
Randomly-oriented RKD-trees

by

Dimitri N. Nicolopoulos

B.Sc., University of British Columbia

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Graduate Program in Logic, Algorithms and Computation

at the

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

March 2014

Author .
Department of Mathematics

March 19, 2014

2

Randomly-oriented RKD-trees

by

Dimitri N. Nicolopoulos

Submitted to the Department of Mathematics
on March 19, 2014, in partial fulfillment of the

requirements for the degree of
Graduate Program in Logic, Algorithms and Computation

Abstract

Consider a set S of points in a real D-dimensional space RD, where distances are
defined using function ∆ : RD × RD → R (the Euclidean metric). Nearest neighbor
search is an optimization problem for finding the closest points in S to a given query
point q ∈ RD. Given a positive real ε > 0 then a point p ∈ S is a (1 + ε)-approximate
nearest neighbor of the query point q ∈ RD if dist(q, p) ≤ (1 + ε)dist(q, pnn) where
pnn ∈ S is the true nearest neighbor to q. If the data that is expressed in high-
dimensional space RD lies closer to an embedded manifold M of dimension d, where
d � D, then, we show the data may be preprocessed into the Randomly-oriented
RKD-trees structure and we provide a near optimal bound on the number of levels
required to reduce the size of its cells by a factor s ≥ 2. We show the data may be
preprocessed into the structure in O

(
D ·N · logN

)
time and O

(
D ·N

)
space, so that

given a query point q ∈ RD and ε > 0, a (1+ε)-approximate nearest neighbor of q may

be reported in O
((

D
ε

)O(d log d log (dD
ε

)) · logN
)

time. Following the theoretical results,
we show that the methods presented offer a highly efficient implementation in high-
dimensional ANN search. Our implementation extends the Computational Geometry
Algorithms Library (CGAL) and more specifically the spatial searching package of
the library. The experimental results show that the proposed algorithm offers a state
of the art ANN search algorithm when searching among high-dimensional data and
high-dimensional data with an underlying low-intrinsic dimensional subspace.

Thesis Supervisor: Ioannis Z. Emiris
Title: Professor

3

4

Contents

1 Introduction 13

1.1 Previous Work . 16

1.1.1 Assouad Dimension (Doubling Dimension) 16

1.1.2 RP-tree . 16

1.1.3 RKD-trees . 17

1.1.4 K-d trees do Not Adapt to Intrinsic Dimension 18

1.1.5 Randomly-oriented k-d Trees Adapt to Intrinsic Dimension . . 19

1.1.6 Computational Geometry Algorithms Library 20

1.2 Randomly-oriented RKD-trees . 20

1.2.1 Contributions . 21

2 Randomly-oriented RKD-trees 25

2.1 Overview of the Construction Process 26

2.2 Randomly Rotating the Space . 27

2.3 Partitioning the Points . 28

2.4 Mean Split . 28

2.5 Median Split . 29

2.6 Multiple Trees . 30

3 Size Reduction Theorem 31

3.1 Extending Theorem 4 . 31

3.2 Generalizing the size reduction theorem 33

3.3 Precursor . 34

5

3.4 Proof of Size Reduction Theorem 7 37

4 Nearest Neighbor Algorithm 43

4.1 Structure Properties . 43

4.2 Approximate Nearest Neighbor Queries 47

5 Implementation 51

5.1 Build . 51

5.1.1 Random rotation . 52

5.1.2 Hyperplane splits . 55

5.2 Search . 57

6 Experimental Results 59

6.1 build-time . 59

6.2 Query Time . 60

7 Conclusion 67

A Proofs 69

A.1 Proofs of Lemmas . 69

A.1.1 Lemma 10 . 69

A.1.2 Lemma 11 . 71

A.1.3 Lemma 12 . 71

A.1.4 Lemma 14 . 72

B Supplementary Experimental Results 73

C User Manual 75

C.1 Introduction . 75

C.1.1 Build Randomly-oriented random k-d trees 76

C.1.2 Neighbor Searching . 76

C.2 Splitting Rules . 77

C.3 Example Programs . 77

6

List of Figures

1-1 Random rotation 2-D space . 15

1-2 Random rotation 2-D space . 18

1-3 Random rotation 2-D space . 19

3-1 Good, bad and even splits . 38

3-2 Projected mean bounds from projection of balls S and S
′

. 40

4-1 Good, bad and even splits . 45

6-1 Both native and CGAL Randomly-oriented RKD-trees (4 trees) out-

perform all other structure build-times. 60

6-2 In (a) and (b) the graphs show the average searching time when search-

ing for the 20 nearest neighbors in 100 different queries for the SIFT

dataset for two different data structures, the Randomly-oriented RKD-

trees structure implemented in CGAL and the RKD-trees of the FLANN

package, for 4 and 16 trees respectively. Both implementations perform

the queries in approximately the same time for all values of precision.

(c) When comparing the same structure but using a different number

of trees for the same task as that performed in figures (a) and (b) the

graph shows that there the 16 trees outperform the 4 trees structure

for high precision values. (d) The native k-d tree structure (CGAL) is

outperformed by both 4 and 16 trees throughout the domain of precision. 62

7

6-3 (a) The k-d tree structure (CGAL) is outperformed by k-d tree and

BBD-tree structures of the ANN package. When searching on the

SIFT dataset, all three structures are outperformed by Randomly-

oriented RKD-trees. (b) A more refined view of the k-d tree, BBD-tree

and Randomly-oriented RKD-trees shows the difference in search-time

efficiency. (c) The logarithmic scaled time shows that for values of

less precision the trees are all outperformed by the Randomly-oriented

RKD-trees throughout the precision domain. 63

6-4 (a) The graph shows that for the 5000-dimension GISETTE data set,

the average searching time for 100 different queries when searching for

the 20 nearest neighbors, Randomly-oriented RKD-trees outperforms

the BBD-tree structure for all values of precision. (b) The graph shows

that the order of magnitude difference between Randomly-oriented

RKD-trees and the BBD-tree in average search-time is multiplied with

respect to the search-time of the k-d tree (CGAL), especially for values

of high precision. 65

B-1 (a) Compare the search time of 4 and 16 tree structures of CGAL

Randonly-oriented RKD-trees with the native CGAL ANN search, of

randomly generated Poisson distributed data. (b) The log scaled y-axis

of the comparison illustrated in figure (a). 73

B-2 (a) Compare the search time of 4 and 16 tree structures of CGAL

Randonly-oriented RKD-trees with the native CGAL ANN search, of

randomly generated Poisson in addition to high variance and uniformly

distributed data. (b) The log scaled y-axis of the comparison illustrated

in figure (a). 74

B-3 (a) Compare 16 tree Randonly-oriented RKD-trees search result times

for Poisson and Poisson w/ uniform distributed datasets. 74

8

List of Tables

6.1 The list of data structures compared to produce the empirical results 59

6.2 SIFT dataset . 61

6.3 Gisette dataset . 64

9

10

List of Algorithms

1 Random Rotation . 53

2 Build . 55

3 InternalNode . 56

4 LeafNode . 56

5 Search . 58

11

12

Chapter 1

Introduction

The nearest neighbor search (NNS) problem is: given a set S of N data points in

a metric space X with distance function ∆, preprocess the data so that, given a

query point q ∈ X, we can quickly determine the data point p ∈ S that is closest

to q. The problem was first introduced by Donald Knuth [22], referring to it as the

post-office problem. It has attracted the development of numerous algorithms. The

increase in the descriptive power offered by the analysis of high-dimensional datasets

has placed a proportional burden on the computational expense exhibited by near-

est neighbor search algorithms. Applications in areas such as machine learning [8],

computational geometry [28] and data mining [15] place high importance on ef-

ficiently solving such spatial search problems. The prevalence of high-dimensional

data and its descriptive power has enticed researches with the expectation of a large

‘return’. Effective approaches have been constructed to deal with low-dimensional

nearest neighbor search [14], yet the same cannot be said for its high-dimensional

equivalent. The problem mainly stems from the inability to effectively deal with the

“curse of dimensionality” [25]. For large values of dimension D we have not suc-

cessfully produced any algorithms that solve the problem more efficiently than the

brute-force method.

