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Introduction

A network is a set of items (vertices) connected by edges. In the real world many systems take
the form of network such as the World Wide Web, the internet, social networks of acquaintances,
networks of citations between papers, neural networks, metabolic networks, food webs etc. These
networks exhibit a number of statistical properties that we have to study in order to understand them.
First we have to define the properties that characterize the structure of networks and then create
models of networks that can help us understand the meaning of these properties. Many network
models have been proposed but we will extensively analyze the small world model which is based one
the "small-world phenomenon" - the principle that we are all linked by a short chain of acquaintances
as was proved by the studies of Stanley Milgram in the 1960’s. After exploiting the advantages of
the small world model we will study the epidemic behavior in such a model. This master thesis is
structured as follows: In section 2 we give an introduction to site and bond percolation and give
an example of how percolation works on 1 and 2 dimensional lattices. In section 3 we give a small
introduction to some theoretic preliminaries along with the most basic small world models proposed
so far. In section 4 we extensively study the site and bond percolation problem on a Newman-Watts
small world model and finally on section 5 we study the greedy routing problem on the r-Harmonic
small world model.



What Is Percolation?

2.1 General Introduction

Percolation theory is a field mostly studied by physicists but covers a wide range of applications
useful in other sciences like chemistry, mathematics and materials science. It was introduced to
answer questions like:

e If we put a porous rock underwater, will the water reach it’s center?

e How far from each other should we plant trees in an orchard (forest) in order to minimize the
damages from a fire outburst?

e How fast will an infectious disease spread? How long before it causes a pandemic?

One of its most popular applications is the behavior of fluids in porous media, mostly used to improve
the productivity of natural gas and oil wells. In physics, percolation theory is used to study the flow
of electricity in two dimensional random resistor networks. Percolation models are used in biology
to study evolution and also in social sciences to study phenomena like how fast a rumor can spread.

In general, percolation is used to study dynamical systems and thus considered a branch of statistical
mechanics. Percolation systems go through phase transitions particularly around a critical point or
threshold. What is most interesting about percolation theory is that it provides a simple model of
random media yet realistic towards each application.



2.2 Sites And Lattices

Consider a square lattice, i.e. an infinite array of squares, denoted by Z2. (Figure 2.1(a)!). A
fraction of squares are filled with a dot in the center, while the other squares are left empty as in
Figure 2.1(b). We now define a cluster as a group of neighbor squares occupied with these dots.
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These clusters are encircled in Figure 2.1(c).
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Figure 2.1: Definition of percolation and its clusters

Squares are called neighbors (or nearest neighbor sites) if they have one side in common but not if
they only touch one corner (next nearest neighbors). (Figure 2.2)
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Figure 2.2: Neighbors of a site in a square lattice

All sites within one cluster are connected to each other by one unbroken chain of nearest neighbor
links from one occupied square to an occupied neighboring square. Percolation theory deals with the
number and properties of these clusters. The first question arising is: how are these dots distributed
on the square lattice? The answer is that the occupation status of any square on the lattice is inde-
pendent of the occupation status of the its neighbors, i.e. each square is randomly, independently,
occupied with a probability p, 0 < p < 1. That means, if we have N squares (with N being a very
large number) then the expected number of occupied squares is pN and the expected number of
unoccupied or empty squares are the remaining (1 — p)N.

We concentrate here with the case of random percolation. Each site of a very large lattice is occupied
randomly with probability p independent of its neighbors. Percolation theory deals with the clusters
thus formed.

'For obvious reasons the following figures will be of finite dimensions.



In Figure 2.3? we see an example of how percolation works on a two dimensional lattice. For small
values of the occupation probability (p = 0.15,0.30,0.45) some disconnected parts are distinguished
in the lattice, but for p > 0.59 we can see that one cluster extends from top to bottom and from
left to right of the lattice without intermediate gaps. We say that this cluster percolates through
the system. Near that concentration p., where for the first time a cluster is formed, a lot of peculiar
phenomena are observed. These aspects are called critical phenomena and the theory attempting to
describe them is the scaling theory.
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Figure 2.3: Example of site percolation

?Example generated with MATLAB®



2.3 Lattices

So far we’ve seen examples of percolation only on square lattices but in reality there are many
different lattices or other two or three dimensional structures (graphs in general) upon which we
study percolation phenomena. In two dimensions we also have the triangular lattice (Figure 2.4(a))
where every intersection of lines is a lattice site and the honeycomb (or hezagonal) lattice where the
centers of the triangles are lattice sites (Figure 2.4(b)).

e e e
' e’ e’
. e e
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(a) Triangular Lattice (b) Honeycomb Lattice

Figure 2.4: Other lattices in two dimensions

We defined the square lattice through the centers of the squares (Figure 2.5(a)). We could have also
defined it equivalently through the points where the lines cross (square corners) as in Figure 2.5(b).
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(a) Square Centers (b) Square Corners

Figure 2.5: Square Lattices

In three dimensions we have the simple cubic lattice (Figure 2.6(a)), the body centered cubic (BCC)
lattice (Figure 2.6(b)), the face-centered cubic (FCC) lattice (Figure 2.6(c)), the diamond lattice and
others. For dimensions higher than 3 we study the hypercubic lattice.
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(a) Simple Cubic Lattice (b) BCC: Body-Centered Cubic Lattice (¢) FCC: Faced-Centered Cubic Lattice

Figure 2.6: Cubic Lattices
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2.4 Site Percolation, Bond Percolation

For all the aforementioned lattices, each site is randomly and independently occupied with proba-
bility p,0 < p < 1 and empty (unoccupied) with probability (1 — p). Clusters are thus formed as
groups of neighboring occupied sites. So far we’ve defined site percolation. Its counterpart is called
bond percolation and its defined as follows. In bond percolation every lattice site is occupied. Each
line can be an open bond with probability p,0 < p <1 or a closed bond with probability (1 —p). A
cluster is then a group of sites connected by open bonds (Figure 2.7).

It has to be noticed that when measuring the size of a cluster, one has to define whether one counts
the site content or the bond content. For example the 3rd encircled cluster in Figure 2.7 consists of
two occupied sites connected with an open bond to each other and with closed bonds to all other
neighboring sites. This is called a cluster of size two in site percolation but it is called a cluster of
size one in bond percolation.

oo ﬁ?
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Figure 2.7: Bond percolation on the square lattice

2.5 Percolation Threshold

The percolation threshold p. is the critical fraction of lattice squares that must be occupied in order
to create a continuous path of nearest neighbors from one side of the lattice to the opposite side?.

e For all p > p. there is a cluster extending from one side of the system to the other, whereas

e for p < p. no such infinite cluster exists.

Computer simulations do not allow infinite computations, so essentially this is an asymptotic value.
Any effective threshold values obtained numerically or experimentally have to be carefully extrapo-
lated to infinite system size. The ideal case is when one has a mathematically exact calculation for
p. where no such extrapolation is needed. Mathematical methods to calculate the exact percolation
threshold are restricted to at most two dimensions because of our experience in the field of phase
transition where 3-dimensional problems in general cannot be solved exactly. The review of Essam
(1972), as well as Kesten (1982) explain how 2-dimensional thresholds can be derived mathematically
for many simple lattices. Progress is not easy in this field. For the square bond percolation problem,
it took about two decades from the first numerical estimates in 1960 to a mathematical proof that

3In random graphs this process is called the emergence of a giant component as we will see later in this text.
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18
for the triangular bond percolation, and p. = 1 —2sin {5 for the honeycomb bond percolation problem

(Table 2.1).

yield the exact threshold p. = % We also know p. = % for the triangular site percolation, p. = 2sin

Lattice Site Percolation Bond Percolation
Honeycomb 0,6962 0,65271
Square 0,592746 :
Triangular : 0,34729
Diamond 0,43 0,388
Simple Cubic 0,3116 0,2488
BCC 0,246 0,1803
FCC 0,198 0,119
d=4 Hypercubic 0,197 0,1601
d=5 Hypercubic 0,141 0,1182
d=6 Hypercubic 0,107 0,0942
d=7 Hypercubic 0,089 0,0787

Table 2.1: Site and bond percolation thresholds in different lattices

In all of the above examples clusters are defined as groups of nearest neighbors which are occupied or
connected with open bonds. One may allow next-nearest neighbors to form clusters, so in the square
lattice site percolation problem, diagonally occupied sites may also form clusters. One can also add
long range contacts (or shortcuts) in a lattice and then study percolation phenomena. In the latter
case, percolation thresholds tend to zero if the connection range goes to infinity. One may even get
rid of the lattice and look at circles distributed randomly on a piece of paper! Finally percolation
phenomena can be studied in many types of graphs as is the case with small-world networks where
in an initial ring lattice structure, long range contacts are introduced according to some probabilistic
experiment.

2.6 Exact Solution In One Dimension

The percolation problem in one dimension can be solved exactly and some aspects of that solution
seem to be valid for higher dimensions.

Consider an infinite long chain where lattice sites are placed in fixed distances (Figure 2.8). Each
site is occupied with probability p. A cluster is thus formed by successive occupied sites that have
no empty site between them. To separate one cluster from the other clusters formed in the lattice,
the left and right end neighbors of the cluster must be empty sites. As shown in Figure 2.8, the
central cluster consists of five occupied sites and the left and right neighbor sites of this cluster are
empty sites. As mentioned earlier each site is occupied with probability p, thus the probability of a
site being empty is (1 — p).

12
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Figure 2.8: Percolation clusters in an one dimensional lattice

Q Empty site

Since all sites are occupied randomly, and random percolation consists of statistically independent
events, the probability? of two arbitrary sites being occupied is p?, for 5 being occupied is p® and
for s sites being occupied the probability is p®. The probability of having an empty neighboring
site is (1 — p) and the events that the two ends of a cluster are empty are statistically independent,
therefore the total probability that a fixed lattice site is the left end of a 5-cluster is p°(1 — p)2.

