as the fraction of nodes in the

network with degree k. Thus if there are n nodes in total in a network and nk of them have degree

k, we have P (k) = nk
n .

For example, in a random graph model where each edge is present with probability p (and absent with

probability 1− p) the probability that a certain node has degree k follows the binomial distribution:

P (ki = k) =

(
n− 1

k

)
pk(1− p)n−1−k

This probability represents the number of ways in which k edges can be drawn from a certain node:

the probability of k edges is pk, the probability of the absence of additional edges is (1−p)n−1−k and

there are
(
n−1
k

)
ways of selecting the k end points for these edges. To �nd the degree distribution

of the network we need to study the number of nodes Xk with degree k. We will focus on the
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probability that Xk takes a certain value, i.e. P (Xk = r). The expected number of nodes with

degree k is E(Xk) = nP (ki = k) = λk, thus the distribution of the Xk values approaches a Poisson

distribution with mean value λk:

P (Xk = r) = e−λk
λrk
r!

We could say that Xk does not diverge much from the approximative result Xk = nP (ki = k)

which is valid only if nodes are independent. Thus with a good approximation we can say that the

degree distribution of a random graph is a binomial distribution P (k) =
(
n−1
k

)
pk(1− p)n−1−k, which

for large n can be replaced by a Poisson distribution P (k) ≈ e−pn (pn)k

k! . Both binomial and Poisson

distributions are strongly peaked about the mean pn and have a large k-tail that decays rapidly as 1
k! .

However real world networks are mostly found to be very unlike the random graph in their degree

distribution. The degrees of the vertices of most networks are highly right skewed which means

that their distribution has a long tail of values that are far above the mean [17], [24]. Since the

direct histograms are rather noisy, there are two ways to construct a plot of the degree distribution:

One way is to construct a histogram in which the bin sizes increase exponentially with degree. For

example, the �rst few bins might cover degree ranges (1, 2-3, 4-7, 8-15 and so on) and then the

number of samples in each bin is divided by the width of the bin to normalize the measurement.

This method is used when the histogram is to be plotted with a logarithmic degree scale, so that the

widths of the bins will appear even. The other way is to make a plot of the cumulative distribution

function:

Pk =
∞∑

ki=k

pki (3.3)

which is the probability that the degree is greater than or equal to k. It's been shown that for some

real world networks the plot of the cumulative distribution function of the degrees is right skewed

indicating that the degree distribution approximately follows a power law

Pk v
∞∑

ki=k

k−α
i v k−(α−1) (3.4)

for some constant exponent α. Such networks are called scale-free networks. We can construct

networks with a desired power law degree distribution using the following method. We draw a

degree sequence {ki} directly from a distribution and we give each vertex i a number ki of stubs -

ends of edges emerging from a vertex. Then we choose pairs of these stubs uniformly at random and

join them together to make complete edges (Figure 3.10). When all stubs are used (we restrict their

number to be even), the resulting graph is a random member of the ensemble of graphs with the

desired degree sequence.

Examples of scale free networks are the citation networks, the World Wide Web, the internet,

metabolic networks, telephone call graphs etc.
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Figure 3.10: Graph construction with a �xed degree sequence

3.2.7 Restrictions

So far we've given de�nitions and properties of graphs that enable us to represent systems in great

detail. However from now on, the class of graphs to which we're interested in, conforms to the

following restrictions:

• Unweighed: Edges have no weight, meaning that all edges are equivalent and equiprobable

as we will see later in random graph models.

• Simple: Loops and multiple edges between two vertices are forbidden unless stated otherwise.

• Sparse: For an undirected graph, the maximal number of edges is that of the complete graph,

i.e. E(G) =
(
n
2

)
= n(n−1)

2 . The number of edges m in a sparse graph is much less than the

number of edges of the corresponding complete graph. Thus m≪ n(n−1)
2 .

• Connected: Any vertex can be reached from any other vertex by traversing a path whose

length is �nite.

The aforementioned assumptions form a starting point for modelling networks and while they sim-

plify the resulting analysis, they still allow meaningful questions to be asked of a network as a whole.

However, the study of small-world networks requires the introduction of new de�nitions and termi-

nology as well as probabilistic techniques used in the analysis of random graphs. Thus it is important

to extend our framework to include de�nitions and properties from random graph theory that will

help us understand the dynamics of small-world graphs.

3.3 Random Graph Preliminaries

Random graph theory was developed in the late 1950s and early 1960s in a series of papers by Erdös

and Rènyi [9, 10]. Most of this material is included in Bollobás' standard text [7] published in 1985.

It is often helpful to imagine a random graph as a living organism which evolves with time. At �rst

there are n isolated vertices and the edges are added one by one, at each step, according to a random

experiment. The nature of this random experiment de�nes the di�erent classes of random graphs.

One objective of random graph theory is to determine at what stage of the evolution, a particular

property of a graph is likely to arise.

27



3.3.1 The Basic Models

Here we will introduce two of the most frequently encountered probability spaces (models) of random

graphs. In most cases we consider graphs of n vertices and take V = {1, 2, . . . , n} to be vertex set.

The set of all such graphs will be denoted by Gn.

De�nition. Consider V (G) = {1, 2, . . . , n} to be the vertex set. G(n,M) is a random graph model

that consists of all graphs with vertex set V having M edges, in which all the graphs have the same

probability.

Thus if N =
(
n
2

)
, 0 ≤ M ≤ N and G(n,M) has

(
N
M

)
elements, then every element occurs with

probability
(
N
M

)−1
.

De�nition. The model G{n, P (edge) = p} (or abbreviated as G(n, p)), consists of all graphs with
vertex set V = {1, 2, . . . , n} in which every one of the possible

(
n
2

)
edges is chosen independently and

with probability p, 0 ≤ p ≤ 1.

In other words if G0 is a graph in G(n, p) with vertex set V and m edges, then:

P ({G0}) = P (G = G0) = pm(1− p)N−m

The two models (G(n,M) and G(n, p)) are practically interchangeable provided that M ≃ pn. It is

easier to prove theorems in G(n, p) because the edges are independent whereas in G(n,M) (where the

total number of edges is �xed) there is some dependence of an edge being chosen based on previous

choices. This dependance is small, however, and does not a�ect any important results, so from now

on both models will be referred to as random graphs.

3.3.2 Properties Of Random Graphs

Random graph theory de�nes the conditions under which graphs in G(n,M) and G(n, p) posses a

given property Q, usually in the limit of n→ ∞.

De�nition. We call a subset Q of G (G(n,M) or G(n, p)) a property of graphs of order n. If

G ∈ Q,H ∈ G and G ≃ H, imply that H ∈ G.

We are mostly interested in the fact that a property Q is a subset of G, thus the statement �G has Q�

is equivalent to G ∈ Q. Examples of such properties are: �G is Hamiltonian�, i.e. the set {G ∈ G : G

is Hamiltonian} or �G is connected� is the set {G ∈ G : G is connected}.

De�nition. A property Q is said to be monotone increasing (or simply monotone) if whenever

G ∈ Q and G ⊂ H then also H ∈ Q.

For example the property of a graph containing a certain subgraph, for instance a triangle, is mono-

tone increasing.