Solving the problem using the brute-force search method takes O
(
D · N

)
time.

Modest constant factor improvements have been proposed using methods shown in [9],

and other orthogonal projection methods like that of Friedman et al. [17]. We place

13

our focus on methods using spatial data structures small enough to be stored in

memory. There is a significant amount of literature dealing with the nearest neighbor

search problem, see for example the work of Clarkson [7], Roussopoulos et al. [27].

For uniformly distributed point sets, using spatial partition trees to recursively

subdivide space into increasingly fine convex sets. Friedman et al. [18] generalized

older results showing that a structure may be built using O
(
N
)

space and query search

may be performed in O
(
logN

)
time in the expected case. The methods proposed

the use of kd-trees. However even this method does not escape the negative effect

dimensionality increase plays in the hidden constant factors. These are shown to

increase as much as 2D.

Highly effective structure representations, designed to solve the NNS optimiza-

tion problem in high-dimensions, have been exploited in all sorts of manner: BBD-

trees [4], Voronoi diagrams [2], RP-trees [10], PCA trees [30] and locality-sensitive

hashing functions [11]. Such structures have been established to be used within

a NNS algorithm given one common assumption, we place aside the exact nearest

neighbor search problem and focus on obtaining an approximate result (see Defini-

tion 1). The optimization of search times allows for the acceptance of a small error

((1 + ε)-approximate) in comparison to the exact result (see Figure 1-1). That is to

say, we accept an approximation of the true nearest neighbor by tolerating an imper-

fect result, for a gain in speed and memory savings, particularly in situations where

the set of points lies in a high-dimensional space.

Definition 1 (Approximate nearest neighbor search). Given a set P = {p1, . . . pN} ∈

X of dimension D in a metric space M = (X,∆), process the points into a data

structure of size poly(N,D), in time poly(N,D) such that: For any query point q ∈ X

and radius r ∈ R, if there exists p ∈ P such that ∆(p, q) ≤ r, find a point p′ ∈ P such

that ∆(p′, q) ≤ c · r for a constant c.

Increasing ubiquity of high-dimensional data sets has focused research on effec-

tively tackling obstacles of data sparsity and dissimilarity faced in high dimensions.

Like many data structures, k-d trees [6], [17] display weaknesses successfully address-

14

◦
q

r

r(1+ε)

•
pnn•

pann

Figure 1-1: Approximate nearest neighbor

ing the curse of dimensionality [20]. The problem of approximately nearest neighbor

has also been considered by Arya and Mount [3], where they proposed a random-

ized data structure that achieves polylogarithmic query time in the expected case,

and close to linear space. They later propose, in [4] an algorithm with query time

O
(
Dd1 + 6D/εeD · logN

)
and space O

(
D ·N

)
. In their algorithms, as in ours the ap-

proximation error is an arbitrary positive constant, fixed in prepossessing time. Both

the values of D and ε are independent of the data size N . We attempt to strengthen

the result when we are in possession of additional information regarding data set.

It has recently become evident that speed and space gains may be addressed by

exploring an additional avenue. Data ostensibly lying in high-dimensional space RD,

may have a low intrinsic dimension, lying closer to a manifold of dimension d � D

(see [10]). We are interested in algorithms leveraging both the approximation of

results and an automatic adaptability to the intrinsic dimension of the dataset in the

pursuit of efficiently solving the (1 + ε)-approximate nearest neighbor problem.

Theorem 2. Consider a finite set S ⊆ RD of data points, of cardinality |S| = N

and Assouad dimension d. There is a constant cd,D,ε that depends on the dimension

D the intrinsic dimension d and the error ε where cd,D,ε = O
((

D
ε

)O(d log d log (dD
ε)
)

,

15

such that in O(DN logN) time it is possible to construct a data structure of size

O (D ·N), such that for the L1 metric:

• Given any ε > 0 and query point q ∈ RD, a (1+ε)-approximate nearest neighbor

of q ∈ S can be reported in O (cd,D,ε · logN)

The Theorem shows that the space requirements are independent of ε. Once the

data structure is built ε may change without rebuilding the structure. Also, we find

that the dependency to D is logarithmic in the exponent of the constant factor of the

query time, in comparison BBD-trees has a linear dependency on the same exponent.

Finally, a relation to the intrinsic dimension d of the data set is evident on the query

time factor.

1.1 Previous Work

1.1.1 Assouad Dimension (Doubling Dimension)

One of the definitions of the intrinsic dimension, serving our purposes, as it appears

in [10], is the Assouad (or doubling) dimension [5].

Definition 3 (Assouad dimension). For any point x ∈ RD and any r > 0, let

B(x, r) = {z : ‖x − r‖≤ r} denote the closed ball of radius r centered at x. The

Assouad dimension of S ⊂ RD is the smallest integer d such that for any ball

B(x, r) ⊂ RD, the set B(x, r) ∩ S can be covered by 2d balls of radius r/2.

Systematic investigation in the area largely attempts to exploit low intrinsic di-

mensional structure found in common data of interest.

1.1.2 RP-tree

RP-trees are a k-d tree variant presented by Dasgupta and Freud [10]. They possess

the property of intrinsic dimension adaptation. Dasgupta and Freud manage to show

the validity of the following statement: given a cell C in the RP-tree. If the data

16

in C have intrinsic dimension d then all the descendant cells d log d or more levels

below will have at most half the diameter of C. The conclusion derived is that there

is no dependence on the extrinsic dimensionality (D) of the data. The important

distinction from k-d trees comes from the fact that the data is not separated by

coordinate parallel hyperplanes but by a direction orthogonal to a segmentation that

is picked uniformly at random from the unit sphere SD−1 at each level of the resulting

tree.

1.1.3 RKD-trees

Silpa-Anan & Hartley [29] proposed a spatial data structure similar to k-d trees.

RKD-trees evolved from randomized k-d trees of [23]. They attempt to take advantage

of underlying structure of commonly used datasets in computer vision. Additional

randomization is introduced on the choice of hyperplane, that splits space on each

node of the binary trees. Backtracking optimization is exhibited with the use of

multiple trees being searched with optimum heap sort structures.

M. Muja & D. Lowe [26] presented a highly efficient implementation aimed at solv-

ing queries in high-dimensional datasets. The results demonstrate one of the most

competitive approximate nearest neighbor search options, particularly for higher di-

mensional space. The gain of searching for approximate solution does not necessarily

mean a large loss in precision, in comparison to linear-search for exact NN points in

S.

The RKD-tree is a powerful tool on a large variety of high-dimensional investiga-

tions. However, Dasgupta & Freund [10] exhibit that k-d tree like structures (splitting

along coordinate dimensions) do not adapt to the intrinsic dimension of the data. In

general situations this might not be a big deterrent, yet, given the choice, from the

perspective of geometry, we tend to be more inclined to placing a high value on some

theoretical bounds.

17

1.1.4 K-d trees do Not Adapt to Intrinsic Dimension

x

y

• •• •• •

•

•

•

•

•

•
B(0, 1)

1−1

Figure 1-2: The set of points defined in S =
⋃2
i=1{tei : −1 ≤ t ≤ 1 can be covered by

2D balls of half the radius. The Assouad dimenson of S is 2d = 2D ⇒ d = log (2D).