The next step is to calculate the number of 5-clusters in the whole chain. If the total length of the
chain is L, with L — oo, much larger than the cluster length, then the total number of 5-clusters - if
we ignore the small number of sites at the end of the chain for which there is no place for 5 occupied
and 2 empty sites - is Lp®(1 — p)2. From now on it is practical to talk about the number of clusters
per lattice site, which is:

Total number of 5-clusters L pP(1 —p)? — (1= p)?
Lattice sites B L - P

This number is independent of the lattice size L and equals the probability that a fixed site is the

end of a 5-cluster. We can also generalize this number in the case of clusters of size s. We define ng
to be the number of clusters of size s per lattice site:

n, = p*(1 = p)? (2.1)

This normalized cluster number equals the probability in an infinite chain, of an arbitrary site being
the left end of the cluster. The probability that an arbitrary site is part (and not only the left end)
of an s-cluster is ngs, because now that site can be any of the s sites of the cluster. Moreover a single
occupied site with two empty neighbors is a cluster of size unity. Thus every occupied site in the
chain belongs to a cluster. The probability that an arbitrary occupied site belongs to any cluster, is
equal to the probability p that it is occupied, i.e.:

Y nss=p (p<pc) (2:2)
s=1

This can be also verified using a trick to calculate a sum by expressing it as a derivative

LS i@ =Y L), (2.3)
=1 =1

by the following simple proof:

4Using the product property of probabilities of independent events

13
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The last step is to calculate the percolation threshold. For p = 1 every site is occupied forming a
cluster of size L. For p < 1 a chain of length L will have on average (1 —p)L empty sites. As L — oo
at fixed p, (1 — p)L also tends to oo. Thus there will be at least one empty site somewhere in the
chain breaking the sequence of continuous occupied sites. In other words there is no one-dimensional
percolating cluster for p < 1. Therefore the percolation threshold is unity.

pczl

2.7 Average Cluster Size

So far we know that the probability that an arbitrary site (occupied or not) belongs to a cluster
of size s is ngs and the probability that an arbitrary site belongs to any finite cluster is Yo | ngs.
Therefore the probability that the cluster to which an occupied site belongs contains exactly s sites
is:

NgS
o0
ZS:]. nss

Now we can define the mean cluster size S as the probability of hitting some cluster site. We can

(2.4)

Ws =

calculate the mean cluster size S explicitly:

S:iws (24)Z cczns 2.1) Zp (1-p
s=1 ZS 178 s=1
_(1—]7)2 - 2.5 _p 2,5 s S
= sp—ip ZSP sp +ZSP
= s=1 s=1

o
= (1?))2 <p2 28(5 ~L)p*? +p§sp5‘1> = (1;@2 <p2§; dz(p:) +p§; dg))
ST e B > ) LS S L B> 2L
_a ;p)2 <p2d2£l;:p) +pd((1i;p)> _a ;p)2 <p2d(%;1§)z) . _1p)2>

= ) T T e (29

The mean cluster size diverges as we approach the percolation threshold. If there exists an infinite
cluster above the threshold, then slightly below there exist very large (finite) clusters. This implies
that slightly below the threshold, a suitable average over these clusters is also getting very large.

14



2.8 Percolation In 2 Dimensions

Calculating the exact percolation threshold in one dimension was quite an easy task, but we cannot
apply the same principles in higher dimensions. Consider a square lattice as in Figure 2.9.

The probability that an arbitrary occupied site
is a cluster of size 1 is: ny = p(1 — p)*, where

p is the probability of the site being occupied,
(1 — p)* is the probability that its four nearest @E

neighbors are empty and the occupation status

of these five sites happens independently. We @
[

.

can easily calculate the average number of clus-

ters of size 2 per lattice site. That is: no =

2p2(1 — p)b, where p? is the probability of two
sites being occupied, (1 — p)® is the probability
their six nearest neighbors being empty, the oc- Figure 2.9: Clusters of sizes 1 and 2
cupation status of these sites happens indepen-

dently and the pair can be oriented either horizontally or vertically, i.e. we have two configurations of
a cluster of size 2 (Figure 2.9). For higher cluster sizes it is not easy to calculate their average number
and that is because there are plenty of cluster configurations (different shapes and various rotations)
called lattice animals®. For example in Figure 2.10 there is a list of the 19 cluster configurations on
the square lattice for s = 4 along with their correspondent probabilities.

Configurations: 2 8 4 4 1
o
° o o o
[ I
° o [ BN [ I
[ I
[ I o o
o
Probability:  2p*(1 — p)!° 8p*(1 — p)? 4p*(1 — p)® 4p*(1 — p)® p*(1 —p)?

Figure 2.10: Cluster configurations and probabilities for s = 4

Thus the average number of clusters of size 4 is:

ny = 2p*(1 —p)'* + 8p*(1 — p)? + 4p*(1 — p)® + 4p*(1 — p)® + p*(1 — p)®

For s = 5 there exist 63 configurations and up to s = 24, on the square lattice, there are approxi-
mately 10'3 configurations so it is not effective to count these cluster animals. Instead, we classify
them according to the number of empty neighbors each of them has. The number of empty neighbors
of a cluster, denoted by t, is called its perimeter. The number of lattice animals with size s and
perimeter ¢ is denoted by gs:. Now we can express the average number of clusters of size s per lattice
site as:

ns =Y gup’(1-p)* (2.6)

®As they are named in [29]

15



This formula ia valid for every type of lattice. The difficult part is to calculate gg, i.e. finding all
possible configurations and analyze them. That is why, for general s and ¢, the percolation problem
has not yet been solved exactly.

Instead, we have approximate solutions using asymptotic values on the quantities involved. For

instance, the perimeter ¢, averaged over all configurations of a given size s, seems to be proportional

to s, for s — co. Therefore we can classify these configurations according to the ratio o = £. For

S
— . . . . . atl
a < 1pf’c, the number of lattice animals gg (of size s and perimeter ¢) varies as [%]S for large

s. Hence the total number of cluster animals, of size s, gs = Y, gst increases exponentially with s:

9¢5 where ¢ = constant. In 2 dimensions # = 1, in 3 dimensions § = % and for dimensions

gs X 8~
> 3 we have 6 = g Now from Equation 2.6 we have that the averages over clusters of a fixed size
s, correspond (in the limit p — 0) to averages over lattice animals, since the factor (1 — p)! tends to
unity and thus can be omitted.

16



Models Of The Small-World

3.1 Milgram’s Experiment

One of the first quantitative studies of the structure of social networks was performed in the late
1960’s by a Harvard social psychologist named Stanley Milgram [16]. Milgram was interested in the
average distance between two people and conducted the following experiment:

Milgram distributed letters addressed to a stockbroker acquaintance of his in Boston, Massachusetts,
to few hundred randomly selected people in Omaha, Nebraska, considering Boston to be the farthest
destination from Nebraska. The letters, targeting the stockbroker in Boston, were to be sent from
people of Nebraska to people they knew on a first-name basis. The best strategy was to sent the
letter to a person one thought was closer in some social sense (maybe a stockbroker in Boston or a
friend in Massachusetts) to the stockbroker in Boston. Meanwhile Milgram was receiving copies of
the letters informing him of the intermediate steps the letters followed. The result was that thirty five
percent (35%) of the letters reached their destination and the median number of steps these letters
took was 5.5 rounding up to 6. A large fraction of the letters never reached their destination and
were discarded from the computation of the average distance, so the ones reached their destination
only provide an upper bound on the distance.

Though it was implicit in his work, Milgram did not use the term “six degrees of separation”. This
term was introduced by John Guare in his play titled “Six Degrees of Separation”. A character in
the play claims that:

...Everybody on the planet is separated only by six other people. Six degrees of separation.
Between us and everybody else on the planet. The president of the United States. A
gondolier in Venice...It’s not just the big names. It’s anyone. A native in a rain forest.
A Tierra del Fuegan. An Eskimo. I am bound to everyone on this planet by a trail of

17



six people. It’s a profound thought.

Milgram generalized the results of his experiment to connect with a chain of six any two randomly
chosen people from anywhere in the world. This result is referred to as the small-world phenomenon.
In a second study, Milgram [14] used essentially the same method to examine the distance of whites
in Los Angeles and a mixed white-black target population in New York, and found similar statistics.

Later in 1997, Tjaden and Wasson studied the least distance in the actors graph (The Oracle Of
Bacon - http://oracleofbacon.org/). The actors graph linked with an edge any two actors (actresses)
appearing in the same movie. The objective was to find the shortest paths between any two actors
in the graph. This could be done efficiently by using Kevin Bacon as an intermediate step. This
strategy lead to the concept of a “Bacon number”, meaning the number of links of the shortest path
connecting any actor to Kevin Bacon. The distribution of Bacon numbers given in the following
table shows that most actors have a small Bacon number:

Bacon number 0 1 2 3 4 5 6 7 8
Number of actors || 1 1673 130.852 349.031 &84.615 6.718 788 107 11

Table 3.1: Bacon number distribution

The mean distance from Kevin Bacon (as computed using the values from the above table) is 2,94,
thus any two actors can be linked by a path through Kevin Bacon in an average of 6 steps.

Albert Barabasi and his collaborators, studying the same problem, computed the average distance
from each person to all of the others in the actors graph and they found that Rob Steiger, with an
average distance of 2,53, was the best choice for an intermediate while Kevin Bacon was found in
the 876th place...

Another example of a small-world network is the collaboration graph of mathematics, in which two
people are connected if they co-authored a paper. This graph, constructed by Jerrold Grossman [11]
in 1997 has 337.454 vertices (84.115 of them isolated) and 496.489 edges. Discarding the isolated
vertices the remaining graph has a giant component with 208.200 vertices and 16.883 components
with 45.139 vertices. The best intermediate here is Paul Erdds, who wrote more than 500 papers
with more than 500 co-authors. The average Erdos number is 4.7 while the largest Erdos number
is 15. Based on a random sample, the average distance between two authors was estimated at 7,37.
(These numbers are most likely to change, because in the 1940’s 91% of papers in mathematics had
only one author, while in the 1990’s only 54% did.)

Similar studies that were conducted by Tom Remes in 1997 for baseball players who have played on
the same team and by the New York Times (Kirby and Sahre, 1998) with the names of those who
had tangled with Monica Lewinsky, also confirmed the surprising result of six degrees of separation.

Besides social networks, small-world properties have also been shown for other networks [32] such

as the neural network of the worm Caenorhabditis Elegans (or abbreviated as C.Elegans), where an
edge joins two neurons if they are connected by a synapse or a gap junction, the neural network of
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the cerebral cortex, as well as the power grid of the western United States, where vertices represent
generators, transformers and substations and edges represent high voltage transmission lines between
them. Another example of network exhibiting the small-world properties is the World Wide Web
studied by Barabasi and Albert [3] and Barabéasi, Albert and Jeong [15] whose vertices are docu-
ments and whose edges are links. They estimated that the average distance between vertices scaled
with the size of the graph as 0.35 + 2.06logn, thus for n = 8 x 10® web pages they obtained 18.59,
meaning that any two randomly chosen web pages are on average 19 clicks away from each other.

So far we presented examples of networks showing the small-world properties and reviewed some
of their interesting statistics but the small-world phenomenon has not yet been defined precisely.
In other words we don’t have a specific set of rules a network must obey in order to exhibit the
small-world behavior. A first observation is that small-world networks have similar properties with
random graphs and to better understand the models of the small-world, some elements of graph
theory [8] and random graphs [7]| will be inserted here.

3.2 Graph Theoretic Preliminaries

3.2.1 Basic Definitions

Definition. A graph is a pair G = (V, E) of sets satisfying £ C [V]?,V N E = (). The elements of
E (edges or bonds) are 2-element subsets of V' (vertices or nodes or sites).

The number of vertices if a graph G is it’s order and is denoted by |G|. Graphs are finite or infinite
according to their order. The number of edges of a graph G is called the size of the graph and is
denoted by [|G]|.

Definition. A multigraph is a pair (V, E) of disjoint sets (of vertices and edges) together with a
mapping £ — V U [V]? assigning to every other edge either one or two vertices, its ends. Thus
multigraphs can have loops and multiple edges.

Let G = (V, E) be a non-empty graph. The set of neighbors of a vertex v in G is denoted by I'¢(v).
More generally, for U C V| the neighbors in V' \ U of vertices in U are called neighbors of U and are
denoted by I'(U).

Definition. The degree gz(v) = d(v) of a vertex v is the number |E(v)| of edges at v (not for
multigraphs) and this equals the number of neighbors of v. A vertex of degree 0 is isolated.