Now let Ωn be a model of random graphs of order n (Ωn = G(n,M) or Ωn = G(n, p)). We shall say

that �almost every� (a.e.) graph in Ωn has a certain property Q if P (Q) → 1 as n→ ∞. Instead of

�almost every� we shall sometimes use �almost all� (a.a.).
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A random graph process on V = {1, 2, . . . , n} or simply a graph process is a Markov chain G̃ = (Gt)
∞
0 ,

whose states are graphs on V . The process starts with an empty graph (isolated vertices) and for

1 ≤ t ≤
(
n
2

)
the graph Gt is obtained from Gt−1 by the addition of an edge, all new edges being

equiprobable. Then Gt has exactly t edges, thus for t =
(
n
2

)
we have Gt = Kn. For t >

(
n
2

)
, Gt = Kn

as well.

Another di�erent approach to random graph processes is that of being a sequence (Gt)
N
t = 0 such

that:

• Each Gt is a graph on V .

• Gt has t edges with t = 0, 1, . . . , N , and

• G0 ⊂ G1 ⊂ . . .

We call Gt the state of the process G̃ = (Gt)
N
0 at time t. Intuitively, we think of the process G̃

as a living organism which develops by acquiring more and more edges randomly. What we are

interested in is to �nd at what stage of the evolution does a certain property appear. Erdös and

Rènyi discovered that most monotone properties appear suddenly: for some function M = M(n)

almost no GM has Q, while for �slightly� larger M almost every GM has Q.

De�nition. Given a monotone increasing property Q, a function M∗(n) is said to be a threshold

function for Q if:

• M(n)
M∗(n) → 0 implies that almost no GM has Q, and

• M(n)
M∗(n) → ∞ implies that almost every GM has Q.

De�nition. Suppose Q is a monotone property of graphs. The time at which Q appears is the

hitting time of Q:

τ = τQ = τ(G̃) = min{t ≥ 0 | Gt has Q}.

3.3.3 Probability generating functions

Some properties of random graphs can be described with the use of generating functions [33]. A

probability generating function is an alternative representation of a probability distribution. For

example, let pk be the distribution of vertex degrees in a graph. The corresponding generating

function is:

G0(x) =

∞∑
k=0

pkx
k.

Derivatives. This function encapsulates all the information in the original distribution pk, since we

can recover pk from G0(x) by simple di�erentiation:

pk =
1

k!

dkG0

dxk

∣∣∣∣
x=0

29



One useful property of generating functions is that if the distribution they generate is properly

normalized, then:

G0(1) =
∑
k

pk = 1.

Moments. With generating functions we can easily calculate the mean of the distribution directly

by di�erentiation:

G′
0(1) =

∑
k

kpk = ⟨k⟩.

In general, we can calculate any moment of the distribution by taking a suitable derivative:

⟨kn⟩ =
∑
k

knpk =

[(
x
d

dx

)n

G0(x)

]
x=1

.

Powers. The last and most important property is that if a generating function generates the proba-

bility distribution of some property k of an object, then the sum of that property overm independent

such realizations of that object is generated by the mth power of the generating function.

Example. Suppose we choose m vertices at random from a large graph. Then the distribution of

the of the sum of the degrees of those vertices is given by the mth power of the generating function,

i.e. [G0(x)]
m. To see this we expand the square of the the generating function:

[G0(x)]
2 =

[∑
k

pkx
k

]2
=
∑
jk

pjpkx
j+k

=p0p0x
0 + (p0p1 + p1p0)x

1 + (p0p2 + p1p1 + p2p0)x
2 + (p0p3 + p1p2 + p2p1 + p3p0)x

3 + . . .

The coe�cients of the powers of xm in this expression are the sum of all products pjpk such that

j + k = m, hence the probability that the sum of the degrees of the two vertices will be m. This

property extends to higher powers of the generating function.

30



3.4 Models Of The Small-World

What is the connection between random graphs and small-world networks? The most essential prop-

erty of small-world networks is the small characteristic path length (average distance between any

two nodes in the network). Random graphs have also small characteristic path lengths [21]. If a

person A on a random graph has z neighbors and each of A's neighbors has also z neighbors, then

A has z2 second neighbors. Extending this argument, A has z3 third neighbors, z4 fourth neighbors

and so on. Assuming that a person has between 102 and 103 acquaintances, z4 is on the order of 108

to 1012 which is approximately the population of the world. The diameter D can be computed as

zD = N or D = logN
log z . The logarithmic increase in the diameter D is typical of the small-world e�ect.

Moreover as N increases, logN increases only logarithmically, which means that even for very large

N the diameter will remain a small number. Another essential property of real world networks (such

as the world wide web and the internet) is that they appear to have power law degree distribution

and not binomial or Poisson as is the case with Erdös-Rényi random graphs. This means that a

small but non-negligible fraction of the vertices in these networks has a very large degree, which has

a great e�ect in the behavior of these networks.

Based on experimental data, real world networks appear to have small-world properties. Our goal is

to construct such networks. This construction cannot be based entirely on random graphs. Even if

random graphs have small characteristic path lengths (also increasing at most logarithmically with

the number of nodes of random graphs), they do not show clustering. Two friends of a person A are

most likely being friends with each other, while in random graphs this probability is the same as the

probability of two randomly chosen people being friends with each other. For a random graph the

clustering coe�cient equals C = z
N which is very small for large networks. Watts & Strogatz [32]

calculated the values of the clustering coe�cient Cactual and the characteristic path length Lactual for

three di�erent networks: the graph of �lm actors, the neural network of the worm C.Elegans and the

Western Power Grid of the United States. They also calculated the values Crandom and Lrandom of

the corresponding random graphs with the same number of vertices as the aforementioned networks.

Network N z Lactual Lrandom Cactual Crandom

Actors Graph 225.226 61 3,65 2,99 0,79 0,00027

Power Grid 4.941 2,67 18,7 12,4 0,080 0,005

C.Elegans 282 14 2,62 2,25 0,28 0,05

Table 3.2: Empirical examples of small-world networks

All three networks listed on Table 3.2, exhibit the small-world phenomenon:

Lactual & Lrandom but Cactual ≫ Crandom.

These results suggest that random graphs do not match well the properties of real world networks

so it is necessary to �nd a way of generating graphs that have both properties: small characteristic

path length and clustering.
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3.4.1 The Watts & Strogatz Small-World Rewiring Model

The �rst model, proposed by Watts & Strogatz in 1998 [32], interpolates between regularity (lattice)

and disorder (random graph). The procedure for generating such graphs is the following:

• We start with a one dimensional lattice, where each site is connected to all sites at distance at

most k. Thus each site has 2k neighbors, i.e. the initial average coordination number of the

graph is z = 2k. This construction (Figure 3.11) shows the clustering property: for k ≥ 2 the

neighbors of one site are also neighbors of one another.

Figure 3.11: A one-dimensional lattice with each site connected to its 6 nearest neighbors

• We apply periodic boundary conditions to the lattice, so that it wraps around on itself (Fig-

ure 3.12) in a ring of n sites (Rn).

Figure 3.12: A ring lattice with n = 24 sites and z = 6

• Finally, we choose a site and an edge that connects it to its nearest neighbor in a clockwise

sense. With probability ϕ, we reconnect this edge to a site chosen uniformly at random over

the entire ring, with duplicate edges forbidden. We repeat this process until every site of the

ring is considered once. Next we consider the edges that connect sites to their second-nearest

neighbor clockwise. We rewire each of these edges with probability p and continue this process

until every site is considered once, and so on until every edge is considered once. Since the ring

lattice has nz
2 edges, the rewiring process will terminate after z

2 steps. (Figure 3.13)
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Figure 3.13: The Watts-Strogatz model after rewiring a small fraction of links

Watts & Strogatz showed that for intermediate values of ϕ, the resulting graph is a small-world

network. First of all we consider sparse graphs with the least possible number of edges thus we

require n ≫ z ln z ≫ 1, where the condition z ≫ lnn guarantees that a random graph will be

connected.