The following counterexample, depicted in [10], illustrates that k-d trees do not

adapt to intrinsic dimension: if we consider S ⊂ RD made up of the coordinate

axes between -1 and 1 then S =
⋃D
i=1 tei : −1 ≤ t ≤ 1. Where ei for i = 1, . . . D

is the canonical basis of RD. S lies within ball B(0, 1) where the center x = 0

and radius r = 1, can be covered by 2D balls of half the ball radius r/2 = 1/2

(see figure 1-2). The Assouad dimension of S is the smallest integer d such that

for any ball B(x, r) ⊂ RD the set can be covered by 2d balls of radius, thus it is

2d = 2D ⇒ log 2d = log 2D ⇒ d = log 2D.

18

1.1.5 Randomly-oriented k-d Trees Adapt to Intrinsic Di-

mension

x

y

x′

y′

θ

Figure 1-3: Rotating the basis by some random θ, 2-dimensional basis

An advantage of k-d trees not retained by RP-trees in approximate nearest neighbor

search (ANNS), is that the search time increases at each level of the tree by at least

O
(
n
)

(produced by a dot product providing the resulting projection at each level).

Vempala successfully preserves the eloquent simplicity of axis-parallel cuts of k-d

trees. In his paper ’Randomly-oriented k-d Trees Adapt to Intrinsic Dimension’ [32],

Vempala creates a new random space, a random rotation of the ambient space (see

figure 1-3), prior to building the k-d tree on the new space. The method is shown to

adapt to the intrinsic dimension and at the same time retain the advantages offered

by k-d tree in ANNS search.

RP-trees provide a robust and simple to implement algorithm. They adapt to the

intrinsic dimension of the data and, without a high degree of difficulty, may exploited

effectively in approximate nearest neighbor search. Despite the promise of results,

there seems to be limited literature supporting the use of RP-trees as a state of the

art option in ANNS. RP-trees do not seem to pose a viable alternative compared to

19

efficient ANNS algorithms that are extensively proven in practice (see [26], [11], [26]

etc.)

Vempala introduces Randomly-oriented k-d trees; making claim of the first or-

thogonal hyperplane splitting structure that adapts to the data’s intrinsic dimension.

Randomly-oriented k-d trees have not yet been implemented and do not seem to lend

themselves to a state of the art algorithm. Although, the process of randomly rotat-

ing the ambient space may be extracted and used in other algorithms. We provide

such an algorithm, combining the aforementioned extracted process with the high

performance RKD-trees implementation of M. Muja & D. Lowe [26]. The algorithm

is (1) shown to compare, in practice, to other state of the art implementations in

regards to search time in ANNS optimization problems and (2) provably adapt to the

intrinsic dimension of the dataset.

1.1.6 Computational Geometry Algorithms Library

The Computational Geometry Algorithms Library (CGAL) [1] is a software library

aiming to provide access to efficient and reliable algorithms in computational geom-

etry. The majority of algorithms focus on 2 and 3 dimensional datasets, but a lately

a larger emphasis is placed in higher D dimensional data. The structures and al-

gorithms operate on geometric objects corresponding to points and space segments.

The current nearest neighbor algorithm search is located within the dD Spatial Search

package.

1.2 Randomly-oriented RKD-trees

We introduce Randomly-oriented RKD-trees, and show that the data structure adapts

to intrinsic dimension. As a high-dimensional ANNS algorithm it is shown, in prac-

tice, as a high-performance option. The implementation utilizes the computational

geometry algorithms library (CGAL). Our algorithm is variation of the randomized

k-d trees implemented and presented by M. Muja and D. Lowe [26], essentially pre-

processing the data, so that the search time is unaffected. The build time contains an

20

added matrix multiplication dependent on the size N and dimension D. We generate

a random rotation matrix, randomly rotating the ambient space, similarly to [32]. A

query point is mapped to the new basis adding O(D logN) to O(D logN) run time.

The main theorem we present provides a strong guarantee for Randomly-oriented

RKD-trees, that they adapt to intrinsic dimension, similarly to Vempala’s assertion

and RP-trees.

Theorem 4 (adapted from Theorem 3 [10] and Theorem 2 [32]). Let S ⊂ RD be

a finite set with n points and Assouad dimension d. Let D logD ≤ c0N for the

Randomly-oriented RKD-Tree, with probability at least 1−ne−c1N for any cell C of the

tree and every cell C ′ that is at least c2D logD levels below C, we have diam(C ′∩S) ≤
1
2
diam(C ∩ S) where c0, c1 and c2 are absolute constants.

Continuing in the same fashion as shown in Vempala’s Randomly-oriented k-d

trees, and focusing more on creating a state of the art high-dimensional ANNS im-

plementation, the theorem shows that simply randomly rotating the data may yield

advances in existing k-d tree like algorithms meant for ANN search in high-dimensions.

Axis-parallel cut structures are further supported as a structure of choice when the

intrinsic dimension is lower than the ambient dimension in search optimization prob-

lems.

1.2.1 Contributions

Typical guarantees given by data structures like k-d trees [6] and BBD trees [4] are:

Space Partitioning Guarantee: There exists a bound L(s), s ≥ 2 on the number

of levels one has to go down before all descendants of a node of size ∆ are of size

∆/s or less. The size of a cell is variously defined as the length of the longest

side of the cell.

Bounded Aspect Ratio: There exists a certain “roundness” to the cells of the tree

- this notion is variously defined as the ration of the length of the longest to the

shortest side of the cell, ratio of the radius of the smallest circumscribing ball

of the cell to that of the largest ball that can be inscribed in the cell.

21

Packing Guarantee: Given a fixed ball B of radius R and a size parameter r, there

exists a bound on the number of disjoint cell of the tree that are of size greater

than r and intersect B. Such bounds are usually arrived at by first proving a

bound on the aspect ratio for cells of the tree.

Noting that the listed guarantees are also the main focus of [12], we place the

same significance in showing that the high-performance approximate nearest neighbor

algorithm we present is adherent to the guarantees placed and proved later in the

paper.

We start by defining the Randomly-oriented RKD-trees ANNS algorithm, we then

present the arguments demonstrating the above guarantees. More specifically, we

present a bound on the number of levels required for reducing the size in a Randomly-

oriented RKD-tree – subsequently the same bound is also shown for Randomly-

oriented k-d tree – not just by 2, but by any given factor s. Our result improves upon

the results presented in [32] and shows how a minor modification in the RKD-tree

[26] pre-processing step can guarantee low-dimensional manifold adaptation. Next

we provide an aspect ratio for both structures. These results are not provided in [32]

and [26]. Due to the randomized nature of the algorithms these are difficult to bound

in a clear-cut fashion but are useful results in providing a packing lemma for both.

The paper is heavily reliant on the structure and advances made in the papers of

Dasgupta and Freud [10], Vempala [32], Dhesi and Kar [12] and on the implementation

provided by M.Muja and D.Lowe [26]. We make similar assertions that fit our needs

and obtain good probability of the adaptation of the algorithm to the low manifold

when that manifold is considerably lower than the ambient one.

We demonstrate that the proposed data structure retains the experimental effi-

ciency in search time depicted by RKD-trees. We exhibit that the adaptation to low

intrinsic dimension combines with an aspect ratio bound to produce a packing lemma

directly. The result associates the intrinsic dimension with a bound on the ANNS al-

gorithm’s search time. Finally, we aim to propose its usability on an open source and

long-established application framework, namely by adding the Randomly-oriented

RKD-trees structure and the associated ANNS algorithm to the Computational Ge-

22

ometry Algorithms Library (CGAL).