Definition. Minimum-Mazimum degree, reqular graph, complete graph.

e The number 0(G) = min{d(v) | v € V'} is the minimum degree of the graph G.

e The number A(G) = max{d(v) | v € V'} is the mazimum degree of the graph G.

If all vertices of G have the same degree k, then G is k-regular or just regular.

If all the vertices of G are pairwise adjacent, then G is complete.

A complete graph on n vertices is a K, and has exactly (g) = "(nQ_l) edges.
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e The number d(G) := ‘—1| > vev d(V) is the average degree of V.

o Clearly 5(G) < d(G) < A(G).

Definition. The coordination number z of a vertex v is the number of edges that have v as an end-
point. The coordination number of a vertex v differs from it’s degree only in the case of multigraphs,
otherwise it is the same.

Definition. The degree sequence of an undirected graph is the non-increasing sequence of its vertex
degrees. The degree sequence is graph invariant so isomorphic graphs have the same degree sequence.

3.2.2 Characteristic Path Length

A path is a non-empty graph P(V, E) of the form V = {z¢, x1,..., 2}, E = {xoz1, 2122, .. . T)_ 17K}
where the x;’s are all distinct. The vertices zg and zj that are linked by P are called its ends and
the vertices x1,...,x;_1 are called the inner vertices of P.

Definition. The length of a path is the number of its edges. A path of length k is denoted by P*.

If P=xg...25_1 is a path and k > 3 then the graph R := P + x_12x¢ is called a cycle or a ring.
The length of a ring its number of edges (or vertices). The ring of length k is denoted by Rj.

Definition. A non-empty graph is called connected if any two of its vertices are linked by a path in

G.

Definition. The distance dg (v, u) between two vertices v and wu is the length of the shortest v — u
path in G. If no such path exists, we set dg(v,u) := co.

Definition. The diameter of a graph G is the maximum distance between any two vertices in G
and is denoted by diam(G).

As we’ve seen so far, researchers of small-world networks were mostly interested in the average
distance in a graph rather than the mazimum distance, i.e. the diameter. The computation of
a closed form expression for the average distance is restricted to connected graphs because of the
obvious problems imposed by the infinite path lengths in disconnected graphs.

Definition. The characteristic path length of a graph G, denoted by L(G) or just L, is the average
distance between any two vertices of G.

The above definition implies that one has to calculate first the shortest path lengths for each vertex
v € V to every other vertex in the graph. That is to calculate d(v,u),Vv,u € V(G),v # u and then
find d, for every v € V(G). Finally, the characteristic path length is the median of all {d,}. As
mentioned before, for various classes of graphs it is difficult to find a closed form expression for the
characteristic path length so one has to resort to the explication of upper and lower bounds upon
this quantity.
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3.2.3 Characteristic path length L of regular lattices

Consider a regular lattice with n vertices where each vertex is connected to all of it’s neighbors at
distance at most k. That is to say we have a 2k-regular lattice G of n vertices. It suffices to find the
average d(v,u),Vv,u € V(GQ),v # u for some vertex v € V(G), since d, is the same for all vertices
in V(G). Starting from vertex v, there are 2k vertices for which there exist shortest paths of length
1 to v, 2k vertices for which there exist shortest path of length 2 to v, and so on, until we visit all
n — 1 vertices of the graph. These exist unique integers ¢ and r such that n — 1 = 2k - ¢ + r with
0<r<2kandq= L”Q—jclj, meaning that there are 2k vertices at distance L"Q—*klj from v and the
remaining (if any) r = rem(n — 1, 2k) vertices will be at distance | %52 ] + 1 from vertex v. Therefore,
the characteristic path length of a 2k-regular graph, as a function of n, k, is:

n—1
2T it (g + )

L(n,k) : p—]

. 0<r<2k (3.1)

Example. Consider a regular lattice with n = 24 vertices and k¥ = 3 as in Figure 3.1, and a
vertex v € V(G). There are 2k = 6 vertices at distance 1 from v, the next 6 vertices are at
distance 2 from v and the next 6 vertices are at distance |%1] = [2] = 3. The remaining

r=rem(n — 1,2k) = rem(23,6) = 5 vertices will be at distance %2 | +1=[2]|+1=4.

TN
eSO N
Binocatacty

Figure 3.1: A regular lattice with n = 24 vertices and k = 3

Therefore the characteristic path length in this particular graph is:

P 23 3
6-3 0 i+5-([2]+1) 6-3%,i+5-(3+1) 56
L(24,3) = S 2imn = S+ _ Zz—”;g 8+ ):23m2,4348

In Figure 3.2 we can see the plot of Equation 3.1 (generated with MATLAB®) for lattices with
n = 1...100 vertices and different values of k, varying from 1 to 20. It’s easy to see that the

characteristic path length grows linearly with the number of vertices and drops as k takes higher
values.
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Characteristic path length of regular lattices
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L(n,k) — Average path length
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Figure 3.2: Characteristic path length of regular lattices (n =1...100,k = 1,2, 3,4, 5,20)

3.2.4 Clustering Coefficient

Another essential property of small-world networks is its clustering. In social networks, clustering
is interpreted as the tendency of one person’s circle of acquaintances to overlap. A person’s friends
are most likely being friends with each other. As a result, social networks, and therefore small-world
networks, present some level of cliquishness which can be measured by a quantity defined as the
clustering coefficient [31]. The concept of clustering coefficient has its roots in sociology, appearing
under the name “fraction of transitive triples" [30].

Definition. The clustering coefficient C, of the neighborhood I'¢(v) quantifies the extend to which
vertices adjacent to any vertex v are adjacent to each other. More precisely:

_ [ETc(v))|

Co = (Te (3:2)

where |E(T'¢(v))] is the number of edges in the neighborhood of v, and (‘F%(”)') is the total number

of possible edges in I'(v).

Given |I'g(v)| vertices, there can be at most ('FGQ(”)‘) edges between them. Hence C,, is the fraction

of the edges that actually occur in the neighborhood of v divided by the number of all edges that
could possibly exist, i.e. as in the complete Kp () subgraph. Equivalently, C, is the probability
that two vertices in I'g(v) will be connected by a path.

Example. Suppose we want to compute the clustering coefficient of vertex v in Figure 3.3.
We have I'g(v) = {v1,v2,v3,v4}, [Tg(v)| = 4 and |E(Tg(v))| = 3 as we can see from Figure 3.3.
Therefore the clustering coefficient of vertex v is:

¢, = ECa)] _ 3 1

(|FG2(U)|) 3 2
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U1

U2

V4 U3

Figure 3.3: Clustering coefficient computation in a graph G

Clustering coefficient - example graphs

By its definition, a clustering coefficient takes values between 0 and 1.

e (U, = 0 for a vertex v implies that the neighbors of this vertex have no edges between them.
This is expected when v is the center of an asterisk as in Figure 3.4(a).

e (, =1 for a vertex v implies that every neighbor of v is connected to every other neighbor of
v thus forming the complete subgraph as in Figure 3.4(b).

(a) (b)

Figure 3.4: Examples of (a) C, =0 and (b) C, =1

Definition. The clustering coefficient of a graph G is C = C, averaged over all vertices v € V(G).

e (' =1 would imply that the corresponding graph consists of ﬁ disconnected, but individu-
ally complete subgraphs (Figure 3.5(a)) or that the whole graph is a clique (Figure 3.5(b)).

e (' = 0 would imply that no neighbor of any vertex v is adjacent to any other neighbor of v,
thus we expect to see a tree-like structure as in Figure 3.6 and / or isolated vertices.
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Figure 3.5: Graphs with clustering coefficient C' =1

Figure 3.6: A graph with clustering coefficient C' = 0

3.2.5 Clustering coefficient C in regular lattices

For regular lattices we have an exact calculation of the clustering coefficient C' which is a function
of the degree (coordination number) z of the vertices. Consider a one-dimensional lattice of infinite

length.
e For z =2,(k =1) (Figure 3.7) we have C' = 0. It is obvious that the neighbors of each vertex
are not connected with each other.
z2=2

v

Figure 3.7: A one-dimensional lattice with each site connected to its 2 nearest neighbors

e For z =4, (k = 2) (Figure 3.8) we have:

o BT _ =2+ (-3
) 8

e For z =6, (k = 3) (Figure 3.9), we have:
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"""" (z-3) edges

----(z-2) edges

——————— (z-4) edges

""""" (z-3) edges

----(z-2) edges
Figure 3.9: A one-dimensional lattice with each site connected to its 6 nearest neighbors

e ... and so on. For general z we have:

=2+ (-3)+ +-G+)] T i) - (-1

() () ()

Cy =

D e S M B e VR R I ey s ) NN 1 )
B GD) T A1)
(:-2)

=) As z — 00, the clustering coefficient

[N

Averaged over all nodes of the lattice we have C' =
C tends to %.

3.2.6 Degree Distribution

One additional property small-world networks have, is related to the distribution of the degrees of
the network.

Definition. The degree distribution P(k) of a network is defined as the fraction of nodes in the
network with degree k. Thus if there are n nodes in total in a network and nj of them have degree
k, we have P(k) = “k.

n

For example, in a random graph model where each edge is present with probability p (and absent with
probability 1 — p) the probability that a certain node has degree k follows the binomial distribution:

k

This probability represents the number of ways in which k edges can be drawn from a certain node:

P(ki = k) = (n N 1)19’“(1 —p)"

the probability of k edges is p¥, the probability of the absence of additional edges is (1 —p)"~'~* and
there are ("gl) ways of selecting the k£ end points for these edges. To find the degree distribution
of the network we need to study the number of nodes X with degree k. We will focus on the
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probability that X} takes a certain value, i.e. P(Xjp = r). The expected number of nodes with
degree k is F(Xy) = nP(k; = k) = A, thus the distribution of the X} values approaches a Poisson
distribution with mean value \j:

AT
P(Xp=r)= e_)"cr—]!C
We could say that Xj does not diverge much from the approximative result X, = nP(k; = k)
which is valid only if nodes are independent. Thus with a good approximation we can say that the
degree distribution of a random graph is a binomial distribution P(k) = ("gl)pk(l —p)" 17 which
for large n can be replaced by a Poisson distribution P(k) ~ e*p"%. Both binomial and Poisson

distributions are strongly peaked about the mean pn and have a large k-tail that decays rapidly as %

However real world networks are mostly found to be very unlike the random graph in their degree
distribution. The degrees of the vertices of most networks are highly right skewed which means
that their distribution has a long tail of values that are far above the mean [17], [24]. Since the
direct histograms are rather noisy, there are two ways to construct a plot of the degree distribution:
One way is to construct a histogram in which the bin sizes increase exponentially with degree. For
example, the first few bins might cover degree ranges (1, 2-3, 4-7, 8-15 and so on) and then the
number of samples in each bin is divided by the width of the bin to normalize the measurement.
This method is used when the histogram is to be plotted with a logarithmic degree scale, so that the
widths of the bins will appear even. The other way is to make a plot of the cumulative distribution
function:

Pk = Z pki (3.3)
ki=k

which is the probability that the degree is greater than or equal to k. It’s been shown that for some
real world networks the plot of the cumulative distribution function of the degrees is right skewed
indicating that the degree distribution approximately follows a power law

Ppn Y ko k07D (3.4)
ki=k

for some constant exponent a. Such networks are called scale-free networks. We can construct
networks with a desired power law degree distribution using the following method. We draw a
degree sequence {k;} directly from a distribution and we give each vertex ¢ a number k; of stubs -
ends of edges emerging from a vertex. Then we choose pairs of these stubs uniformly at random and
join them together to make complete edges (Figure 3.10). When all stubs are used (we restrict their
number to be even), the resulting graph is a random member of the ensemble of graphs with the
desired degree sequence.