• As ϕ→ 0 we have C ∼ 3
4 and L ∼ n

2z ≫ 1, which means that we have a highly clustered graph

but with very large characteristic path length that grows linearly with n.

• As ϕ → 1, C ≈ Crandom ∼ z
n ≪ 1 and L ≈ Lrandom ∼ lnn

ln z , thus we have a poorly clustered

small-world where L grows only logarithmically with n.

For some broad interval of p we can achieve the desired properties for a small-world network:

L ≈ Lrandom and C ≫ Crandom. The immediate drop of L is caused by the introduction of a

few long-range contacts or shortcuts. For small p, each shortcut has a highly non-linear e�ect on L

whereas C remains practically unchanged. Watts & Strogatz also showed by numerical simulation

that L ≈ Lrandom. For example a random graph with n = 1000 and z = 10 has Lrandom = 3, 2.

The corresponding ring lattice R1000 has L = 50. Applying the rewiring model into this ring with

probability p = 1
4 we have L = 3, 6 which is only slightly larger than Lrandom. Thus the Watts &

Strogatz small-world rewiring model appears to show both properties simultaneously: high clustering

and small average vertex-vertex distance.

Though the rewiring model has the desired properties for a small-world network, it also has a number

of problems. The �rst problem is that the distribution of shortcuts in the graph is not completely

uniform. With duplicate edges forbidden, the new positions for the rewired edges are not all equiprob-

able. Thus this non-uniformity of the distribution imposes us to work with the average over di�erent

realizations of the randomness, a task di�cult to perform.

The second problem is that during the rewiring process the graph might become disconnected. In

that case, distances between the vertices that belong to the disconnected components of the graph

are in�nite and as a result the characteristic path length of the whole graph becomes in�nite. For

numerical studies this doesn't appear to be a problem but for analytical work a number of quantities
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and expressions are poorly de�ned. These issues are resolved by a slight modi�cation of the rewiring

model.

3.4.2 The Newman-Watts Small-World Model

M. E. J. Newman & D. J. Watts [27] proposed an alternative model: instead of rewiring edges we

simply add shortcuts between pairs of vertices chosen uniformly at random from the ring lattice. In

this model duplicate edges and edges that connect a vertex to itself are allowed and no edges are

removed from the regular lattice (Example in Figure 3.14).

Figure 3.14: A small-world graph with 5 shortcuts added (n = 24 and k = 3)

For each vertex from the regular lattice we add with probability ϕ one shortcut so that there are

ϕn shortcuts on average. The initial average coordination number for the regular lattice is z = 2k.

Adding shortcuts in the lattice means that a vertex has more endpoints of edges, so the new value

of the coordination number becomes:

z =
Total number of edges · 2
Total number of vertices

=
(kn+ kϕn) · 2

n
= 2k(1 + ϕ)

This model is easier to analyze because it is not possible to split the graph into disconnected compo-

nents. It has been proved [6] that the characteristic path length L obeys the scaling form L = ξ ·F (nξ ),
where F (x) is a universal scaling function of its argument x, and ξ is a characteristic length-scale

for the model which is assumed to diverge in the limit for small ϕ. Newman & Watts showed that

the variable ξ is given by ξ = 1
ϕ·z for the one-dimensional model. Though it seems that the charac-

teristic path length depends on three parameters (n, z and ϕ) it is actually determined by a single

scalar function of a single scalar variable. For ξ ≫ 1, where it is safe to ignore the scaling in the

size of the underlying lattice, and for small ϕ, i.e. when most of a person's acquaintances are local

and only a few are long-range, then if we know the form of the scaling function we can thoroughly

analyze the model. Newman et al. [25] have calculated the form of the scaling function F (x) using

a mean-�eld-like approximation method which is exact when x ̸≃ 1. That is:
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F (x) =
4√

x2 + 4x
tanh−1 x√

x2 + 4x
,

but exact analytical calculations for the characteristic path length have been proven very di�cult

for this particular model. Another problem is the distribution of path lengths in the small-world

model. This distribution can be used to provide a simple model of the spread of a disease in a

small-world. Newman et al. used the mean-�eld approximation method to solve this problem too,

so for the small-world model with uniformly added shortcuts we have solutions for both the bond

and site percolation problems.

3.4.3 Other Models Of The Small-World

Although most research is concentrated on the two aforementioned models, a number of other small-

world models have been proposed. It is interesting to see three of these models and investigate some

of their properties.

A small-world model with a few highly connected sites

Kasturirangan [12] argued that the small-world phenomenon arises not because there are a few

shortcuts in a regular lattice, but because there are a few sites in the network which have unusually

high coordination numbers or which are linked to a widely distributed set of neighbors. In the model

he proposed we start again with a regular lattice and we add a number of extra vertices in the middle.

The next step is to connect these new vertices to a large number of randomly chosen sites from the

ring lattice (Figure 3.12).

Figure 3.15: A small-world graph with a few highly connected sites

This is an alternative way of introducing shortcuts into a network. This model also shows the

small-world e�ect and has been solved exactly.
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Small-world model with a power law degree distribution

Based on the fact that the World Wide Web, which shows the small-world e�ect, is dominated by a

small number of very highly connected sites, Albert et al. [1] proposed a new model similar to the

previous one. In this new model the distribution of the coordination number of sites obeys a power

law, rather than being bimodal, as was the case in the previous model. The procedure for generating

graphs is as follows:

Starting with a random graph of n sites with average coordination number z, we select a site at

random and we add a link between it and another randomly chosen site if that addition would bring

the overall distribution of coordination numbers closer to the desired power law; otherwise no link is

added. Repeating this procedure, a network is generated with the correct distribution of coordination

numbers, yet it remains a random graph. The characteristic path length is small but this type of

network doesn't show the clustering property which is essential in small-world graphs.

Kleinberg's small-world model

A third model, proposed by Kleinberg [13], is based on the fact that in social networks people can

actually construct short paths given only local information. Such was the case in Milgram's experi-

ment, but in the case of the Watts-Strogatz model no algorithm exists that can �nd shortest paths

given only local information. Kleinberg de�ned an in�nite family of network models that generalize

the Watts-Strogatz model, and showed that for one of these models there is a decentralized algorithm

capable of �nding short paths with high probability. Kleinberg's model is as follows:

We start with a two-dimensional square lattice (Figure 3.16(a)) and we add shortcuts between pairs

of vertices i, j with probability which falls o� as a power law d−r
ij (r-Harmonic distribution) of the

distance between them (Figure 3.16(b)). The distance between two vertices i and j with coordinates

(xi, yi) and (xj , yj) respectively is de�ned as:

d((xi, yi), (xj , yj)) := |xi − xj |+ |yi − yj | (3.5)

For arbitrary values of the exponent r it is hard to �nd a decentralized algorithm that �nds shortest

paths, but in the case of r = 2 such algorithm has been proven to exist.