23

24

Chapter 2

Randomly-oriented RKD-trees

In this chapter, we introduce randomly oriented randomized k-d trees or Randomly-

oriented RKD-trees, which is the data structure used in our approximate nearest

neighbor algorithm. It is an instance of geometric data structures defined by the

property of hierarchical decomposition of space by axis-aligned hyperplanes. The

main distinctive attribute of Randomly-oriented RKD-trees is that the structure is

shown to adapt to the intrinsic dimension d of the data set, something that is shown

to play a role in the determination of the (1 + ε)-approximate nearest neighbor query

time.

The data structure recursively subdivides space by axis-aligned hyperplanes as

evenly and time efficiently as possible, given the randomization that is introduced.

The expectation is, similarly to the optimized kd-tree [17], [6], that the cardinality of

points associated with the nodes on any path in the tree decreases exponentially. In

contrast to the kd-tree, RKD-trees [29], [26] introduce some randomization to each

tree thus removing the optimality of balance at each level. The creation of multiple

trees then exploits the variation in each tree’s artificial imbalance. The Randomly-

oriented k-d trees (see Vempala [32]) randomly rotate the space S the points lie in.

The important feature of Vemplala’s structure is that it contains the properties of

axis-alignment in hyperplane direction, yet at the same time is shown to adapt to

the doubling dimension (intrinsic dimension) of the data set. The Randomly-oriented

RKD-trees structure is formed on a combination of the previous ideas. It is made

25

to achieve high-performing ANN search results in high dimensional space, taking

advantage of fast backtracking methods. It is also formed to take advantage of the

intrinsic dimension of data set with respect to ANN query search.

Randomly-oriented RKD-trees are analogous to balanced tree structures based on

orthogonal partitioning of space. The K-d tree structure [6] generalizes the binary

tree to high-dimensional space. Optimized k-d tree [18] introduces a logarithmic

search-time, the logarithmic search-time does not however extend to high-dimensional

search. K-d trees are an effective structure when used in nearest neighbor algorithms

in low dimensions, however their efficiency diminishes for high-dimensional data. The

RKD-tree structure [29] in introduces randomization on parameters, selecting the

partitioning value in a random manner, while structures such as k-d trees [6] select

the partitioning dimension in a cyclical order. Randomly-oriented RKD-trees are

also similar to other structures such as Randomly-oriented k-d tree [32], the rotated

tree structure presented in [29], which rotate the space to create different structures

through which to search. We will show that it is possible to create a structure which

combines features of all the previous structures so that it adapts to the intrinsic

dimension of the data set and at the same time performs highly efficient ANN search

in high-dimensional space by preserving backtracking efficiency.

2.1 Overview of the Construction Process

What can be thought of as the precursor to the construction of Randomly-oriented

RKD-trees is a random rotation of the space. The structure is then constructed

through the repeated application of splits, either median or mean. However, we have

not tested both within the same structure. The types of splits represent the way

of subdividing a cell into two smaller ones called its children. A split partitions a

cell by an axis-orthogonal hyperplane. The splitting coordinate along which the data

is split is called the cut-dimension. The value separating the values along the cut-

dimension is called the cut-value. The two children are called the left child and right

child depending on whether the coordinates along the cut-dimension are less than or

26

greater than the cut-value of the splitting plane.

The Randomly-oriented RKD-trees is constructed through a series of splits. Given

a set S of N data points in RD. The root of each of the Randomly-oriented RKD-trees

is a node whose associated cell is associated set is the entire set S. The recursive

construction algorithm is given a cell and a subset of data points associated with

this cell. Each stage of the algorithm that creates the structure determines how to

subdivide the current cell though splitting and then partitions the points among the

child nodes. The process is repeated until each cell on the level is associated with at

most one point. These nodes are called the leafs.

2.2 Randomly Rotating the Space

Prior to building any structure on the given data set, an essential process relating to

the structures adaptability to the intrinsic dimension must first be performed. The

process dictates we select a random orthogonal basis, then build an RKD-tree using

this basis. That is, we create a rotation matrix in D-dimension and multiply it by

a matrix representing the data set S. Using the subgroup algorithm of Diaconis &

Shashahani [13], we recursively generate a rotation matrix. The initial step involves

the construction of a 2 × 2 rotation matrix. Then, each step i to i + 1, involves the

generation of a vector v uniformly distributed on the i-sphere, in O
(
i
)

time at each

step. A rotation at each step is embedded into a matrix of the next larger size such

that it generates the rotation of the current size. Each such step employs the use of

the Gram-Schmidt process [33], and has a time complexity of O
(
D · i2

)
at each step.

A matrix multiplication is performed at each step, which we naively say contributes

O
(
i3
)

(more sophisticated methods are employed for matrix multiplication in the

implementation). The process continues until a rotation matrix is created, of size

equal to the dimension D of the data set.

27

2.3 Partitioning the Points

Prior to describing how the splitting algorithms operate, we describe how the points

are partitioned at each level of the tree. We apply the same method as the RKD-trees

implementation found within the Fast Library for Approximate Nearest Neighbors

(FLANN) library of Muja & Lowe [26]. We assume that the data points that are

associated with the current node are stored in a vector of size N . Each point is

associated with a D dimensional array. The initial tree containing all the data points

is built in O
(
K · N · logN

)
time, a cut-value is determined in time O

(
K
)

which

depends on the splitting algorithm used. The points on each level are separated into

the children in O
(
N
)

time, on a tree of size O
(
logN

)
.

To partition the points, we determine the cut-value for each cut-dimension at

which the points will be separated. At each node and in O
(
N
)

time the points

are placed into two separate containers, a left child and a right child depending on

whether the value of the cut-dimension coordinate of a point is less than or greater

than the cut-value.

We complete the overview of the construction algorithm by describing the two

splitting algorithms we employ for creating the hyperplane of each partition. The

two methods are the mean split algorithm [26] and the median split algorithm [32].

Both approximate the true values mean or median with a different approach. This

bounded random deviation from the true values provides assurance that with high

probability no two trees created are the same. The variance also plays an integral

role in the proof that the structure adapts to the intrinsic dimension of the data set.

2.4 Mean Split

The mean algorithm is characterized by the speed at which a fairly balanced tree

can be derived. A cell within a tree is any cell that has been created by a recursive

application of the mean split rule, starting from an initial cell, i.e. the root of the

tree, that is associated with all the points in the data set.

28

Mean split rule. The main incentive here is to produce a balanced split at each

node by calculating both the cut-dimension and cut-value in a time efficient manner.

At the same time a positive side effect is: given any cut-dimension the same points

will not be separated into two child nodes in exactly the same fashion. Let m ∈ N>0,

where m ≤ N , the sample size for which the mean and variance is determined for

each dimension in the data set. We calculate the variance off a uniform random

sample of each dimension, in time O
(
mD

)
which for small m acts more like O

(
D
)
.

The dimension indexes are sorted in accordance to the value of the variance. From

a subset of size mv ∈ N>0, where mv � D an index associated with the dimensions

of the highest variance is picked uniformly at random. The index returned from the

process is the cut-dimension. Then the cut-value is determined as the mean associated

with the cut-dimension.

2.5 Median Split

The median algorithm’s main function is to provide the theoretical guarantees needed

for the main proof. It is also implemented, yet not preferred to the mean algorithm

when construction time is of higher importance. By using the median algorithm in

our proof we avoid the added complication of taking each dimensions’ distribution

into account.