Examples of scale free networks are the citation networks, the World Wide Web, the internet,
metabolic networks, telephone call graphs etc.

26



w

Tougey

3 % 1
3
Q 4 3
3 3
Degree ditribution as ”stubs” Complete graph

Figure 3.10: Graph construction with a fixed degree sequence

3.2.7 Restrictions

So far we’ve given definitions and properties of graphs that enable us to represent systems in great
detail. However from now on, the class of graphs to which we’re interested in, conforms to the

following restrictions:

e Unweighed: Edges have no weight, meaning that all edges are equivalent and equiprobable
as we will see later in random graph models.

e Simple: Loops and multiple edges between two vertices are forbidden unless stated otherwise.

e Sparse: For an undirected graph, the maximal number of edges is that of the complete graph,

ie. E(G) = (g) = n(”g_l). The number of edges m in a sparse graéphlis much less than the
n—

number of edges of the corresponding complete graph. Thus m < nT
e Connected: Any vertex can be reached from any other vertex by traversing a path whose
length is finite.

The aforementioned assumptions form a starting point for modelling networks and while they sim-
plify the resulting analysis, they still allow meaningful questions to be asked of a network as a whole.
However, the study of small-world networks requires the introduction of new definitions and termi-
nology as well as probabilistic techniques used in the analysis of random graphs. Thus it is important
to extend our framework to include definitions and properties from random graph theory that will
help us understand the dynamics of small-world graphs.

3.3 Random Graph Preliminaries

Random graph theory was developed in the late 1950s and early 1960s in a series of papers by Erdos
and Renyi [9, 10]. Most of this material is included in Bollobés’ standard text [7] published in 1985.
It is often helpful to imagine a random graph as a living organism which evolves with time. At first
there are n isolated vertices and the edges are added one by one, at each step, according to a random
experiment. The nature of this random experiment defines the different classes of random graphs.
One objective of random graph theory is to determine at what stage of the evolution, a particular
property of a graph is likely to arise.
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3.3.1 The Basic Models

Here we will introduce two of the most frequently encountered probability spaces (models) of random
graphs. In most cases we consider graphs of n vertices and take V' = {1,2,...,n} to be vertex set.
The set of all such graphs will be denoted by G".

Definition. Consider V(G) = {1,2,...,n} to be the vertex set. G(n, M) is a random graph model
that consists of all graphs with vertex set V having M edges, in which all the graphs have the same
probability.

Thus if N = (3), 0 < M < N and G(n, M) has (Aj\;) elements, then every element occurs with
probability (Aj\;)_l

Definition. The model G{n, P(edge) = p} (or abbreviated as G(n,p)), consists of all graphs with
vertex set V' = {1,2,...,n} in which every one of the possible (g) edges is chosen independently and
with probability p,0 <p < 1.

In other words if Gy is a graph in G(n,p) with vertex set V' and m edges, then:

P({Go}) = P(G = Gp) =p™(1 _p)N—m

The two models (G(n, M) and G(n,p)) are practically interchangeable provided that M ~ pn. It is
easier to prove theorems in G(n, p) because the edges are independent whereas in G(n, M) (where the
total number of edges is fixed) there is some dependence of an edge being chosen based on previous
choices. This dependance is small, however, and does not affect any important results, so from now
on both models will be referred to as random graphs.

3.3.2 Properties Of Random Graphs

Random graph theory defines the conditions under which graphs in G(n, M) and G(n,p) posses a
given property @, usually in the limit of n — oo.

Definition. We call a subset Q of G (G(n, M) or G(n,p)) a property of graphs of order n. If
GeQ®,HeGand G~ H, imply that H € G.

We are mostly interested in the fact that a property @ is a subset of G, thus the statement “G has @”
is equivalent to G' € Q). Examples of such properties are: “G is Hamiltonian”, i.e. the set {G € G: G
is Hamiltonian} or “G is connected” is the set {G € G : G is connected }.

Definition. A property @ is said to be monotone increasing (or simply monotone) if whenever
G € @ and G C H then also H € Q.

For example the property of a graph containing a certain subgraph, for instance a triangle, is mono-

tone increasing.

Now let €, be a model of random graphs of order n (2, = G(n, M) or Q,, = G(n,p)). We shall say
that “almost every” (a.e.) graph in ,, has a certain property @ if P(Q) — 1 as n — oco. Instead of
“almost every” we shall sometimes use “almost all” (a.a.).
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A random graph process on V= {1,2,...,n} or simply a graph process is a Markov chain G = (Go)ee,
whose states are graphs on V. The process starts with an empty graph (isolated vertices) and for
1<t < (g) the graph G} is obtained from G;_; by the addition of an edge, all new edges being
equiprobable. Then G} has exactly t edges, thus for t = (g) we have Gy = K,,. For t > (g), Gy =K,

as well.

Another different approach to random graph processes is that of being a sequence (G¢)Y = 0 such
that:

e Each G, is a graph on V.
e (G; has t edges with t =0,1,..., N, and
e GoCcGiC...

We call Gy the state of the process G = (G¢)) at time t. Intuitively, we think of the process G
as a living organism which develops by acquiring more and more edges randomly. What we are
interested in is to find at what stage of the evolution does a certain property appear. Erdds and
Renyi discovered that most monotone properties appear suddenly: for some function M = M (n)
almost no Gy has @, while for “slightly” larger M almost every G has Q.

Definition. Given a monotone increasing property @, a function M*(n) is said to be a threshold
function for Q if:

. % — 0 implies that almost no Gjs has @, and

. %(72) — oo implies that almost every Gy has Q.

Definition. Suppose @ is a monotone property of graphs. The time at which @) appears is the
hitting time of Q:

7 =19 = 7(G) = min{t > 0 | G; has Q}.

3.3.3 Probability generating functions

Some properties of random graphs can be described with the use of generating functions [33]. A
probability generating function is an alternative representation of a probability distribution. For
example, let pr be the distribution of vertex degrees in a graph. The corresponding generating
function is:

Go(z) = Zpkxk.
k=0

Derwatives. This function encapsulates all the information in the original distribution pg, since we
can recover p from Go(x) by simple differentiation:

~ 1d°Go
k! dak

Dk
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One useful property of generating functions is that if the distribution they generate is properly

normalized, then:

Go(1) =) pp=1.
k

Moments. With generating functions we can easily calculate the mean of the distribution directly
by differentiation:

Gy(1) = 3 ki = (k).
k

In general, we can calculate any moment of the distribution by taking a suitable derivative:

(k") = ij E'pr = [<$;x>nGo(l‘)]$l.

Powers. The last and most important property is that if a generating function generates the proba-
bility distribution of some property k of an object, then the sum of that property over m independent
such realizations of that object is generated by the mth power of the generating function.

Example. Suppose we choose m vertices at random from a large graph. Then the distribution of
the of the sum of the degrees of those vertices is given by the mth power of the generating function,
i.e. [Go(z)]™. To see this we expand the square of the the generating function:

2
Gola))? = {Zpkxﬂ
k
=> pipra’ "
ik
=popoz” + (pop1 + p1po)x' + (Pop2 + pip1 + P2p0)x? + (Pops + P12 + P2p1 + papo)r® + ...

The coefficients of the powers of 2" in this expression are the sum of all products p;p; such that
J + k = m, hence the probability that the sum of the degrees of the two vertices will be m. This
property extends to higher powers of the generating function.
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3.4 Models Of The Small-World

What is the connection between random graphs and small-world networks? The most essential prop-
erty of small-world networks is the small characteristic path length (average distance between any
two nodes in the network). Random graphs have also small characteristic path lengths [21]. If a
person A on a random graph has z neighbors and each of A’s neighbors has also z neighbors, then
A has 22 second neighbors. Extending this argument, A has z3 third neighbors, z* fourth neighbors
and so on. Assuming that a person has between 102 and 10% acquaintances, z* is on the order of 108
to 10'2 which is approximately the population of the world. The diameter D can be computed as
2P =Nor D= llgif‘z’ . The logarithmic increase in the diameter D is typical of the small-world effect.
Moreover as N increases, log N increases only logarithmically, which means that even for very large

N the diameter will remain a small number. Another essential property of real world networks (such
as the world wide web and the internet) is that they appear to have power law degree distribution
and not binomial or Poisson as is the case with Erdés-Rényi random graphs. This means that a
small but non-negligible fraction of the vertices in these networks has a very large degree, which has
a great effect in the behavior of these networks.

Based on experimental data, real world networks appear to have small-world properties. Our goal is
to construct such networks. This construction cannot be based entirely on random graphs. Even if
random graphs have small characteristic path lengths (also increasing at most logarithmically with
the number of nodes of random graphs), they do not show clustering. Two friends of a person A are
most likely being friends with each other, while in random graphs this probability is the same as the
probability of two randomly chosen people being friends with each other. For a random graph the
clustering coefficient equals C' = % which is very small for large networks. Watts & Strogatz [32]
calculated the values of the clustering coefficient Cy1yq; and the characteristic path length Lgepyqr for
three different networks: the graph of film actors, the neural network of the worm C.Elegans and the
Western Power Grid of the United States. They also calculated the values Ciqndom and Lygndom Of
the corresponding random graphs with the same number of vertices as the aforementioned networks.

Network N ‘ z ‘ Lactual ‘ Lrandom ‘ Cactual ‘ Crandom

Actors Graph | 225.226 | 61 | 3.65 2,99 0,79 | 0,00027
Power Grid 4941 | 2,67 | 18,7 124 | 0,080 | 0,005
C.Elegans 282 14 | 2,62 2,25 0,28 0,05

Table 3.2: Empirical examples of small-world networks

All three networks listed on Table 3.2, exhibit the small-world phenomenon:

Lactual 2 Lrandom but Cactual > Crandom~

These results suggest that random graphs do not match well the properties of real world networks
so it is necessary to find a way of generating graphs that have both properties: small characteristic
path length and clustering.
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3.4.1 The Watts & Strogatz Small-World Rewiring Model

The first model, proposed by Watts & Strogatz in 1998 [32], interpolates between regularity (lattice)
and disorder (random graph). The procedure for generating such graphs is the following:

e We start with a one dimensional lattice, where each site is connected to all sites at distance at
most k. Thus each site has 2k neighbors, i.e. the initial average coordination number of the
graph is z = 2k. This construction (Figure 3.11) shows the clustering property: for £ > 2 the
neighbors of one site are also neighbors of one another.

Figure 3.11: A one-dimensional lattice with each site connected to its 6 nearest neighbors

e We apply periodic boundary conditions to the lattice, so that it wraps around on itself (Fig-
ure 3.12) in a ring of n sites (R,,).