(a) (b)

v

Figure 3.16: Kleinberg's small-world model
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One important result regarding this model is that besides the existence of short paths, small worlds

are also characterized by the ability to �nd them without having a global knowledge of the network.

From an algorithmic perspective this property should be taken under consideration while constructing

a new small-world model.

3.4.4 The r-Harmonic Distribution Model

This last model is in some sense a combination of all the previous models. It is a simpli�ed version

of Kleinberg's model, where a ring lattice is used instead of a mesh. A detailed description of the

model is as follows.

We start with a directed ring of n+ 1 vertices, denoted by Rn+1, in which vertices are labelled from

0 to n. The next step is to add shortcuts or long range contacts between randomly chosen pairs of

vertices from the ring lattice.

Consider a graphG = (V,E) and a probabilistic mapping ϕ on the vertices ofG such that
∑

v∈V ϕ(u, v) =

1 for all u ∈ V , i.e. each vertex u ∈ V has an associated probability distribution ϕ(u, ·). Based on

the type of this distribution we may obtain a variety of di�erent models. Motivated by Kleinberg's

research we will use the r-harmonic r ≥ 0 distribution. Two examples of Harmonic distributions are:

• For r = 1, we have the uniform distribution where ϕ(u, v) = 1
n , and

• For r = 1− log 0.80
log 0.20 , we have the Zipf distribution.

Given two vertices u and v the probability for u to have v as long range contact in a graph G is

given by:

ϕr(u, v) =
d(u, v)−r∑

w ̸=u d(u,w)
−r

(3.6)

where d(·, ·) is the distance function of the graph. In the directed labelled ring Rn+1 the distance

between two vertices with labels i and j is de�ned as d(i, j) = (j−i) mod n+1, thus the probability

in Equation 3.6 can be simpli�ed.

Now consider the r-harmonic random variable Hr, which takes values in {1, 2, . . . , n}. This random
variable has probability distribution de�ned by:

Pr({Hr = x}) = x−r

H
(r)
n

,

where Hr
n =

∑n
i=1 i

−r is the r-harmonic number of order n. If the ring Rn+1 is augmented using the

r-harmonic mapping ϕr, then given two vertices with labels i and j the probability for i to have j

as long range contact in (Rn+1, ϕr) is given by:

ϕr(i, j) =
((j − i) mod n+ 1)−r

Hr
n

(3.7)
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4
Percolation On Small-World Networks

In the previous section, a number of small-world models were presented along with their most impor-

tant properties. Those properties however describe the static structure of the networks. To better

understand the bene�ts of each model we must extensively study their dynamics. There are a num-

ber of dynamical systems that can be de�ned on small-world networks such as networks of coupled

oscillators or cellular automata. Here we will concentrate on epidemic or disease propagation models

on small-world graphs which are essentially percolation processes. In epidemiology there are two

parameters of interest: susceptibility , i.e. the probability that an individual exposed to a disease will

contract it, and transmissibility , i.e. the probability that a healthy but susceptible individual will

contract the disease once it has a contact with an infected individual.

Infected individuals are represented by occupied sites on a small-world graph and the disease spreads

along the bonds which are represented by edges between the sites. A disease begins with a single

infected individual. We will study two extremes of this model:

• In the �rst case only a fraction p of the individuals are susceptible but if an individual gets

infected, all of its susceptible neighbors will contract the disease. In percolation terms this is

the site percolation problem.

• In the second case all individuals are susceptible and there is a probability p that an infected

individual will transmit the infection to a neighbor. This corresponds to the bond percolation

problem.

We will investigate both the site and bond percolation problems �rst on the Newman-Watts model

and next on the r-Harmonic distribution model.
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4.1 Percolation On The Newman-Watts Small-World Model

Several methods have been proposed for the study of disease propagation on random networks. In

random graph theory percolation happens on a network when a giant component appears, i.e. a

connected component whose size approaches the size of the whole graph. A disease outbreak which

starts with a single individual will spread only within connected components, thus at a certain value

of the percolation threshold pc the system undergoes a phase transition which is the onset of epidemic

behavior. Epidemics in random networks were studied with the generating function method [22],

[26], [23]. Moore and Newman studied percolation on small world networks using a transfer matrix

method [18] and later using a generating functions method [19]. Both methods will be presented in

the following text.

4.1.1 Site Percolation

Generating Functions Method

The basic idea of the generating function method is to �nd the distribution of local clusters (de�ned

later in this text) and calculate how these local clusters are joined together with shortcuts to form

connected clusters. Next we �nd a closed form expression for the mean connected cluster size. When

this cluster size diverges, we are right above the phase transition where a giant connected component

forms. This is exactly the point where we can compute the percolation threshold of the system.

Initial structure. We consider a one-dimensional small-world graph with L sites arranged on a

regular ring lattice with periodic boundary conditions. Each site is connected to all sites at distance

at most k, thus the initial coordination number of each site is z = 2k. A number of shortcuts are

now added to the graph between pairs of vertices chosen uniformly at random. Let ϕ be the average

number of shortcuts per bond on the underlying lattice. Therefore we have a total of kϕL shortcuts.

The probability of two randomly chosen sites having a shortcut between them is:

ψ = Pr[Two randomly chosen sites have a shortcut between them]

= 1− Pr[A speci�c pair of sites have no shortcut between them]

In the Newman-Watts small-world model, when adding shortcuts, loops and duplicates are allowed,

so there are L2 �pairs� of sites which might have a shortcut �between� them. Consider a speci�c pair

(li, lj) of sites we don't want to connect with a shortcut. Since the graph is undirected we also don't

want to have a shortcut between the pair (lj , li) of sites. Therefore we have (L2 − 2) �unavailable�

positions of shortcuts out of the overall L2. Finally we shall distribute the kϕL shortcuts to the

available positions with (L2 − 2)kϕL ways. Hence the probability ψ is:

ψ = 1− [
L2 − 2

L2
]kϕL ≈ 2kϕ

L
, for large L. (4.1)
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We can assume that every shortcut leads to a di�erent local cluster for large L since the probability

of two shortcuts connecting the same pair of local clusters falls o� as L−1.

The next step is to show the susceptible individuals. As mentioned earlier, the contact between

an infected and a healthy but susceptible individual results in the latter contracting the disease.

Less than 100% of the individuals are susceptible, therefore we represent them with a fraction p of

occupied (colored) sites on the graph. An example of this structure is presented in Figure 4.1.

Figure 4.1: A small-world with L = 24 sites, 4 shortcuts and p = 3
4
susceptible individuals

The occupied sites form a number of clusters. First the occupied sites which are connected with

the nearest neighbor bonds on the underlying one-dimensional lattice form local clusters. These

local clusters are connected together by shortcuts to form the connected clusters of the small-world

network. Thus a connected cluster (circle) is equal to a single local cluster (square) with any number

of connected clusters attached to it by a single shortcut. This recursive tree-like structure is shown

in Figure 4.2.

= ++ + +
. . .

Figure 4.2: Graphical representation of a cluster of connected sites.

Local Clusters. First we have to calculate the number of local clusters of length n. This is also

the probability P0(n) that a randomly chosen site belongs to a local cluster of size n. We de�ne the

following procedure:

• Start with an occupied cluster. This is the initial local cluster of size 1.

• On the ring lattice, check the neighbors of this site at distance at most k. If these neighbors

are occupied (with probability p) then add their number (how many they are) to the initial

cluster.