Median split rule. As with the previous split algorithm, balancing the tree is

of importance. Let m ∈ N>0, where m ≤ N , the sample size for which variance

is determined for each dimension in the data set. We calculate the variance off a

uniform random sample of each dimension, in time O
(
mD

)
which for small m acts

more like O
(
D
)
. The dimension indexes are sorted in accordance to the value of the

variance. From a subset of size mv ∈ N>0, where mv � D an index associated with

the dimensions of the highest variance is picked uniformly at random. The index

returned from the process is the cut-dimension. The implementation then calls for

calculating the diameter ∆ of the bounded set S
′ ⊆ S that is associated with any

given cell in the tree. The difference here is that the cut-value is determined by

29

determining the value of the median along the cut-dimension and then selecting a

value δ uniformly at random that lies within a range [− 6∆√
D
, 6∆√

D
]. The range chosen

is more a technical matter which is clarified in the next section.

2.6 Multiple Trees

Finally, a main distinction from other more classically built data structures is that

RKD-trees, and subsequently Randomly-oriented RKD-trees, manage to offer a struc-

ture that may utilize a k number of trees when used within a process. As described

earlier, each tree has been built by injecting some randomization as to produce a dif-

ferent tree each time. The usefulness, in relation to ANN search, relates to achieving

highly efficient backtracking performance. When each tree is searched initially one

by one down to the leaf, a sorted heap containing the best subtree not visited is built

containing nodes from all trees. The best ones are then traversed up until the 1 + ε

approximation rule is achieved. The effectiveness of the method is currently exem-

plified within the experimental results, and does not play a role in the theoretical

guarantees provided in the next section.

30

Chapter 3

Size Reduction Theorem

3.1 Extending Theorem 4

The Randomly-oriented k-d Tree structure adapts to doubling dimension of data

(see [32], section 3.4). According to Theorem 22 of [10] low-dimensional manifolds

have low doubling dimension (see definition 3), thus the structure adapts to manifold

dimension. The following conclusions, more importantly, show an adaptation of the

Randomly-oriented RKD-tree structure to the doubling dimension of a given dataset.

We extend the result of Theorem 2 of [32], bounding the number of levels needed

to decrease the size of a given cell by a factor of s > 2. Given we have data of a set S

in a cell C of radius ∆, after c1d log d levels of partitioning the resulting cell will have

a radius lesser than or equal to ∆
2

. It is argued in [12] that given the large number

of nodes at the c1d log d levels and the fact that the success probability in 4 is just

above a constant bounded away from 1, it is not possible to argue that after another

c1d log d levels of partitioning the descendants will have a radius ≤ ∆/4. Extending

the result found in [32] and adapting it to the Randomly-oriented RKD-tree (and

Randomly-oriented k-d Tree) structure we have:

Theorem 5 (Extension of Theorem 2 in [32], taken from [12]). For any δ > 0, with

probability at least 1− δ, every descendant c
′

which is more than c1d log d+ log(1/δ)

levels below C has radius(C
′
) ≤ radius(C)/2.

31

We use arguments presented in [12], showing that the same enhancements will

work for Randomly-oriented RKD-tree (and Randomly-oriented k-d Tree) structures.

Taking cell C of radius ∆ go down L = c1d log d+2 levels to 2L nodes. Then a further

L
′

= c1d log d + L + 2 levels below. The probability of any of these descendants is

greater than ∆
4

after L
′

levels is less than 1
4·2L′ . So with probability at least 1− 1

4
−

1
4·2L′ ·2

L′ ≥ 1
2

all descendants after L
′
levels of partitioning will have radius ≤ ∆

4
. This

argument is formulated in the following Theorem:

Theorem 6 (taken from [12]). There is a constant c2 with the following property.

For any s ≥ 2, with probability at least 1− 1
4
, every descendant C

′
which is more than

c2 · s · d · log d levels below C has radius(C
′
) ≤ radius(C)/s.

Proof. Assume s is a power of 2. Proving by induction and taking as base case (s = 2)

the argument presented in Theorem 5. Induction step: let L(s) be the number of levels

it takes to reduce the size by a factor of s with high confidence. Then:

L(s) ≤ L(s/2) + c1d log d+ L(s/2) + 2 = 2L(s/2) + c1d log d+ 2.

Continue by solving the recurrence,

L(s) ≤ 2L(s/2) + c3d log d+ 2

≤ 2(2L(s/22) + c3d log d+ 2) + c3d log d+ 2

= 22L(s/22) + 2c3d log d+ 22 + 2

≤ 22(2L(s/23) + c3d log d+ 2) + 2c3d log d+ c3d log d+ 22 + 2

= 23L(s/23) + 22c3d log d+ 2c3d log d+ c3d log d+ 23 + 22 + 2

. . .

≤ 2iL(s/2i) + d log d ·

(
i−1∑
j=0

2j

)
+

(
i∑

j=1

2j

)

For i = log s ⇒ L(s) = 2log sL(s/2log s) + c3d log d ·
(

1−2log s

1−2

)
+
(

log s·(1−2log s)
1−2

)
. Thus,

L(s) = O
(
sd log d

)
.

32

3.2 Generalizing the size reduction theorem

The extensions of Theorem 4 lay the groundwork for the generalization we prove in

this section.

Theorem 7 (Adapted from Theorem 5 in [12]). There is a constant c3 with the

following property. Suppose a Randomly-oriented RKD-Tree (or Randomly-oriented

k-d Tree) is built using data set S ⊂ RD. Pick any cell C in the Randomly-oriented

RKD-Tree; suppose that S ∩ C has doubling dimension ≤ d. Then for any s ≥ 2,

with probability at least 1 − 1
4

(over the choice of randomization in constructing the

subtree rooted at C), for every descendant C
′

which is more than c3 · log s · d log sd

levels below C, we have radius(C
′
) ≤ radius(C)/s.

The result guarantees a reduction for a logarithmic factor. We outline the frame-

work of the proof, and set the foundation of the main theorem which we prove later

on. Suppose the data set S ⊂ RD has doubling dimension d, which is used to build

the trees. Let C be some cell of the tree. If S ∩ C lies in a ball of radius ∆, what

we aim to show is that after O
(
log s · d log sd

)
levels of splitting, starting from cell C,

each of the resulting cells is contained in a ball of radius ≤ ∆/s.

Cover S ∩ C with N balls B1, B2, , . . . , BN of radius O
(

∆
s·
√
d

)
. Fix two balls Bi

and Bj at a distance greater than (∆/s)−(∆/(s·
√
d)). Then, a projection orthogonal

to all the basis vectors used for cuts so far has a constant probability of separating

the balls, completely, from one another. N2 pairs of balls exist, so after Θ(d log d)

levels below C, in each tree, each cell contains points from Bi that is within a distance

(∆/s)− (∆/(s ·
√
d)) of each other. Thus the radius of the cells is ≤ ∆/s.

Randomly-oriented RKD-trees’s method of choosing a random basis relies on pick-

ing a series of orthogonal unit vectors to each subsequent formed basis. Its success

in this case is dependent on the relation of the dataset size to the dimension size.

There must exist an exponential dependence between the two, given the dataset size

is greater than the dimension size. RP-trees rely on the independent randomness

of each projection, we are able to achieve a ’pseudo’ independent randomness. But

’pseudo’, as is shown in the following sections, is enough.

33

3.3 Precursor

The proof relies on the use of a very effective tool in such circumstances, the Johnson-

Lindenstrauss Lemma [21]. We use the same version presented in [10]. Let V be a

subspace of RD, and πV (.) an orthogonal projection to V.

Lemma 8. Fix a unit vector u ∈ RD, let V be a random k dimensional subspace

where k < D, and ε > 0 then:

P(‖πV (u)‖> (1 + ε) k
D

) ≤ e−
k
4

(ε2−ε3)

P(‖πV (u)‖< (1− ε) k
D

) ≤ e−
k
4

(ε2−ε3)

Proof. See Appendix.