Figure 3.12: A ring lattice with n = 24 sites and 2 =6

e Finally, we choose a site and an edge that connects it to its nearest neighbor in a clockwise
sense. With probability ¢, we reconnect this edge to a site chosen uniformly at random over
the entire ring, with duplicate edges forbidden. We repeat this process until every site of the
ring is considered once. Next we consider the edges that connect sites to their second-nearest
neighbor clockwise. We rewire each of these edges with probability p and continue this process
until every site is considered once, and so on until every edge is considered once. Since the ring

nz 4

lattice has %5 edges, the rewiring process will terminate after 5 steps. (Figure 3.13)
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Figure 3.13: The Watts-Strogatz model after rewiring a small fraction of links

Watts & Strogatz showed that for intermediate values of ¢, the resulting graph is a small-world
network. First of all we consider sparse graphs with the least possible number of edges thus we
require n > zlnz > 1, where the condition z > Inn guarantees that a random graph will be
connected.

e As ¢ — 0 we have C' ~ % and L ~ 5z > 1, which means that we have a highly clustered graph
but with very large characteristic path length that grows linearly with n.

e As ¢ = 1, C = Crandom ~ = < 1 and L = Lyandom ~ Inn thus we have a poorly clustered

Inz’
small-world where L grows only logarithmically with n.

For some broad interval of p we can achieve the desired properties for a small-world network:
L ~ Lygndom and C > Chrandom- The immediate drop of L is caused by the introduction of a
few long-range contacts or shortcuts. For small p, each shortcut has a highly non-linear effect on L
whereas C remains practically unchanged. Watts & Strogatz also showed by numerical simulation
that L =~ Lygndom. For example a random graph with n = 1000 and z = 10 has L,qndom = 3, 2.
The corresponding ring lattice Ripgo has L = 50. Applying the rewiring model into this ring with
probability p = % we have L = 3,6 which is only slightly larger than L,qngom. Thus the Watts &
Strogatz small-world rewiring model appears to show both properties simultaneously: high clustering

and small average vertex-vertex distance.

Though the rewiring model has the desired properties for a small-world network, it also has a number
of problems. The first problem is that the distribution of shortcuts in the graph is not completely
uniform. With duplicate edges forbidden, the new positions for the rewired edges are not all equiprob-
able. Thus this non-uniformity of the distribution imposes us to work with the average over different
realizations of the randomness, a task difficult to perform.

The second problem is that during the rewiring process the graph might become disconnected. In
that case, distances between the vertices that belong to the disconnected components of the graph
are infinite and as a result the characteristic path length of the whole graph becomes infinite. For
numerical studies this doesn’t appear to be a problem but for analytical work a number of quantities
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and expressions are poorly defined. These issues are resolved by a slight modification of the rewiring
model.

3.4.2 The Newman-Watts Small-World Model

M. E. J. Newman & D. J. Watts [27] proposed an alternative model: instead of rewiring edges we
simply add shortcuts between pairs of vertices chosen uniformly at random from the ring lattice. In
this model duplicate edges and edges that connect a vertex to itself are allowed and no edges are
removed from the regular lattice (Example in Figure 3.14).

Figure 3.14: A small-world graph with 5 shortcuts added (n = 24 and k = 3)

For each vertex from the regular lattice we add with probability ¢ one shortcut so that there are
¢n shortcuts on average. The initial average coordination number for the regular lattice is z = 2k.
Adding shortcuts in the lattice means that a vertex has more endpoints of edges, so the new value
of the coordination number becomes:

Total number of edges -2 (kn + k¢n) - 2
& Total number of vertices n (1+9)

This model is easier to analyze because it is not possible to split the graph into disconnected compo-
nents. It has been proved [6] that the characteristic path length L obeys the scaling form L = f-F(%),
where F'(z) is a universal scaling function of its argument z, and & is a characteristic length-scale
for the model which is assumed to diverge in the limit for small ¢. Newman & Watts showed that
the variable £ is given by & = # for the one-dimensional model. Though it seems that the charac-
teristic path length depends on three parameters (n,z and ¢) it is actually determined by a single
scalar function of a single scalar variable. For & > 1, where it is safe to ignore the scaling in the
size of the underlying lattice, and for small ¢, i.e. when most of a person’s acquaintances are local
and only a few are long-range, then if we know the form of the scaling function we can thoroughly
analyze the model. Newman et al. [25] have calculated the form of the scaling function F(z) using
a mean-field-like approximation method which is exact when x % 1. That is:
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F(z) = 4 tanh~! —©—
vVl + 4z Va2 + 4z’

but exact analytical calculations for the characteristic path length have been proven very difficult
for this particular model. Another problem is the distribution of path lengths in the small-world
model. This distribution can be used to provide a simple model of the spread of a disease in a
small-world. Newman et al. used the mean-field approximation method to solve this problem too,
so for the small-world model with uniformly added shortcuts we have solutions for both the bond
and site percolation problems.

3.4.3 Other Models Of The Small-World

Although most research is concentrated on the two aforementioned models, a number of other small-
world models have been proposed. It is interesting to see three of these models and investigate some
of their properties.

A small-world model with a few highly connected sites

Kasturirangan [12| argued that the small-world phenomenon arises not because there are a few
shortcuts in a regular lattice, but because there are a few sites in the network which have unusually
high coordination numbers or which are linked to a widely distributed set of neighbors. In the model
he proposed we start again with a regular lattice and we add a number of extra vertices in the middle.
The next step is to connect these new vertices to a large number of randomly chosen sites from the
ring lattice (Figure 3.12).

Figure 3.15: A small-world graph with a few highly connected sites

This is an alternative way of introducing shortcuts into a network. This model also shows the
small-world effect and has been solved exactly.
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Small-world model with a power law degree distribution

Based on the fact that the World Wide Web, which shows the small-world effect, is dominated by a
small number of very highly connected sites, Albert et al. [1] proposed a new model similar to the
previous one. In this new model the distribution of the coordination number of sites obeys a power
law, rather than being bimodal, as was the case in the previous model. The procedure for generating
graphs is as follows:

Starting with a random graph of n sites with average coordination number z, we select a site at
random and we add a link between it and another randomly chosen site if that addition would bring
the overall distribution of coordination numbers closer to the desired power law; otherwise no link is
added. Repeating this procedure, a network is generated with the correct distribution of coordination
numbers, yet it remains a random graph. The characteristic path length is small but this type of
network doesn’t show the clustering property which is essential in small-world graphs.

Kleinberg’s small-world model

A third model, proposed by Kleinberg [13], is based on the fact that in social networks people can
actually construct short paths given only local information. Such was the case in Milgram’s experi-
ment, but in the case of the Watts-Strogatz model no algorithm exists that can find shortest paths
given only local information. Kleinberg defined an infinite family of network models that generalize
the Watts-Strogatz model, and showed that for one of these models there is a decentralized algorithm
capable of finding short paths with high probability. Kleinberg’s model is as follows:

We start with a two-dimensional square lattice (Figure 3.16(a)) and we add shortcuts between pairs
of vertices i, with probability which falls off as a power law di_jr (r-Harmonic distribution) of the
distance between them (Figure 3.16(b)). The distance between two vertices ¢ and j with coordinates
(xi,y;) and (z;,y;) respectively is defined as:

d((xi,¥i), (2, 95)) = |zi — 23] + |yi — yj (3.5)

For arbitrary values of the exponent 7 it is hard to find a decentralized algorithm that finds shortest
paths, but in the case of r = 2 such algorithm has been proven to exist.

Figure 3.16: Kleinberg’s small-world model
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One important result regarding this model is that besides the existence of short paths, small worlds
are also characterized by the ability to find them without having a global knowledge of the network.
From an algorithmic perspective this property should be taken under consideration while constructing

a new small-world model.

3.4.4 The r-Harmonic Distribution Model

This last model is in some sense a combination of all the previous models. It is a simplified version
of Kleinberg’s model, where a ring lattice is used instead of a mesh. A detailed description of the
model is as follows.

We start with a directed ring of n + 1 vertices, denoted by R,41, in which vertices are labelled from
0 to n. The next step is to add shortcuts or long range contacts between randomly chosen pairs of
vertices from the ring lattice.

Consider a graph G' = (V, E) and a probabilistic mapping ¢ on the vertices of G such that ) i, ¢(u,v) =
1 for all u € V, i.e. each vertex u € V has an associated probability distribution ¢(u,-). Based on
the type of this distribution we may obtain a variety of different models. Motivated by Kleinberg’s
research we will use the r-harmonic r > 0 distribution. Two examples of Harmonic distributions are:

1

e For r = 1, we have the uniform distribution where ¢(u,v) = -, and
e Forr=1- }ggg:gg, we have the Zipf distribution.

Given two vertices v and v the probability for v to have v as long range contact in a graph G is
given by:

d(u,v)™"
Zw;«éu d(“? w)—r

where d(-,-) is the distance function of the graph. In the directed labelled ring R,+1 the distance
between two vertices with labels ¢ and j is defined as d(7, j) = (j—i) mod n+1, thus the probability

or(u,v) =

(3.6)

in Equation 3.6 can be simplified.

Now consider the r-harmonic random variable H,, which takes values in {1,2,...,n}. This random
variable has probability distribution defined by:

-r

Pr({H, =a}) = .

n

where H], = """ 47" is the r-harmonic number of order n. If the ring R, is augmented using the

r-harmonic mapping ¢,, then given two vertices with labels ¢ and j the probability for 7 to have j
as long range contact in (Ry41, ¢r) is given by:

(j—i)modn+1)""

i (3.7)

¢r(iaj) =
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Percolation On Small-World Networks

In the previous section, a number of small-world models were presented along with their most impor-
tant properties. Those properties however describe the static structure of the networks. To better
understand the benefits of each model we must extensively study their dynamics. There are a num-
ber of dynamical systems that can be defined on small-world networks such as networks of coupled
oscillators or cellular automata. Here we will concentrate on epidemic or disease propagation models
on small-world graphs which are essentially percolation processes. In epidemiology there are two
parameters of interest: susceptibility, i.e. the probability that an individual exposed to a disease will
contract it, and transmissibility, i.e. the probability that a healthy but susceptible individual will
contract the disease once it has a contact with an infected individual.

Infected individuals are represented by occupied sites on a small-world graph and the disease spreads
along the bonds which are represented by edges between the sites. A disease begins with a single
infected individual. We will study two extremes of this model:

e In the first case only a fraction p of the individuals are susceptible but if an individual gets
infected, all of its susceptible neighbors will contract the disease. In percolation terms this is
the site percolation problem.

e In the second case all individuals are susceptible and there is a probability p that an infected
individual will transmit the infection to a neighbor. This corresponds to the bond percolation
problem.

We will investigate both the site and bond percolation problems first on the Newman-Watts model
and next on the r-Harmonic distribution model.

38



4.1 Percolation On The Newman-Watts Small-World Model

Several methods have been proposed for the study of disease propagation on random networks. In
random graph theory percolation happens on a network when a giant component appears, i.e. a
connected component whose size approaches the size of the whole graph. A disease outbreak which
starts with a single individual will spread only within connected components, thus at a certain value
of the percolation threshold p. the system undergoes a phase transition which is the onset of epidemic
behavior. Epidemics in random networks were studied with the generating function method [22],
[26], [23]. Moore and Newman studied percolation on small world networks using a transfer matrix
method [18] and later using a generating functions method [19]. Both methods will be presented in
the following text.