• Repeat the previous step until all of the neighbors of the sites of the local cluster formed so

far are unoccupied (with probability (1− p)).
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We may think of this process as following a geometric distribution1 which starts with an occupied

site with probability p and terminates with success probability (1− p)k after (n− 1) steps.

• For n = 0 the average number of local clusters of length n is:

P0(n) = 1− p

• For general k and n > 0 we have:

P0(n) = (1− p)2kp(1− (1− p)k)n−1n

= (1− p)2pqn−1n

where q = 1− (1− p)k.

Here the process starts with an occupied site with probability p, for the next (n− 1) steps this

process �fails� with probability 1− (1− p)k and terminates with success probability (1− p)k.

Thus we have:

P0(n) =

{
1− p for n = 0

(1− p)2pqn−1n for n > 0
(4.2)

Let H0(z) be the generating function for the local clusters. Then:

H0(z) =
∞∑
n=0

P0(z)z
n (4.3)

Using 4.2 we can calculate this generating function.

H0(z) = 1− p+
∞∑
n=1

(1− p)2pqn−1nzn

= 1− p+ (1− p)2
p

q

∞∑
n=1

n(qz)n
[ ∞∑

i=0

ixi =
x

(1− x)2

]
= 1− p+ (1− p)2

p

q

qz

(1− qz)2

Hence:

H0(z) =

∞∑
n=0

P0(z)z
n = 1− p+ pz

(1− p)2

(1− qz)2
(4.4)

1Consider a sequence of independent Bernoulli trials with success probability p (and failure probability q the same

for each trial). Let X be the number of trials till we succeed. Then P (X = x) = pqx−1.
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Connected Clusters. Now let P (n) be the probability that a randomly chosen site belongs to

a connected cluster of n sites. This is also the probability that a disease outbreak starting with

a randomly chosen individual will a�ect n people. Since P (n) is di�cult to calculate, we use the

generating function method. Let H(z) be the generating function for the probability P (n). Then:

H(z) =

∞∑
n=0

P (n)zn (4.5)

Since the probability of two shortcuts connecting the same pair of local clusters falls o� as L−1, this

means that each connected cluster consists of a local cluster with m ≥ 0 shortcuts leading from it

to m connected clusters. Thus H(z) satis�es the Dyson-equation-like iterative condition, which we

can write self-consistently as:

H(z) =

∞∑
n=0

P0(n)z
n

∞∑
m=0

P (m|n)[H(z)]m (4.6)

P (m|n) is the conditional probability of there being exactly m shortcuts emerging from a local

cluster of size n. Since there are ϕkL shortcuts in the network, there will be 2ϕkL ends of shortcuts.

Therefore P (m|n) is given by the binomial:

P (m|n) =
(
2ϕkL

m

)[
n

L

]m[
1− n

L

]2ϕkL−m

(4.7)

We take m ends of shortcuts out of the overall 2ϕkL, we connect them to a local cluster of size n

(with m ways) and we connect the remaining 2ϕkL − m ends of shortcuts to the remaining local

clusters of sizes other than n (with 2ϕkL−m ways).

Using Equation 4.7, Equation 4.6 becomes:

H(z) =

∞∑
n=0

P0(n)z
n

∞∑
m=0

P (m|n)[H(z)]m

=

∞∑
n=0

P0(n)z
n

∞∑
m=0

(
2ϕkL

m

)[
n

L

]m[
1− n

L

]2ϕkL−m

[H(z)]m

=

∞∑
n=0

P0(n)z
n

∞∑
m=0

(
2ϕkL

m

)[
n

L− n
H(z)

]m[
L

L− n

]−2ϕkL

=

∞∑
n=0

P0(n)z
n

[
L

L− n

]−2ϕkL ∞∑
m=0

(
2ϕkL

m

)[
n

L− n
H(z)

]m
,

[
since

∞∑
i=0

(
n

i

)
xi = (1 + x)n

]

=

∞∑
n=0

P0(n)z
n

[
L

L− n

]−2ϕkL[
1 +

n

L− n
H(z)

]2ϕkL
Therefore:

H(z) =

∞∑
n=0

P0(n)z
n

[
1 + (H(z)− 1)

n

L

]2ϕkL
(4.8)

For large L we can approximate this expression with:
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H(z) =

∞∑
n=0

P0(n)[ze
2kϕ(H(z)−1)]n (4.9)

It is easy to see that H(z) is equal to H0(z) if we replace z with ze2kϕ(H(z)−1). Thus:

H(z) = H0(ze
2kϕ(H(z)−1)) (4.10)

We can calculate H(z) by iterating this equation starting with H(z) = 1. The next step is to

calculate the mean outbreak size which is given by the �rst derivative of H at z = 1:

H ′(1) =
d

dz
[H0(ze

2kϕ(H(z)−1))]

∣∣∣∣
z=1

= H ′
0(1)

d

dz
[ze2kϕ(H(z)−1)]

∣∣∣∣
z=1

= H ′
0(1)

d

dz
[e2kϕ(H(z)−1) + ze2kϕ(H(z)−1)2kϕH ′(z)]

∣∣∣∣
z=1

= H ′
0(1)(1 + 2kϕH ′(1))

Therefore:

H ′(1) =
H ′

0(1)

1− 2kϕH ′
0(1)

(4.11)

We can calculate the �rst derivative of H0(z) at z = 1 from Equation 4.4:

H ′
0(1) =

d

dz

[
1− p+ pz

(1− p)2

(1− qz)2

]∣∣∣∣
z=1

= p(1− q)2
d

dz

[
z

(1− qz)2

]∣∣∣∣
z=1

= p(1− q)2
(1 + qz)

(1− qz)3

∣∣∣∣
z=1

= p
1 + q

1− q
(4.12)

Equation 4.11 thus gives:

H ′(1) =

p(1+q)
(1−p)

1− 2kϕp(1+q)
(1−q)

=
p(1 + q)

1− q − 2kϕp(1 + q)
=

p(2− (1− p)k)

(1− p)k − 2kϕp(2− (1− p)k)
(4.13)

The last step is to calculate the percolation threshold. The mean outbreak size diverges at the

percolation threshold p = pc. This happens when the denominator of Equation 4.13 is zero, i.e.:

1− qc − 2kϕpc(1 + qc) = 0 → ϕ =
1− qc

2kpc(1 + qc)
=

(1− pc)
k

2kpc(2− (1− pc)k)
(4.14)
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• For k = 1, the percolation threshold is the solution of a quadratic equation:

2ϕp2c + (2ϕ+ 1)pc − 1 = 0 → pc =

√
4ϕ2 + 12ϕ+ 1− 2ϕ− 1

4ϕ
(4.15)

• For general k the percolation threshold is the solution of a polynomial of order k + 1.

Transition Matrix Method

The basic idea of this method is to consider cluster growth as a stochastic process evolving it time.

Starting with a particular local cluster, we add to it all the other local clusters that can be reached

from it by a single shortcut. Then we add all the local clusters that can be reached from the newly

added local clusters and so on until a connected cluster is formed and there are no more shortcuts

that lead to new local clusters.

This process has the Markov property, i.e. the probability that a process is in a particular state y

at time t depends only on its state x at time t − 1. This probability is denoted by P (x, y) and is

independent of time t. The values P (x, y) are called transition probabilities.