Thus for any finite set of points S ⊂ RD, with probability at least 1−2
(|S|

2

)
e−

k
4

(ε2−ε3)

the following inequality holds true

∀u, v ∈ S,

(1− ε) k
D
‖u− v‖2< ‖πV (u− v)‖2< (1 + ε) k

D
‖u− v‖2

For k = 1:

Lemma 9. Let u ∈ RD and v ∈ RD be a random unit vector. For any β > 0,

(a) P(‖πv(u)‖≤ β√
D
‖u‖) ≤ α

√
2
π

.

(b) P(‖πv(u)‖> β√
D
‖u‖) ≤ 2

β
e−

β2

2

Proof. See Appendix.

Lemma 10 (Lemma 5 in [32]). Let S ⊂ B(x,∆) be a set of doubling dimension d.

Let V be an arbitrary subspace of RD, v be a random unit vector orthogonal to V ,

0 < δ < 1 and β =
√

2(d+ log(2/δ)).

Then for any 0 < δ < 1, with probability > 1 − δ over the choice of projection and

r = 3 · ∆√
D−d̄
·
√

2(d+ log 2
δ
), we have πv(S) ⊆ [πv(x)− r, πv(x) + r].

Proof. See Appendix.

34

Most projected points of S onto R1 lie in a central interval of of radius at most

O
(
∆/
√
D
)
.

Lemma 11. Suppose S ⊂ RD is within a ball B(x,∆). Choose 0 < δ ≤ 1, 0 < ε ≤ 1

such that δε ≤ 1
e2

. For a measure µ on the set S, with probability > 1 − δ over the

choice of random projection onto R1, the points will all lie within ∆√
D

√
2 log(1

δε
) of

projected point πv(x). A small fraction ε of πv(S) lies outside of that radius.

Proof. See Appendix.

Lemma 12. Given a normal distribution, µ = median.

Proof. See Appendix.

The median of the projected points also lies in the same interval. But the projected

points lie on a univariately normal distribution of some projected vector πv(S), and

from lemma 12 µπv(S) equals median(πv(S)). Setting ε = 1/2.

Corollary 13. For S ⊂ B(x,∆), δ ∈ (0, 2/ε2] and a random unit vector v ∈ Rn,

with probability at least 1− δ,

‖median(πv(S))− πv(x)‖≤ ∆
D

√
2 log(2

δ
).

Lemma 14. Let S ⊆ B(x,∆), and z ∈ B(x,∆). Let V be a d̄ -dimensional subspace

of RD with d̄ < D/9 and v be a random unit vector orthogonal to V . Then, with

probability at least 0.95,

‖median(πv(S))− πv(x)‖≤ 6∆√
D−d̄

Proof. See Appendix.

Lemma 15. Let B = B(z, r̄) be a ball contained inside a cell of radius ∆ enclosing

a set of doubling dimension d. A random split separates the data of the ball with

probability at most 3r̄
√
d

2∆
.

35

Proof. A random projection line chosen from the basis D − d̄ is the line to which

the data is projected to, a line of which a split point is chosen within the interval

of length 12∆√
D

. Note that the random direction is independently chosen to the split

point. The probability that the data on the interval πv(B) of radius r is split is r̄ ·
√
D

6∆
.

Letting ρ be the random variable giving the radius of the interval πv(B) we have the

probability of B getting split:

√
D

6∆

∞∫
0

rP[ρ = r]dr =

√
D

6∆

∞∫
0

r∫
0

P[ρ = r]dtdr

=

√
D

6∆

∞∫
0

∞∫
t

P[ρ = r]drdt =

√
D

6∆

∞∫
0

P[ρ ≥ t]dt

The probability upper bound of P
[
ρ ≥ 3r̄√

D−d̄

√
2 (d+ ln 2))

]
≤ η plus the upper

bound of any probability P [ρ ≥ t] ≤ 1 for any variable t. Thus setting

t = 3r̄√
D−d̄

√
2 (d+ ln 2)) we have

∞∫
0

P[ρ ≥ t]dt =

l∫
0

P[ρ ≥ t]dt +

∞∫
l

P[ρ ≥ t]dt

≤
l∫

0

1dt +

0∫
1

ηdη

=
r̄
√
D

2∆
√
D − d̄

√2(d+ ln 2) +

1∫
0

dη√
2(d+ ln 2

η
)



Looking at solving
1∫
0

dη√
2(d+ln 2

η
)
, we substitute the variable η simplifying things to solve

36

given its limits. Set u =
√
d+ ln 2

η

⇒u2 = d+ ln
2

η
⇒ eu

2

= ed+ln 2
η

⇒eu
2

= ed
2

η
⇒ η = 2ede−u

2

⇒dη = 2ed(−2u)e−u
2

du

We substitute the limits so given g(η) =
√

2(d+ ln 2
η
)

for η = 0⇒ g(0) = limη→0(d+ln 2
η
) =∞ and η = 1⇒ g(1) =

√
d+ ln 2

1
=
√
d+ ln 2,

continuing in providing the upper bound:

≤ r̄

2∆

√2(d+ ln 2) + 2
√

2ed
∞∫

√
d+ln 2

e−u
2

du



An integral of the form
∞∫
a

e−u
2
du is solved in the following manner:

∞∫
a

e−u
2

du =
1

2

 ∞∫
−∞

e−u
2

du+

a∫
a

e−u
2

du


≤ π

2

[
1−

√
1− e−a2

]
≤ π

2
e−a

2

since its true that for 0 < x < 1 ⇒ 1−
√

1− x < x. If we let d ≥ 1 we arrive at the

probability upper bound of ball B getting split r̄
2∆

[√
2(d+ ln 2) +

√
π
2

]
≤ 3r̄

√
d

2∆
.

3.4 Proof of Size Reduction Theorem 7

Consider two balls in the defined cover, B = B(z,∆) and B′ = B(z′,∆) where

z, z′ ∈ B(x,∆) and ‖z − z′‖≥ ∆
2
− r. A split is either a ”good split”, a ”bad split”

or a ”neutral split”. A ”good split” is defined as one that separates B and B′, a

”bad split” as one that intersects both B and B′ and a ”neutral split” as one that

intersects one or none of the two balls.

37

Bi

Bj

∆

badneutral

good

neutral

Figure 3-1: Depicted are the three types of splits in a 2-dim scenario. Good split
cleanly separates B(x,∆) and B′(x,∆). Bad split intersects both B and B′. Neutral
split either intersects just one ball, or keeps both balls on the same side of the split.

Lemma 16. Let S ⊂ B(x,∆) have doubling dimension d. Pick balls B = B(z,∆)

and B = B(z′,∆) and a space V of dimension D such that

1. z, z′ ∈ B(x,∆)

2. ‖z − z′‖≥ ∆
2
− r

3. r ≤ ∆
(288
√
d)

Let v be a random unit vector orthogonal to V , and s be a point uniformly at random

in the interval [median−6∆/
√
D, median+6∆/

√
D]. Then with probability at least

1
96·s , πv(B) and πv(B

′) lie on different sides of s.