4.1.1 Site Percolation
Generating Functions Method

The basic idea of the generating function method is to find the distribution of local clusters (defined
later in this text) and calculate how these local clusters are joined together with shortcuts to form
connected clusters. Next we find a closed form expression for the mean connected cluster size. When
this cluster size diverges, we are right above the phase transition where a giant connected component
forms. This is exactly the point where we can compute the percolation threshold of the system.

Initial structure. We consider a one-dimensional small-world graph with L sites arranged on a
regular ring lattice with periodic boundary conditions. Each site is connected to all sites at distance
at most k, thus the initial coordination number of each site is z = 2k. A number of shortcuts are
now added to the graph between pairs of vertices chosen uniformly at random. Let ¢ be the average
number of shortcuts per bond on the underlying lattice. Therefore we have a total of k¢ L shortcuts.
The probability of two randomly chosen sites having a shortcut between them is:

1) = Pr|Two randomly chosen sites have a shortcut between them]|

= 1 — Pr[A specific pair of sites have no shortcut between them]|

In the Newman-Watts small-world model, when adding shortcuts, loops and duplicates are allowed,
so there are L? “pairs” of sites which might have a shortcut “between” them. Consider a specific pair
(13, 1;) of sites we don’t want to connect with a shortcut. Since the graph is undirected we also don’t
want to have a shortcut between the pair (I;,;) of sites. Therefore we have (L? — 2) “unavailable”
positions of shortcuts out of the overall L?. Finally we shall distribute the k¢L shortcuts to the
available positions with (L? — 2)** ways. Hence the probability 1) is:

L? — 2]k¢L 2k

Pp=1-] 72 T(b’ for large L. (4.1)
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We can assume that every shortcut leads to a different local cluster for large L since the probability
of two shortcuts connecting the same pair of local clusters falls off as L™!.

The next step is to show the susceptible individuals. As mentioned earlier, the contact between
an infected and a healthy but susceptible individual results in the latter contracting the disease.
Less than 100% of the individuals are susceptible, therefore we represent them with a fraction p of
occupied (colored) sites on the graph. An example of this structure is presented in Figure 4.1.

Figure 4.1: A small-world with L = 24 sites, 4 shortcuts and p = % susceptible individuals

The occupied sites form a number of clusters. First the occupied sites which are connected with
the nearest neighbor bonds on the underlying one-dimensional lattice form local clusters. These
local clusters are connected together by shortcuts to form the connected clusters of the small-world
network. Thus a connected cluster (circle) is equal to a single local cluster (square) with any number
of connected clusters attached to it by a single shortcut. This recursive tree-like structure is shown

v

Figure 4.2: Graphical representation of a cluster of connected sites.

in Figure 4.2.

= -

Local Clusters. First we have to calculate the number of local clusters of length n. This is also
the probability Py(n) that a randomly chosen site belongs to a local cluster of size n. We define the
following procedure:

e Start with an occupied cluster. This is the initial local cluster of size 1.

e On the ring lattice, check the neighbors of this site at distance at most k. If these neighbors
are occupied (with probability p) then add their number (how many they are) to the initial
cluster.

e Repeat the previous step until all of the neighbors of the sites of the local cluster formed so
far are unoccupied (with probability (1 — p)).
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We may think of this process as following a geometric distribution! which starts with an occupied
site with probability p and terminates with success probability (1 — p)* after (n — 1) steps.

e For n = 0 the average number of local clusters of length n is:

where ¢ = 1 — (1 — p)*.

Here the process starts with an occupied site with probability p, for the next (n — 1) steps this

process “fails” with probability 1 — (1 — p)* and terminates with success probability (1 — p)*.

Thus we have:

1—p forn=20
P = 4.2
b(n) { (1—p)%pg"'n forn >0 (42)
Let Hy(z) be the generating function for the local clusters. Then:
[e.e]
Hy(z) = Y Py(z)2" (4.3)
n=0
Using 4.2 we can calculate this generating function.
o0
Ho(z) =1—p+ > (1-p)°pg" 'nz"
n=1
:1—p+(1—p)272n(qz)" [Zimz— 2}
1.5 =0 (1-2)
p qz
=1 p + 1— D 28
L=y (1—-qz)
Hence:
o0
(1-p)
HO(Z) :ZPO(Z)Z” — 1—p+p2m (44)
n=0

LConsider a sequence of independent Bernoulli trials with success probability p (and failure probability g the same
for each trial). Let X be the number of trials till we succeed. Then P(X = z) = pg" .
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Connected Clusters. Now let P(n) be the probability that a randomly chosen site belongs to
a connected cluster of n sites. This is also the probability that a disease outbreak starting with
a randomly chosen individual will affect n people. Since P(n) is difficult to calculate, we use the
generating function method. Let H(z) be the generating function for the probability P(n). Then:

H(z)=> P(n)z" (4.5)
n=0

Since the probability of two shortcuts connecting the same pair of local clusters falls off as L™!, this
means that each connected cluster consists of a local cluster with m > 0 shortcuts leading from it
to m connected clusters. Thus H(z) satisfies the Dyson-equation-like iterative condition, which we
can write self-consistently as:

H(z) =) Po(n)z" )  P(mln)[H(z)]" (4.6)
n=0 m=0

P(m|n) is the conditional probability of there being exactly m shortcuts emerging from a local
cluster of size n. Since there are ¢kL shortcuts in the network, there will be 2¢kL ends of shortcuts.
Therefore P(m|n) is given by the binomial:

o~ (49 -

m

We take m ends of shortcuts out of the overall 2¢kL, we connect them to a local cluster of size n
(with m ways) and we connect the remaining 2¢kL — m ends of shortcuts to the remaining local
clusters of sizes other than n (with 2¢kL — m ways).

Using Equation 4.7, Equation 4.6 becomes:

H(z) = 3 Bon)n S Plmln)[H (=)™
n=0 m=0

5 5]

n=0 m:0< m
- ;:OPO(n)zn g <2<il;:L> [L n nH(Z)] " [L f n] —26kL
_ immzn L™ i (0 [ {i (%)e = o]
Snw ] epe)]
Therefore:
- 2¢kL
() = 3 1+ ) -V 8)

For large L we can approximate this expression with:
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H(z) =Y Py(n)[ze*hHE"Dn (4.9)
n=0
It is easy to see that H(z) is equal to Hy(z) if we replace z with ze2#¢(H(2)=1)  Thys:

H(z) = Hy(ze?F*HZ)=1)y (4.10)

We can calculate H(z) by iterating this equation starting with H(z) = 1. The next step is to
calculate the mean outbreak size which is given by the first derivative of H at z = 1:

H'(1) = L [Hy(e6) D))
z

d o
= Hy(1) [z )
d
d

z
z

— Hl(1)7[€2k¢(H(Z)fl) + 262k¢(H(2)71)2k¢HI(2)]

0
z=1
— H)(1)(1+ 2k H'(1))
Therefore:
Hy(1)
H(1l)=—%Y"— 4.11
(1) 1 —2k¢H|(1) ( )
We can calculate the first derivative of Hy(z) at z = 1 from Equation 4.4:
d (1-p)°
Hi(1) = —|1— —_—
o(1) = — [ PEPE |
d z
— (1 — 2%
2 (1+4¢7)
1+gq
=p— 4.12
- (4.12)
Equation 4.11 thus gives:
p(1+q) k

T 12k T g 2kap(lta)  (1-p)F ~2kép(2 — (1 - p)F)

The last step is to calculate the percolation threshold. The mean outbreak size diverges at the
percolation threshold p = p.. This happens when the denominator of Equation 4.13 is zero, i.e.:

_ 1—q. _ (1 - pc)k
2kpc(1 + QC) 2kpc(2 - (1 - pc)k)

1—q.— 2k¢pc(1 + QC) =0—0¢ (4.14)
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e For k =1, the percolation threshold is the solution of a quadratic equation:

VAR + 120 +1—2¢—1
B (4.15)

e For general k the percolation threshold is the solution of a polynomial of order k + 1.

20p2 + (26 + 1)pe — 1 =0 — p, =

Transition Matrix Method

The basic idea of this method is to consider cluster growth as a stochastic process evolving it time.
Starting with a particular local cluster, we add to it all the other local clusters that can be reached
from it by a single shortcut. Then we add all the local clusters that can be reached from the newly
added local clusters and so on until a connected cluster is formed and there are no more shortcuts
that lead to new local clusters.

This process has the Markov property, i.e. the probability that a process is in a particular state y
at time ¢ depends only on its state = at time ¢t — 1. This probability is denoted by P(x,y) and is
independent of time ¢. The values P(z,y) are called transition probabilities.

PriX;=y|Xi1=2,Xt2,...,X0] =Pr[Xy =y | X1 = 2] = P(z,y)

At each step of this process we add new local clusters to the overall connected cluster based on
our current position in the lattice. We assume that every shortcut leads us to a different local
cluster for large L. We can model this process using a transition matriz M whose elements are the
transition probabilities of this process. Let v be a column vector whose elements v; are equal to the
probability that a local cluster of size i has just been added to the overall connected cluster. We
wish to calculate the values of this vector during the evolution of this process in time. Let v be
the initial distribution vector. In the next time step we have:

J

This transition matrix is independent of the time step and is repeatedly applied to the vector of
probabilities v until there are no more local clusters to be added to the overall connected cluster.
This happens when we reach the percolation threshold (equilibrium state). In this state, vector v/
is stationary.

The elements of matrix? M are:

Mij = Ni(1— (1 —4)9),

where N; is the average number of local clusters of size i and 1— (1 —1)¥ is the probability of having
a shortcut from a local cluster of size ¢ to one of size j, since there are ij possible pairs of sites by
which these can be connected.

2The matrix M is not stochastic, i.e. its rows do not sum to unity, yet its entries are strictly positive.
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From the previous section we know that the probability that a randomly chosen site belongs to a

local cluster of size n is:

1—p, forn=0
Po(n) = 2, n—1
(1 —-p)*pg" *n, forn>0
Therefore the average number of local clusters of size i is N; = POT(i)L or:

N — (1—p)*p'L, for k=1
"] (A =p)?pgTlL, for k> 1

where ¢ = (1 — (1 — p)¥). As this process evolves in time we have:

v — My©
v®@ — M@ = M2y

v = Mry©

(4.17)

At the percolation threshold (after a finite number of steps) this process has reached the equilibrium

state where:
v =MV

and no matter how many times we apply the transition matrix M on vector v/, v/ remains unchanged.

It is easy to see that this vector v/ is the right eigenvector of the transition matrix M.

Now consider the largest eigenvalue of M, i.e. the largest value of A for which (M — AI)v' = 0.

e If A < 1, applying matrix M to vector v/, makes v’ tend to zero and as a result the rate at

which new local clusters are added falls off exponentially and the connected clusters are finite

with exponential size distribution.

e If A > 1, applying matrix M to vector v/, makes v/ growing until the size of the overall cluster

becomes limited by the size of the whole system.

e Thus percolation threshold occurs at A = 1.