Pr[Xt = y | Xt−1 = x,Xt−2, . . . , X0] = Pr[Xt = y | Xt−1 = x] = P (x, y)

At each step of this process we add new local clusters to the overall connected cluster based on

our current position in the lattice. We assume that every shortcut leads us to a di�erent local

cluster for large L. We can model this process using a transition matrix M whose elements are the

transition probabilities of this process. Let v be a column vector whose elements vi are equal to the

probability that a local cluster of size i has just been added to the overall connected cluster. We

wish to calculate the values of this vector during the evolution of this process in time. Let v(0) be

the initial distribution vector. In the next time step we have:

v(1) =Mv(0) or v′i =
∑
j

Mijvj (4.16)

This transition matrix is independent of the time step and is repeatedly applied to the vector of

probabilities v until there are no more local clusters to be added to the overall connected cluster.

This happens when we reach the percolation threshold (equilibrium state). In this state, vector v′

is stationary.

The elements of matrix2 M are:

Mij = Ni(1− (1− ψ)ij),

where Ni is the average number of local clusters of size i and 1−(1−ψ)ij is the probability of having

a shortcut from a local cluster of size i to one of size j, since there are ij possible pairs of sites by

which these can be connected.

2The matrix M is not stochastic, i.e. its rows do not sum to unity, yet its entries are strictly positive.
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From the previous section we know that the probability that a randomly chosen site belongs to a

local cluster of size n is:

P0(n) =

{
1− p, for n = 0

(1− p)2pqn−1n, for n > 0

Therefore the average number of local clusters of size i is Ni =
P0(i)

i L or:

Ni =

{
(1− p)2piL, for k = 1

(1− p)2pqi−1L, for k > 1
(4.17)

where q = (1− (1− p)k). As this process evolves in time we have:

v(1) =Mv(0)

v(2) =Mv(1) =M2v(0)

...

v(n) =Mnv(0)

...

At the percolation threshold (after a �nite number of steps) this process has reached the equilibrium

state where:

v′ =Mv′

and no matter how many times we apply the transition matrixM on vector v′, v′ remains unchanged.

It is easy to see that this vector v′ is the right eigenvector of the transition matrix M.

Now consider the largest eigenvalue of M, i.e. the largest value of λ for which (M− λI)v′ = 0.

• If λ < 1, applying matrix M to vector v′, makes v′ tend to zero and as a result the rate at

which new local clusters are added falls o� exponentially and the connected clusters are �nite

with exponential size distribution.

• If λ > 1, applying matrix M to vector v′, makes v′ growing until the size of the overall cluster

becomes limited by the size of the whole system.

• Thus percolation threshold occurs at λ = 1.

For �nite L it's di�cult to calculate the largest eigenvalue λ of M, but for L→ ∞, ϕ being constant

and ψ → 0 we can approximate M by:

Mij = ijψNi (4.18)

Replacing Mij in Equation 4.16 and setting v′i = λvi we have:

λvi = iψNi

∑
j

jvj (4.19)
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Thus the eigenvectors of M have the form vi = Cλ−1iψNi where C =
∑

j jvj is a constant. Elimi-

nating C we have:

λ = ψ
∑
j

j2Nj (4.20)

• For k = 1, i.e. Ni = (1− p)2piL we have:

λ = ψ
∑
j

j2Nj = ψ
∑
j

j2(1− p)2pjL = ψ(1− p)2L
∑
j

j2pj

= ψ(1− p)2L

(∑
j

j2pj − jpj +
∑
j

jpj
)

= ψ(1− p)2L

(
p2

∑
j

d2(pj)

dj2
+ p

∑
j

d(pj)

dj

)

= ψ(1− p)2L

(
p2
d2(

∑
j p

j)

dj2
+ p

d(
∑

j p
j)

dj

)
= ψ(1− p)2L

(
p2

2

(1− p)3
+ p

1

(1− p)2

)
= ψLp

1 + p

1− p
=

2kϕ

L
Lp

1 + p

1− p
= 2kϕp

1 + p

1− p

For λ = 1 we get the value of p at the percolation threshold, i.e. p = pc.

1 = 2kϕp
1 + p

1− p
→ pc =

√
4ϕ2 + 12ϕ+ 1− 2ϕ− 1

4ϕ

• For k > 1 we have:

λ = ψLp
1 + q

1− q
= 2kϕp

2− (1− p)k

(1− p)k
(4.21)

At the percolation threshold (λ = 1):

ϕ =
(1− pc)

k

2kpc(2− (1− pc)k)

Thus the percolation threshold is the solution of a polynomial of order k+1 in agreement with

the result in Equation 4.14.

Remarks From Equation 4.21 we can see that the value of the percolation threshold depends on

the size of the ring lattice L and the probability ψ of having a shortcut between two nodes. Thus the

same method can be applied in other small world models were the probability of having a shortcut

between two nodes follows some distribution.
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4.1.2 Bond Percolation

In this section we will study the bond percolation problem on the Newmann-Watts small world

network. The bond percolation problem is equivalent to the disease propagation problem where

all individuals are susceptible but transmission takes place with less than 100% e�ciency. In this

model, when a su�cient fraction pc of the bonds of the network are occupied, they form a giant

component whose size scales extensively with the size of the network. The fraction p of occupied

bonds is the transmissibility of the disease. We will study two separate cases: for k = 1 and for k > 1.

Generating Functions Method. For k = 1, the probability P0(n) that a randomly chosen site

belongs to a local cluster of size n is:

P0(n) =

{
0 for n = 0

(1− p)2pn−1n for n > 0
(4.22)

where p is the bond occupation probability. Here a local cluster of n sites consists of n− 1 occupied

bonds with two unoccupied bonds at either end. Thus P (n) (the probability that a randomly chosen

site belongs to a connected cluster of size n) can be computed through the generating function of

Equation 4.6 as:

H(z) =
∞∑
n=0

P0(n)z
n

∞∑
m=0

P (m|n)[H(z)]m (4.23)

Now a shortcut must be an open bond with probability p thus Equation 4.8 is slightly modi�ed

(replace ϕ with pϕ). Thus:

H(z) =

∞∑
n=0

P0(n)z
n

[
1 + (H(z)− 1)

n

L

]2pϕL
=

∞∑
n=0

[pze2pϕ(H(z)−1)]n (4.24)

where H(z) is equal to H0(z) with z → ze2pϕ(H(z)−1). Therefore:

H(z) = H0(ze
2pϕ(H(z)−1)) (4.25)

The mean outbreak size is given by the �rst derivative of H, i.e.:

H ′(1) =
d

dz
[H0(ze

2pϕ(H(z)−1))]

∣∣∣∣
z=1

= H ′
0(1)

d

dz
[ze2pϕ(H(z)−1)]

∣∣∣∣
z=1

= H ′
0(1)

d

dz
[e2pϕ(H(z)−1) + ze2pϕ(H(z)−1)2pϕH ′(z)]

∣∣∣∣
z=1

= H ′
0(1)(1 + 2pϕH ′(1))

Solving for H ′(1) we have:

H ′(1) =
H ′

0(1)

1− 2pϕH ′
0(1)

(4.26)
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In order to calculate H0(z) �rst we have to calculate H0(z):

H0(z) = 0 +
∞∑
n=1

P0(z)z
n =

∞∑
n=1

(1− p)2pn−1nzn

=
(1− p)2

p

∞∑
n=1

n(pz)n
[ ∞∑

i=0

ixi =
x

(1− x)2

]
=

(1− p)2

p

pz

(1− pz)2
= z

(1− p)2

(1− pz)2
.