Proof. For δ = 2/e31 and r ≤ ∆/288
√
d, then πv(B) is within the interval of radius

3 r

s·
√
D−d̄

√
2(d+ ln(2/δ)):

3
r

s ·
√
D − d̄

√
2(d+ log(2/δ)) ≤ 3∆

288 · s ·
√
d
(
D − d̄

)√2 log 2(e(2/δ))

≤ ∆

96 · s

√
64

D − d̄

≤ ∆

12 · s ·
√
D − d̄

38

We also show that the projected distance between the small ball centers is:

‖πv(z − z′)‖ ≥
∆

4 · s ·
√
D − d̄

Applying Lemma 9 (a) and setting α =
√

10
9
/4

P

(
‖πvπW (z − z′)‖≤ α

‖πW (z − z′)‖
s ·
√
D − d̄

)
≤ α

√
2

π

P

(
‖πvπW (z − z′)‖≤ α

√
9/10

‖z − z′‖
s ·
√
D − d̄

)
≤ α

√
2

π

P

(
‖πvπW (z − z′)‖≤ ∆

4 · s ·
√
D − d̄

)
≤ 1

4

√
20

9 · π
<

3

14

With probability at least 1 − 3
14

, there is a gap of at least between πv(B) and

πv(B
′), given by

∆

4 · s ·
√
D − d̄

− 2
∆

12 · s ·
√
D − d̄

≥ ∆

4 · s ·
√
D

P[B and B’ cleanly separated]

≥ P[U is good] · P[B and B’ cleanly separated | U is good]

≥ 1

2
· ∆/4 · s ·

√
D

12∆/
√
D

=
1

96 · s

As stated a clean separation is expected with probability at least 1
96·s .

Lemma 17. Given the hypothesis of Lemma 16,

P[πv(B), πv(B
′) both intersect the split point] < 1

192·s

Proof. Requiring a bound inversely proportional to s (as noted in lemma 11 of [12])

the probability that a bad split is less than min{P(EB1),P(EB2)}, where EB is the

39

event that ball B is split. Thus, noting the previous observation and applying the

result of lemma 16 to it, a random split of the cell is a bad split with respect to this

pair with probability ≤ 1
192·s

(
= 3r̄

√
d

2∆
· ∆

288·s·
√
d

)
.

m(πv(S)). . .
π(B) π(B′)Ω(∆/

√
D − d)

O
(
∆/
√
D − d

)
Figure 3-2: Bounded distance of each ball from each other and from projected median
m

Setting up the proof for Theorem 7, starting in a cell C containing a pair of

balls the probability that a cell k levels below levels data from both the balls is

exponentially small in k. Considering the traversal of enough levels, we can take a

union bound over all pairs of balls whose centers are well separated thus resulting in

the desired proof of the Theorem.

Proof of Theorem 7. Let S ⊆ B(x,∆) with doubling dimension d, be a set of

points in a cell C of the tree with a diameter ∆ = diam(C ∩ S). S can be covered

using O
(
(sd)2d

)
balls, with radii ∆/288 · s ·

√
d, where the centers are separated

by at least ∆/s − ∆/288s
√
d. Let d̄ < c0D and {v1, . . . , vD} be a set of random

orthonormal vectors, with W = (v1, . . . , vd̄)⊥. Before we continue any further, we

prove the following:

Lemma 18. Let pji be the probability that cell i levels below C has a descendant j

levels further below cell i which contains data from both balls previously defined to lie

in C. We want to show that p0
k ≤

(
1− 1

192s

)l · plk−l.
40

Proof.

p0
k ≤ P [“good split” at level 0] · 0+

P [“bad split” at level 0] · 2p1
k−1+

P [“neutral split” at level 0] · p1
k−1

≤ 1

192s
· 2p1

k−1 +

(
1− 1

192s
− 1

96s

)
· p1

k−1

≤
(

1− 1

192s

)2

· p2
k−2

...

≤
(

1− 1

192s

)l
· plk−l

An inductive proof remains to show the final result that L(s) = O
(
d log s log sd

)
.

Let s = 2 then by Theorem 5 we have a “good split” with probability at least 1
192

and “bad split” at most 1
384

. For the inductive step we assume that with probability

> 1 − 1
4
, in L(s) levels, the size if all the descendants goes down by a logarithmic

factor s. Set the probabilities of a “good split” and a “bad split” in a cell at a depth

l with notation plg and plb respectively. Assume that E the event that the radius of

each cell at level l̄ = L(s/2) such that l̄ < ∆
s/2

, where cell is C̄.

pl̄g ≥ P
[
“good split” in C̄|E

]
· P [E] ≥ 1

196
·
(

1− 1

4

)
≥ 1

296

pl̄b = P
[
“bad split” in C̄|E

]
· P [E] + P

[
“bad split” in C̄|¬E

]
· P [¬E]

≤ 1

384
· 1 +

1

384
· 1

4
≤ 1

306

For any m > 0, pl̄m ≤
(
1− 1

9057

)
For constant c4 and k = l̄ + c4d log sd and applying

lemma 18, p0
k ≤

(
1− 1

192s

)l̄ · (1− 1
9057

)c4d log sd ≤ 1
4(sd)2d

.

41

Solving the recurrence,

L(s) ≤ L(s/2) + c4d log sd

≤ L(s/22) + 2c4d log sd

≤ L(s/22) + 3c4d log sd

. . .

≤ L(s/2i) + ic4d log sd

For i = log s ⇒ L(s) = L(s/2log s) + c4d log s log sd. Thus, L(s) = O
(
d log s log sd

)
.

42

Chapter 4

Nearest Neighbor Algorithm

4.1 Structure Properties

Prior to describing the approximate nearest neighbor query algorithm and showing

the search time we need to define the properties of the Randomly-oriented RKD-trees

structure which relate to ANN query search. The verification of these properties is

useful when providing an upper bound to the number of leaf cells visited by approx-

imate nearest (and k-nearest) neighbor queries and ultimately providing an upper

bound on the a query’s ANN (k-ANN) search time.

Given a query point q ∈ RD, a simple descent of the tree assures that the cell

associated with q will be visited in O
(
logN

)
time. The height of the tree is logN ,

and a O
(
1
)

comparison of the cut-dimension coordinate is performed at each level

down to a leaf. In addition, each leaf cell visited is associated with exactly one point.

These two properties are a consequence of the construction of Randomly-oriented

RKD-trees.

The next significant property we address is the roundness of the cells or the aspect

ratio, that is, the ratio between the shortest and longest length of any of the cells.

Having very elongated cells to search through in a tree may increase query times up

to O
(
N
)
. An assurance that the cells created have an aspect ratio that does not fall

under small thresholds, no matter how unaccommodating the clustering of points is,

may be of vital importance to the search time.

43

A property which relates to backtracking efficiency of a tree, is that the number of

cells of size at least r that intersect an open ball of radius R > 0 be bounded by above

by some function. The packing guarantee is later show to be the multiplicative factor

of the search time. The aspect ratio bound is used along with the result of Theorem 7

to prove that a packing guarantee exists. We are fortunate since we are able to use

similar arguments to the ones used in [12] to prove bounds for a The RPTREE-MAX.

The proof is a two step process. First we show that the proposed structure will,

with high probability, inscribe any ball B, as defined in the above theorem, in a

Randomly-oriented RKD-tree cell C with radius no more than O
(
Rd
√
d log d

)
. In

the second part we show that the number of disjoint cells of radius at least r that

intersect ball B is bounded by the number of descendants of C with radius r. An

upper bound is achieved with some help from theorem 6.

We aim to prove an upper bound on the radius of the smallest Randomly-oriented

RKD-tree cell that completely contains a given ball B of radius R. This is what

bounds the aspect ratio of this cell. Let there be balls of radius ∆/512
√
d surrounding

B at a distance of ∆/2 (see Figure 4-1), covering the annulus centered at B of mean

radius ∆/2 and thickness ∆/512
√
d. The annulus may be covered by dO

(
d
)

balls.

This fact suffices in order to make our point. Without loss of generality assume that

the centers of these balls lie in C.

Notice that if B gets separated from the balls, without getting split in the process,

then it will lie in a cell of radius < ∆/2. Fix a ball Bi, we define two types of random

split of the Randomly-oriented RKD-tree: (a) useful if it separates B from Bi, and

(b) useless if it splits B. We use two facts, first slightly manipulating lemma 16, we

have the probability of a useful split being 1
96·s , second Lemma 15 which says that

the probability of a useless split is at most 3R
√
d

2∆
.