For finite L it’s difficult to calculate the largest eigenvalue A of M, but for . — oo, ¢ being constant

and Y — 0 we can approximate M by:

M;; = ijyN;

Replacing M;; in Equation 4.16 and setting v, = Av; we have:

)\’Ui = Z@Z)Nl Zjvj
J
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Thus the eigenvectors of M have the form v; = CA~Yiy)N; where C = Zj Jv; is a constant. Elimi-
nating C' we have:

A= §°N; (4.20)
J

e For k=1,ie. N; = (1—p)?p'L we have:

A= wZﬁN wZ; 1—p)’p L =(1 - p) QLZW

(zfp]—wZW) (SR )
d2 . .
=w<1—p>2L(p2 <ng7> P (Zd}pj)> = v —p>2L<p2<1 —21?)3 +p<1—1p>2>

+p 2k¢ 1+p 1+p
[ tpy—, = 2kop

_le

For A =1 we get the value of p at the percolation threshold, i.e. p = p,.

42 + 12 —2¢—1
L= 2hgp L oy p = VAT 201220
-p 4o

e For k > 1 we have:

A= oLp +Z — kdp ((ip)’;)k (4.21)

At the percolation threshold (A = 1):
(1 —pe)*
2kpc(2 - (1 - pc)k)

Thus the percolation threshold is the solution of a polynomial of order £+ 1 in agreement with
the result in Equation 4.14.

o=

Remarks From Equation 4.21 we can see that the value of the percolation threshold depends on
the size of the ring lattice L and the probability ¢ of having a shortcut between two nodes. Thus the
same method can be applied in other small world models were the probability of having a shortcut
between two nodes follows some distribution.
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4.1.2 Bond Percolation

In this section we will study the bond percolation problem on the Newmann-Watts small world
network. The bond percolation problem is equivalent to the disease propagation problem where
all individuals are susceptible but transmission takes place with less than 100% efficiency. In this
model, when a sufficient fraction p. of the bonds of the network are occupied, they form a giant
component whose size scales extensively with the size of the network. The fraction p of occupied
bonds is the transmissibility of the disease. We will study two separate cases: for k = 1 and for k > 1.

Generating Functions Method. For & = 1, the probability Py(n) that a randomly chosen site
belongs to a local cluster of size n is:

0 forn=20
Py(n) = 4.22

b(n) { (1—p)?p"~In forn >0 (4.22)
where p is the bond occupation probability. Here a local cluster of n sites consists of n — 1 occupied
bonds with two unoccupied bonds at either end. Thus P(n) (the probability that a randomly chosen
site belongs to a connected cluster of size n) can be computed through the generating function of

Equation 4.6 as:

H(z) =) _ Py(n)z" Y _ P(m|n)[H(2)]" (4.23)
n=0 m=0

Now a shortcut must be an open bond with probability p thus Equation 4.8 is slightly modified
(replace ¢ with p¢). Thus:

n

> 2pbL
n=0

— Z[pzeQW(H(Z)—l)]n (4.24)
n=0
where H(z) is equal to Ho(z) with z — 2e2P?(H ()= Therefore:
H(z) = HO(ZeQPGZ’(H(Z)*l)) (4.25)

The mean outbreak size is given by the first derivative of H, i.e.:

d [H(ze?P?HE)=1))]

H'(1) = —

z=1
d _
— Hé(l)%[zgm(h’(z) ]

z=1

d
- H(/)(l)%[e?pﬂH(z)*l) n Ze2p¢(H(z)71)2p¢H/(z)]

= Hy(1)(1 + 2ppH’(1))

Solving for H'(1) we have:

z=1

(4.26)



In order to calculate Hy(z) first we have to calculate Hy(z):

Hy(z) =0+ Z Py(2)2" = Z(l —p)2p"inz"
n=1 n=1
(1_p)200n 2)" OOZ:UZ— z
- p n=1 v2) [; (1- x)Q}
(1-p? pz (1-p)?
p (1—=p2)*  ~(1-p2)?
Therefore:
oy A (1p)? Ced[
500 = & )| = 0 [
2| (L4 p2) 2| (+p)
et el [ e
1+p
- (4.27)
Using Equation 4.27, Equation 4.26 gives:
(1) = e (1+p) (4.28)

C1-2p0Hy(1)  1-2ppr  1—p—2pp(1+p)
The onset of epidemic behavior (where p = p.) occurs at the zero of the denominator of Equation 4.28

or when:

1 — Dc
2pc(1 +pc)

Solving for p. we have the quadratic Equation:

¢ =

20p2 + (20 +1)p. — 1 =0

with solution:

Va2 +12¢0+1—2¢ — 1
= 4.2
Pc 46 ( 9)
which is exactly the same solution we got for the site percolation problem on the same network for
k=1
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Bond percolation when k > 1. For k£ > 1 calculating the average number of local clusters is a
difficult so we will solve the case k = 2. In the bond percolation problem all individuals (nodes)
are susceptible but the bonds between them are open or closed based on some probability p. A
single node with closed bonds to it’s right and left neighbors is a local cluster of size 1 as shown in
Figure 4.3. Moreover every shortcut has meaning only if it is an open bond with probability ¢p.

Figure 4.3: Local clusters for the bond percolation problem.

Now let @; be the probability that a given site n and it’s left neighbor site n — 1 are part of the
same local cluster of size i when only bonds to the left of site n are taken into account. Let Q;;
be the probability that sites n and n — 1 are parts of two separate local clusters of sizes ¢ and j
respectively again when only bonds to the left of n are considered. Let us consider site n + 1. This
can be possibly connected with open bonds to both sites n and n — 1. It can be shown that:

Qi1 =p2-p)Qi+p(1—-p)> Qi +1" > Qjj (4.30)

J j+i3'=1
The probability @Q;+1 that the site n + 1 belongs to the same local cluster of size ¢ + 1 with the site
n equals the sum of probabilities:

e The sites n,n — 1 belong to the same local cluster of size ¢ with probability @; and site n+1 is
connected to either sites n or n—1 (or both) with probability p(1—p)+p?+p(1—p) = p(2—p).

e The sites n,n — 1 belong to separate local clusters of sizes ¢, j respectively with probability
Zj Q;j and site n + 1 is connected to site n with an open bond with probability p and to site
n — 1 with a closed bond with probability (1 — p).

e The sites n,n — 1 belong to separate local clusters of sizes j and j' where j + j' = ¢ with

probability >, /_;
with probability p?.

Qj; and site n + 1 is connected to both sites n,n — 1 with an open bond

We can also define Q;1; as:

1-p)?Q; + k] fori=0

o, = | QPP+ Th@u] fori o
p(1 —p)Qjs fore>1

The probability Q;41,; that sites n + 1, n are part of two separate local clusters of sizes ¢ 4+ 1 and j

equals the probabilities:
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e For i = 0, The probability ()1 that sites n + 1,n belong to separate local clusters of sizes 1, j
respectively equals the sum of probabilities:

- (1 - p)QQj: Sites n,n — 1 belong to the same local cluster of size j and site n + 1 is
connected to both of these sites with an open bond with probability (1 — p)2.

~ (1 =p)*>, Qi Sites n,n — 1 belong to separate local clusters of sizes j, k respectively
and site n + 1 is connected to both of these sites with probability (1 — p)2.

e For i > 1, we have the probability p(1 — p)Q;;: Sites n,n — 1 belong to separate local clusters
of sizes j,7 respectively with probability @j; and site n 4 1 is connected to site n — 1 with an
open bond with probability p to form a local cluster of size ¢ + 1 and with a closed bond to
site n with probability (1 — p).

To find a closed form expression for probabilities @; and Q;; is a very difficult task. Instead we will
define the following generating functions for the aforementioned probabilities:

H(z) = Z Qiz'

H(z,w) = Z Qijz'w!
Z'7j

Using these generating functions, Equations 4.30 and 4.31 give:

H(z,w) = 2(1 — p)?[H (w) + H(w, 1)] + 2p(1 — p) H(w, 2) (4.32)

H(z) = 2p(2 = p)H(2) + 2p(1 = p)H (2, 1) + 2p"H(z, 2) (4.33)

Each site always belongs to a cluster possibly of size 1, thus the probabilities (); and @;; must sum
to unity >, Qi +>_;; Qij = 1 or equivalently:

H(l)+ H(1,1) = 1. (4.34)

Finally the number of clusters of size i per lattice site N; (density) equals the probability that a
randomly chosen site is the rightmost site of such a cluster, in which case the two bonds to its right are
closed with probability (1 — p)?. Thus the generating function for local clusters Hy(z) = Y, Py(i)z"
must satisfy:

Ho(z) = (1 - p)*[H(2) + H(z,1)] (4.35)
Solving Equations 4.32, 4.33 and 4.34, Equation 4.35 gives:

B 2(1 —p)*(1 —2pz + p3(1 — 2)z + p?2?)
1 —dpz +pP(2 — 32)22 — pO(1 — 2)22 + p122(1 + 32) + p22(4 + 32) — pP2(1 + 5z + 22)

Ho(z)
As was the case with k = 1 the generating function for connected clusters satisfies:
H(z) = Ho(ze?koP(H)=1)) (4.36)

20



And the mean outbreak size is now:

Hy(1)
H(1l)= —0—~ 4.
W = okeprr (1) (4.37)
Percolation occurs at the zero of the denominator, i.e. when 2k¢pH{(1) = 1. Thus:
1—pe)3(1 = pe + p?

~ 4p.(1+ 3p% — 3p3 — 2p2 + 5p3 — 2p0)

where p. is the desired percolation threshold.

The above method can be used for k¥ > 1 as long as we find a way to calculate the average number
of local clusters of size i. However the results will be far more complicated.
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Simulation results

5.1 r-Harmonic Small World Model

We will study the r-Harmonic small-world model. We start with a ring lattice with n vertices and
k = 1. Then given two vertices with labels ¢ and j the probability for ¢ to have j as long range

contact in (Ry, ¢,) is given by ¢,(i,5) = WI%

. Here we present a randomized algorithm for
generating a network with these properties. First we create the initial structure i.e. a directed ring
of n nodes. Then we choose randomly or give as input a pair of source s and target ¢ nodes. We
start at s and we randomly choose a node on the ring according to the Harmonic distribution (we
give the Harmonic exponent as input). Finally we iterate until we are at a distance O(logn) where
no shortcut is needed. This process is used for greedy routing on these graphs. Greedy routing is
the distributed routing protocol where a node u chooses a long range contact that is closer to the
target than another neighbor in order to reach the target in the minimum number of steps. It’s been
proven [5] that for 7 = 1 there is a tight ©(log?n) bound for the expected number of steps required

for routing in the r-Harmonic ring.

r-Harmonic Distribution ‘ Lower Bound ‘ Upper Bound ‘

0<r<l1 Q(nz=r) O(n!—")
r=1 Q(log? n) O(log®n)

l<r<2 Qn' ) O(n™1h)
r=2 Q/(n) | O(HEken)
2<r Q') O(n)
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Table 5.1: Expected number of steps for greedy routing in the r-Harmonic ring




5.1.1 Computing number of hops between a source and target node

function ihops=hring(n, r, s, t)

J#Harmonic ring: Generate a network using a directed ring augmented with long
% range contacts using the r-Harmonic distribution.

h

#INPUT: n: Number of nodes of the directed ring lattice

% r: Exponent of the Harmonic Distribution. For r=0 we

% have the uniform distribution and for r=1-log.80/log.20

% we obtain the Zipf distribution.

% s, t: Source and target nodes. If they are not given,

% s and t are chosen uniformly at random from the set of

h nodes.

h

%0UTPUT: ihops: Number of long range contacts that are added in

/A order to reach the target node starting from the source node.