Therefore:

H ′
0(1) =

d

dz

[
z
(1− p)2

(1− pz)2

]∣∣∣∣
z=1

= (1− p)2
d

dz

[
z

(1− pz)2

]∣∣∣∣
z=1

= (1− p)2
[
(1 + pz)

(1− pz)3

]∣∣∣∣
z=1

= (1− p)2
[
(1 + p)

(1− p)3

]
=

1 + p

1− p
(4.27)

Using Equation 4.27, Equation 4.26 gives:

H ′(1) =
H ′

0(1)

1− 2pϕH ′
0(1)

=

1+p
1−p

1− 2pϕ1+p
1−p

=
(1 + p)

1− p− 2pϕ(1 + p)
(4.28)

The onset of epidemic behavior (where p = pc) occurs at the zero of the denominator of Equation 4.28

or when:

ϕ =
1− pc

2pc(1 + pc)

Solving for pc we have the quadratic Equation:

2ϕp2c + (2ϕ+ 1)pc − 1 = 0

with solution:

pc =

√
4ϕ2 + 12ϕ+ 1− 2ϕ− 1

4ϕ
(4.29)

which is exactly the same solution we got for the site percolation problem on the same network for

k = 1.
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Bond percolation when k > 1. For k > 1 calculating the average number of local clusters is a

di�cult so we will solve the case k = 2. In the bond percolation problem all individuals (nodes)

are susceptible but the bonds between them are open or closed based on some probability p. A

single node with closed bonds to it's right and left neighbors is a local cluster of size 1 as shown in

Figure 4.3. Moreover every shortcut has meaning only if it is an open bond with probability ϕp.

Figure 4.3: Local clusters for the bond percolation problem.

Now let Qi be the probability that a given site n and it's left neighbor site n − 1 are part of the

same local cluster of size i when only bonds to the left of site n are taken into account. Let Qij

be the probability that sites n and n − 1 are parts of two separate local clusters of sizes i and j

respectively again when only bonds to the left of n are considered. Let us consider site n+ 1. This

can be possibly connected with open bonds to both sites n and n− 1. It can be shown that:

Qi+1 = p(2− p)Qi + p(1− p)
∑
j

Qij + p2
∑

j+j′=1

Qjj′ (4.30)

The probability Qi+1 that the site n+ 1 belongs to the same local cluster of size i+ 1 with the site

n equals the sum of probabilities:

• The sites n, n− 1 belong to the same local cluster of size i with probability Qi and site n+1 is

connected to either sites n or n−1 (or both) with probability p(1−p)+p2+p(1−p) = p(2−p).

• The sites n, n − 1 belong to separate local clusters of sizes i, j respectively with probability∑
j Qij and site n+ 1 is connected to site n with an open bond with probability p and to site

n− 1 with a closed bond with probability (1− p).

• The sites n, n − 1 belong to separate local clusters of sizes j and j′ where j + j′ = i with

probability
∑

j+j′=iQjj′ and site n+ 1 is connected to both sites n, n− 1 with an open bond

with probability p2.

We can also de�ne Qi+1,j as:

Qi+1,j =

{
(1− p)2[Qj +

∑
kQjk] for i = 0

p(1− p)Qji for i ≥ 1
(4.31)

The probability Qi+1,j that sites n+ 1, n are part of two separate local clusters of sizes i+ 1 and j

equals the probabilities:
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• For i = 0, The probability Q1j that sites n+ 1, n belong to separate local clusters of sizes 1, j

respectively equals the sum of probabilities:

� (1 − p)2Qj : Sites n, n − 1 belong to the same local cluster of size j and site n + 1 is

connected to both of these sites with an open bond with probability (1− p)2.

� (1 − p)2
∑

kQjk: Sites n, n − 1 belong to separate local clusters of sizes j, k respectively

and site n+ 1 is connected to both of these sites with probability (1− p)2.

• For i ≥ 1, we have the probability p(1− p)Qji: Sites n, n− 1 belong to separate local clusters

of sizes j, i respectively with probability Qji and site n+ 1 is connected to site n− 1 with an

open bond with probability p to form a local cluster of size i + 1 and with a closed bond to

site n with probability (1− p).

To �nd a closed form expression for probabilities Qi and Qij is a very di�cult task. Instead we will

de�ne the following generating functions for the aforementioned probabilities:

H(z) =
∑
i

Qiz
i

H(z, w) =
∑
i,j

Qijz
iwj

Using these generating functions, Equations 4.30 and 4.31 give:

H(z, w) = z(1− p)2[H(w) +H(w, 1)] + zp(1− p)H(w, z) (4.32)

H(z) = zp(2− p)H(z) + zp(1− p)H(z, 1) + zp2H(z, z) (4.33)

Each site always belongs to a cluster possibly of size 1, thus the probabilities Qi and Qij must sum

to unity
∑

iQi +
∑

ij Qij = 1 or equivalently:

H(1) +H(1, 1) = 1. (4.34)

Finally the number of clusters of size i per lattice site Ni (density) equals the probability that a

randomly chosen site is the rightmost site of such a cluster, in which case the two bonds to its right are

closed with probability (1− p)2. Thus the generating function for local clusters H0(z) =
∑

i P0(i)z
i

must satisfy:

H0(z) = (1− p)2[H(z) +H(z, 1)] (4.35)

Solving Equations 4.32, 4.33 and 4.34, Equation 4.35 gives:

H0(z) =
z(1− p)4(1− 2pz + p3(1− z)z + p2z2)

1− 4pz + p5(2− 3z)z2 − p6(1− z)z2 + p4z2(1 + 3z) + p2z(4 + 3z)− p3z(1 + 5z + z2)

As was the case with k = 1 the generating function for connected clusters satis�es:

H(z) = H0(ze
2kϕp(H(z)−1)) (4.36)
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And the mean outbreak size is now:

H ′(1) =
H ′

0(1)

1− 2kϕpH ′
0(1)

(4.37)

Percolation occurs at the zero of the denominator, i.e. when 2kϕpH ′
0(1) = 1. Thus:

ϕ =
(1− pc)

3(1− pc + p2c)

4pc(1 + 3p2c − 3p3c − 2p4c + 5p5c − 2p6c)
(4.38)

where pc is the desired percolation threshold.

The above method can be used for k > 1 as long as we �nd a way to calculate the average number

of local clusters of size i. However the results will be far more complicated.
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5
Simulation results

5.1 r-Harmonic Small World Model

We will study the r-Harmonic small-world model. We start with a ring lattice with n vertices and

k = 1. Then given two vertices with labels i and j the probability for i to have j as long range

contact in (Rn, ϕr) is given by ϕr(i, j) =
((j−i) mod n)−r

Hr
n

. Here we present a randomized algorithm for

generating a network with these properties. First we create the initial structure i.e. a directed ring

of n nodes. Then we choose randomly or give as input a pair of source s and target t nodes. We

start at s and we randomly choose a node on the ring according to the Harmonic distribution (we

give the Harmonic exponent as input). Finally we iterate until we are at a distance O(log n) where

no shortcut is needed. This process is used for greedy routing on these graphs. Greedy routing is

the distributed routing protocol where a node u chooses a long range contact that is closer to the

target than another neighbor in order to reach the target in the minimum number of steps. It's been

proven [5] that for r = 1 there is a tight Θ(log2 n) bound for the expected number of steps required

for routing in the r-Harmonic ring.

r-Harmonic Distribution Lower Bound Upper Bound

0 ≤ r < 1 Ω(n
1−r
2−r ) O(n1−r)

r = 1 Ω(log2 n) O(log2 n)

1 < r < 2 Ω(n
r−1
r ) O(nr−1)

r = 2 Ω(
√

(n)) O(n log logn
logn )

2 < r Ω(n
r−1
r ) O(n)

Table 5.1: Expected number of steps for greedy routing in the r-Harmonic ring
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5.1.1 Computing number of hops between a source and target node

function ihops=hring(n, r, s, t)

%Harmonic ring: Generate a network using a directed ring augmented with long

% range contacts using the r-Harmonic distribution.

%

%INPUT: n: Number of nodes of the directed ring lattice

% r: Exponent of the Harmonic Distribution. For r=0 we

% have the uniform distribution and for r=1-log.80/log.20

% we obtain the Zipf distribution.

% s, t: Source and target nodes. If they are not given,

% s and t are chosen uniformly at random from the set of

% nodes.

%

%OUTPUT: ihops: Number of long range contacts that are added in

% order to reach the target node starting from the source node.

% Initial Structure

I1=zeros(n,1);

J1=zeros(n,1);

S1=ones(n,1);

for i=1:n

I1(i)=i;

J1(i)=mod(i,n)+1;

end

A=sparse([I1],[J1],[S1], n, n); A=sign(A);

% Source and target nodes (s and t respectively)

if nargin <=2

s=ceil(rand*n);

t=ceil(rand*n);

if (s==t)

disp('Source node matches target node');

return

end
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if (mod((t-s), n)<=log(n))

disp('Node accecible without shortcuts');

return

end

end

% Adding Long Range Contacts

for i=1:n

pdist(i) =1./(i*harmonic(n,r));

end

source=s;

target=t;

dist=mod((t-s), n);

hops=0;

while dist>log(n)

a=rand;

B=(a>pdist);

u=ceil(rand*length(find(B)));

if (u~=s)

pos=u;

A(s,pos)=1;

dist=mod((t-pos), n);

s=u

hops=hops+1;

end

end

ihops=hops;

adj=full(A);

plotadj(adj);
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Using MATLAB with Graphviz, we can visualize the graphs generated with this method for di�erent

values of n and r. We run the program for n = 30, r = 1 and s = 5, t = 20. There are needed 4 hops

to reach the target node.

>> hring(30,1,5,20)

Source Node= 5

Target Node= 20

Intermediate steps=[28,29,10,19]

Number of hops = 4

 1

 2
 3

 4

 5  6

 7

 8

 9101112
13

14

15

16 17

18

19

20

21
22

23

24

25

26

27

28
29

30

Figure 5.1: A network with n = 20 nodes, r = 1, source node=5, target node 20. Number of hops=4
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5.1.2 Computing the average number of hops for a chosen source-target pair

For a given source-target pair it is interesting to see the average number of hops. We can compute

this number using the function avghops(x, n, r, s, t) where x is the number of repetitions.

function avg_hops=avghops(x,n,r,s,t)

%avg_hops: Computes the average number of hops needed to reach a

% target node starting from a source node.

%INPUT: x: number of repetitions

% n: number of nodes

% r: Harmonic distribution exponent

% s,t: source and target nodes

%

%OUTPUT: avg_hops: average number of intermediate steps between

% source and target node

if nargin <=3

s=ceil(rand*n);

t=ceil(rand*n);

if (s==t)

disp('Source node matches target node');

return

end

if (mod((t-s), n)<=log(n))

disp('Node accecible without shortcuts');

return

end

end

for i=1:x

hops(i)=hring(n,r,s,t);

end

avg_hops=ceil(mean(hops));
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Suppose we want to �nd the average number of hops for a network with n = 100 nodes, Harmonic

exponent r = 1 and source and target nodes s = 1 and t = 50 respectively. We compute the average

of 1000 di�erent realizations of the network as:

>> avghops(1000,100,1,1,50)

ans = 20

Next we will compute the average number of hops for a network of 100 nodes, harmonic exponent

r = 1 and source and target nodes s = 1 and t = 50 respectively:

Repetitions No. Of Nodes r Source s Target t Average No. Of Hops

100 100 1 1 50 19

1000 100 1 1 50 20

10000 100 1 1 50 20

Based on the results, it takes on average 20 steps from source 1 to target 50. Next we will compute

the average number of hops for a network of 1000 nodes, harmonic exponent r = 1 and source and

target nodes s = 1 and t = 500 respectively:

Repetitions No. Of Nodes r Source s Target t Average No. Of Hops

100 1000 1 1 500 146

1000 1000 1 1 500 142

10000 1000 1 1 500 145

Based on the results, it takes on average 145 steps to get to target node 500 from source node 1.

Next we will change the Harmonic exponent to 1000 (approaching the geometric distribution) and

try the same experiments:

Repetitions No. Of Nodes r Source s Target t Average No. Of Hops

100 100 1000 1 50 21

1000 100 1000 1 50 20

10000 100 1000 1 50 20

Repetitions No. Of Nodes r Source s Target t Average No. Of Hops

100 1000 1000 1 500 152

1000 1000 1000 1 500 155

10000 1000 1000 1 500 153
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As it was expected it takes mores steps to route when the harmonic exponent goes to in�nity.

Next we will try the same experiment with harmonic exponent 1/1000 (approaching the uniform

distribution):

Repetitions No. Of Nodes r Source s Target t Average No. Of Hops

100 100 1/1000 1 50 20

1000 100 1/1000 1 50 20

10000 100 1/1000 1 50 20

Repetitions No. Of Nodes r Source s Target t Average No. Of Hops

100 1000 1/1000 1 500 152

1000 1000 1/1000 1 500 150

10000 1000 1/1000 1 500 153

Once more as it was expected it takes more steps to route.

5.1.3 Computing number of hops between every pair of source and target nodes

Finally, we can can compute the average number of steps between every pair of source and target

nodes.

function S=stpairs(x,n,r,s,t)

%stpairs: Computes the average number of hops needed to reach a

% target node starting from a source node for every source

% and every target pair of nodes.

%INPUT: x: number of repetitions

% n: number of nodes

% r: Harmonic distribution exponent

% s,t: maximum source and target nodes

%

%OUTPUT: S(i,j): A matrix with the average number of intermediate

% steps between source i and target j node

for z=1:x

for i=1:s

for j=1:t

S(i,j)=avghops(x,n,r,i,j);

end

end

end

58



Since it's not easy to present results for many values of source and target nodes, we will present a

toy example of a network with 20 nodes and source and target nodes from 1 to 10:

>> stpairs(100, 20, 1, 10,10)

ans =

0 0 0 7 6 7 7 8 7 6

7 0 0 0 7 6 7 6 6 7

7 6 0 0 0 7 6 7 7 6

7 6 6 0 0 0 6 5 7 7

7 6 7 7 0 0 0 7 7 8

7 7 6 6 7 0 0 0 7 6

7 5 6 6 7 7 0 0 0 7

7 7 8 8 6 6 7 0 0 0

7 7 7 6 7 8 6 7 0 0

8 7 6 7 6 7 8 7 6 0
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