% Initial Structure

Il=zeros(n,1);
Ji=zeros(n,1);
Si=ones(n,1);

for i=1:n
I1(i)=1;
J1(i)=mod(i,n)+1;
end

A=sparse([I1],[J1],[S1], n, n); A=sign(4);

% Source and target nodes (s and t respectively)

if nargin <=2
s=ceil(randx*n) ;
t=ceil (rand*n) ;
if (s==t)
disp(’Source node matches target node’);
return
end
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if (mod((t-s), n)<=log(n))
disp(’Node accecible without shortcuts’);
return
end
end

% Adding Long Range Contacts

for i=1:n
pdist (i) =1./(ix*harmonic(n,r));
end

source=s;
target=t;
dist=mod((t-s), n);
hops=0;

while dist>log(n)
a=rand;
B=(a>pdist) ;
u=ceil(rand*length(find(B)));
if (u™=s)
pos=u;
A(s,pos)=1;
dist=mod ((t-pos), n);
s=u
hops=hops+1;
end

end
ihops=hops;

adj=full(A);
plotadj(adj);
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Using MATLAB with Graphviz, we can visualize the graphs generated with this method for different
values of n and r. We run the program for n = 30, r = 1 and s = 5,¢ = 20. There are needed 4 hops
to reach the target node.

>> hring(30,1,5,20)

Source Node= 5

Target Node= 20

Intermediate steps=[28,29,10,19|
Number of hops = 4

Figure 5.1: A network with n = 20 nodes, r = 1, source node=5, target node 20. Number of hops=4
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5.1.2 Computing the average number of hops for a chosen source-target pair

For a given source-target pair it is interesting to see the average number of hops. We can compute
this number using the function avghops(x,n,r, s,t) where x is the number of repetitions.

function avg_hops=avghops(x,n,r,s,t)

%havg_hops: Computes the average number of hops needed to reach a
/) target node starting from a source node.

#INPUT: x: number of repetitions

b n: number of nodes

/A r: Harmonic distribution exponent

% s,t: source and target nodes

h

%0UTPUT: avg_hops: average number of intermediate steps between
h source and target node

if nargin <=3
s=ceil(randx*n) ;
t=ceil (rand*n) ;
if (s==t)
disp(’Source node matches target node’);
return
end

if (mod((t-s), n)<=log(n))
disp(’Node accecible without shortcuts?’);
return
end
end

for i=1:x
hops(i)=hring(n,r,s,t);
end

avg_hops=ceil (mean(hops)) ;
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Suppose we want to find the average number of hops for a network with n = 100 nodes, Harmonic
exponent 7 = 1 and source and target nodes s = 1 and ¢ = 50 respectively. We compute the average
of 1000 different realizations of the network as:

>> avghops(1000,100,1,1,50)
ans = 20

Next we will compute the average number of hops for a network of 100 nodes, harmonic exponent
r = 1 and source and target nodes s = 1 and ¢ = 50 respectively:

Repetitions | No. Of Nodes ‘ r ‘ Source s | Target t H Average No. Of Hops

100 100 1 1 50 19
1000 100 1 1 20 20
10000 100 1 1 20 20

Based on the results, it takes on average 20 steps from source 1 to target 50. Next we will compute
the average number of hops for a network of 1000 nodes, harmonic exponent » = 1 and source and
target nodes s = 1 and ¢t = 500 respectively:

Repetitions | No. Of Nodes ‘ r ‘ Source s | Target t H Average No. Of Hops

100 1000 1 1 500 146
1000 1000 1 1 500 142
10000 1000 1 1 500 145

Based on the results, it takes on average 145 steps to get to target node 500 from source node 1.
Next we will change the Harmonic exponent to 1000 (approaching the geometric distribution) and
try the same experiments:

Repetitions | No. Of Nodes ‘ T ‘ Source s ‘ Target © H Average No. Of Hops ‘

100 100 1000 1 20 21
1000 100 1000 1 20 20
10000 100 1000 1 20 20

Repetitions | No. Of Nodes ‘ r ‘ Source s | Target ¢ H Average No. Of Hops

100
1000
10000

1000
1000
1000

1000
1000
1000

1
1
1

500
500
500

152
155
153
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As it was expected it takes mores steps to route when the harmonic exponent goes to infinity.

Next we will try the same experiment with harmonic exponent 1/1000 (approaching the uniform
distribution):

’ Repetitions ‘ No. Of Nodes ‘ r

‘ Source s ‘ Target ¢ H Average No. Of Hops

100 100 1/1000 1 50 20

1000 100 1/1000 1 50 20

10000 100 1/1000 1 50 20
Repetitions | No. Of Nodes ‘ r ‘ Source s | Target ¢ H Average No. Of Hops

100 1000 1/1000 1 500 152

1000 1000 1/1000 1 500 150

10000 1000 1/1000 1 500 153

Once more as it was expected it takes more steps to route.

5.1.3 Computing number of hops between every pair of source and target nodes

Finally, we can can compute the average number of steps between every pair of source and target

nodes.

function S=stpairs(x,n,r,s,t)

%stpairs:
%

h

%HINPUT:

h

h

%

%
%0UTPUT:
%

for z=1:x
for i=1

for j=1:t

end
end
end

.8

Computes the average number of hops needed to reach a
target node starting from a source node for every source
and every target pair of nodes.

x: number of repetitioms

n: number of nodes

r: Harmonic distribution exponent

s,t: maximum source and target nodes

S(i,j): A matrix with the average number of intermediate
steps between source i and target j node

S(i,j)=avghops(x,n,r,i,j);
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Since it’s not easy to present results for many values of source and target nodes, we will present a
toy example of a network with 20 nodes and source and target nodes from 1 to 10:

>> stpairs(100, 20, 1, 10,10)

ans =

0 N ~N~N~N~N~N~NNO
NN~V ~No oo o o
O N WO o N O O O
~N o 0o o No o o
O NN ~NOoO oo N
N0 o NOoO O o N N
W O ~NO OO o o N~
N ~NOoO o o~NO N ®
OO0 0O ~N~N~N~NO
O 0O O NN NO®

29



[1]

2]
3]

4]

1]

[6]

7]
8]
19]
[10]

[11]

[12]

[13]

Bibliography

Réka Albert, Hawoong Jeong, and Albert-Laszl6 Barabési. The diameter of the world wide web.
Nature, 401:130-131, 1999.

Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley, New York, 1992.

Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in random networks, October 21
1999. Comment: 11 pages, 2 figures.

A. Barrat and M. Weigt. On the properties of small-world network models, August 25 1999.
Comment: 19 pages including 15 figures, version accepted for publication in EPJ B.

Lali Barriére, Pierre Fraigniaud, Evangelos Kranakis, and Danny Krizanc. Efficient routing in
networks with long range contacts. In Jennifer L. Welch, editor, DISC, volume 2180 of Lecture
Notes in Computer Science, pages 270-284. Springer, 2001.

Marc Barthelemy and Luis A. N. Amaral. Small-world networks: Evidence for a crossover
picture, March 05 1999. Comment: 5 pages, 5 postscript figures (1 in color), La-
tex/Revtex/multicols/epsf. Accepted for publication in Physical Review Letters.

B. Bollobéas. Random Graphs. Academic Press, 1985.
Reinhard Diestel. Graph Theory. Springer-Verlag, New York, 2 edition, 2000.
P. Erdos and A. Rényi. On random graphs. Publ. Math. Debrecen, 6:290-291, 1959.

P. Erd6s and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci., 5:17-61, 1960. A seminal paper on random graphs. Reprinted in Paul Erdds: The Art
of Counting. Selected Writings, J.H. Spencer, Ed., Vol. 5 of the series Mathematicians of Our
Time, MIT Press, 1973, pp. 574-617.

Jerrold W. Grossman. Paul Erdés: The master of collaboration. In Ronald L. Graham and
Jaroslav Negttil, editors, The Mathematics of Paul Erdds II, pages 467-475. Springer-Verlag,
Berlin, 1997.

Rajesh Kasturirangan. Multiple scales in small-world networks. Technical Report AIM-1663,
MIT Artificial Intelligence Laboratory, August 11 1999.

J. Kleinberg. The small-world phenomenon: an algorithmic perspective. In Proceedings of the
32nd ACM Symposium on the Theory of Computing. 2000.

60



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

C. Korte and S. Milgram. Acquaintance networks between racial groups: Application of the
small world method. J. Personality and Social Psych., 15:101, 1978.

Albert laszlo Barabasi, Reka Albert, and Hawoong Jeong. Scale-free characteristics of random
networks: The topology of the world-wide web, September 25 2000.

S. Milgram. The small world problem. Psychology Today, 1(1):60-67, 1967.

M. Mitzenmacher. A brief history of generative models for power law and lognormal distribu-
tions. 2002. Technical Report.

Cristopher Moore and M. E. J. Newman. Epidemics and percolation in small-world networks,
January 06 1999. Comment: 6 pages, including 3 postscript figures.

Cristopher Moore and M. E. J. Newman. Exact solution of site and bond percolation on small-
world networks, January 26 2000. Comment: 13 pages, 3 figures.

Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. ACM Computing Surveys,
28(1):33-37, March 1996.

M. E. J. Newman. Models of the small world: A review, May 09 2000. Comment: 9 pages
including 3 postscript figures, bibliography updated and minor corrections to text in this version.

M. E. J. Newman. The spread of epidemic disease on networks. Physical Review E, 66:016128,
2002.

M. E. J. Newman. Random graphs as models of networks. In Handbook of Graphs and Networks:
From the Genome to the Internet, pages 35—68, Weinheim, 2003. Wiley-VCH Verlag.

M. E. J. Newman. The structure and function of complex networks. SIREV: SIAM Review, 45,
2003.

M. E. J. Newman, C. Moore, and D. J. Watts. Mean-field solution of the small-world network
model, September 21 1999. Comment: 14 pages, 2 postscript figures.

M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree
distributions and their applications. Physical Review F, 64:026118, 2001.

M. E. J. Newman and D. J. Watts. Scaling and percolation in the small-world network model,
May 06 1999. Comment: 12 pages including 9 postscript figures, minor corrections and additions
made in this version.

Joel Spencer. Ten Lectures on the Probabilistic Method. Regional Conference Series on Applied
Mathematics (No. 52). STAM, 1987.

Dietrich Stauffer and Ammon Aharony. Introduction To Percolation Theory. CRC, July 1994.

S. Wasserman and K. Faust. Social Network Analysis. Cambridge University Press, Cambridge,
1994.

D. J. Watts. Small Worlds. Princeton University Press, Princeton, 1999.

61



[32] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393(6684):397-498, June 1998.

[33] Herbert S. Wilf. Generatingfunctionology. A. K. Peters, Ltd., Natick, MA, USA, 2006.

62



Index

bond percolation, 9

characteristic path length, 18
cluster, 6

clustering coefficient, 20
connected clusters, 40
coordination number, 18

degree distribution, 23
degree sequence, 18

generating functions, 27

lattice animals, 13
local clusters, 40

percolation threshold, 9
perimeter, 13

random graph process, 26

scale-free networks, 24
site percolation, 9
susceptibility, 38

transmissibility, 38

63