Lemma 19 (taken from Lemma 14 of [12]). There exists a constant c5 such that the

probability of a ball of radius R in a cell of radius ∆ getting split before it lands up in

a cell of radius ∆/2 is at most c5Rd
√
d log d

∆
.

44

C

Bi

∆
2

B

useful

useless

Figure 4-1: The centers of each ball Bi is located at a distance ∆/2 from the center.
Their radius is ∆/512

√
d

Proof. (Adapted from proof of lemma 14 [12].)

P[E[k]] ≤ min

{
1,

(
1− 1

192

)k−1

· dO
(
d
)}
· 3R
√
d

2∆

It is true that P[E] ≤
∑
k>0

P[E[k]], thus:

P[E] ≤
∑
k>0

P[E[k]]

=
∑
k>0

min

{
1,

(
1− 1

192

)k−1

· dO
(
d
)}
· 3R
√
d

2∆

≤

(
n∑
i=1

1 +
∞∑
i=1

1

4

(
1− 1

192

)k
· dO
(
d
))
· 3R
√
d

2∆

Given we may assume n = O
(
d log d

)
the probability of event E is bounded by

O
(
Rd
√
d log d
∆

)
.

Lemma 20 (taken from Lemma 15 of [12]). There exists a constant c6 such that with

probability > 1 − 1/4, a given ball B of radius R will be completely inscribed in an

Randomly-oriented RKD-tree cell C of radius no more than c6 ·Rd
√
d log d.

45

Proof. (Taken from the proof of Theorem 15 [12]) Let ∆∗ = 4c5Rd
√
d log d and ∆max

be the radius of the entire dataset. The event that ball B is unsplit in a cell of radius

∆max

2i
may be denoted as F [i]. P[F [m]|F [m− 1]] = P[E], where P[E] has been defined

previously in Lemma 19 and m = log ∆max

∆∗
. Trivially P[F [m]|¬F [m − 1]] = 0. The

probability P[F [m]] is then:

P[E] =
m−1∏
i=0

P[F [i+ 1]|F [i]] =
m−1∏
i=0

(
1− c5Rd

√
d log d

∆max/2i

)

≥ 1−
m−1∑
i=0

c5Rd
√
d log d

∆max/2i
= 1−

m−1∑
i=0

c5Rd
√
d log d

2m−i∆∗

Let c6 = 4c5,

=
m−1∑
i=0

c5Rd
√
d log d

2m−i4c5Rd
√
d log d

= 1− 1

4

m−1∑
i=0

1

2m−i
≥ 1− 1

4

Theorem 21 (taken from Theorem 13 of [12]). Given a fixed ball B(x,R) ⊂ RD, with

probability greater than 1/2 (where the randomization is over the construction of the

Randomly-oriented RKD-trees), the number of disjoint Randomly-oriented RKD-trees

cells of radius greater than r that intersect B is at most
(
R
r

)O
(
d log d log (dR/r)

)
.

Proof. (of Theorem 21, taken from proof of Theorem 13 [12]) Given we have a ball

B of radius R that lies in a cell C then Theorem 19 shows that with probability

at least 3/4 cell C will have a radius of at most R
′

= O
(
Rd
√
d log d

)
. We need to

establish an upper bound on the number of disjoint cells of radius at least r, this

can be done by counting the number of descendants of C of radius no less than r.

From Theorem 6 we know that with probability at least 3/4 the radius of the cells

will decrease to a radius below r in log (R
′
/r)d log (R

′
/r) levels of reduction. Thus,

the number of children is at most 2(log (R
′
/r)d log (R

′
/r)) with a success probability of at

most 3/4 · 3/4 = 9/16 > 1/2.

Now that we have established a packing guarantee, what remains is to bound

46

the time it takes to prioritize the cells around the query point. The method is a

more complex version of the priority search techniques used for kd-trees by Arya and

Mount [3]. The added complexity arises from the fact that multiple near cells are

prioritized from T different trees.

Given that T the number of Randomly-oriented RKD-trees built in the construc-

tion process, the search algorithm begins its process by searching through each tree

one at a time. Beginning with the root of the tree we recursively repeat the same

process. We extract the cut-dimension and cut-value associated with the node. The

query’s cut-dimension coordinate value is compared to cut-value, consequently the

next node traversed (left or right) is determined. The branch not visited is added

to a priority heap; the heap is sorted according to the accumulated L1 distance,

accumDist = accumDist + (q[cutDimension] − cutV alue), along the path so far.

Each leaf node visited, is added to a set of visited leafs. If a leaf has previously been

visited in another tree then it is not visited again. If it has not, then it is inserted

along with its Euclidean distance to the query point and index value into the prior-

ity queue. An added parameter also keeps track of the number of leafs visited, if it

exceeds a predefined value then the function terminates. The proof of correctness is

similar to the proof provided by Arya and Mount [3], being mindful of the fact that

a search of multiple trees may visit the same points multiple times.

There are at most O(N) nodes within a heap, thus the minimum may be extracted

in O
(
logN

)
time. Each step of the tree descent is processed in O

(
1
)

time plus O
(
1
)

to insert a node into the heap, assuming we use a Fibonacci heap [16]. Thus the time

needed to enumerate the nearest m cells to the query point is O(m logN)

4.2 Approximate Nearest Neighbor Queries

We now have the capacity to show what the time needed to answer a (1 + ε)-

approximate nearest neighbor (Theorem 2), given that the spatial subdivision occurs

with a data structure that satisfies the properties highlighted in the previous section.

The function depends on the dimension D, the error ε and the data set size N . Given

47

a query point q ∈ RD, the output of the algorithm is a point p whose distance from

the query point, dist(q, p) is at most a factor (1 + ε) greater than the distance of the

query point from the true nearest neighbor pnn.

Recall that the algorithm induces randomization in the formation of T different

subdivisions of the same space. The algorithm begins by traversing each of the T

trees, down to a leaf cell containing exactly one data point. The randomized quality

of the algorithm increases the probability that the point residing in the cell containing

the query point will differ for two more of the T different space subdivisions. The

ANN candidate is one of the T points examined that is nearest to the query point.

In the process of each traversal of the trees, the algorithm maintains a sorted heap

(sorting by distance to the query point) that contains the branches not taken in the

traversal. A branch is added if its L1 distance from the query point is less that a

1 + ε factor from the current ANN candidate. If a branch is traversed and the leaf

cell visited contains a closer point to the query than the current ANN candidate.

The search terminates and returns the approximate nearest neighbor when all the

distances of the branches in the heap are greater than the distance to the ANN

candidate.

The total query time is established with the help of the following lemma:

Lemma 22. The number of leaf cells examined by the ANN algorithm is at most(
d
ε

)O(d log d log (dD
ε

))
for the L1 metric.

Proof. If the distance from the query point to the last leaf cell checked is denoted

as l. We know that all the cells traversed so far are within the distance l from

the query point. If p is the candidate approximate nearest neighbor thus far, then

l(1 + ε) ≤ dist(q, p).

We claim that no cell seen so far can be of size less than lε/D. To prove by

contradiction we suppose that a cell of size greater than lε/D has in fact been visited.

The cell is within distance l of q, and hence overlaps a ball of radius l centered at

q. The diameter of the cell in the L1 metric is at most D times the longest length,

thus is less than D · lε
D

= lε. The search must have encountered a point at a distance

48

less than l + lε = l(1 + ε) from q. However the result contradicts that point p is the

current candidate approximate nearest neighbor thus far.

The number of cells visited up until the algorithm returns is bounded by the

number of cells of size at least lε/D than can overlap a ball of radius l centered at q.

From the packing lemma we have shown earlier and the fact stated in this proof, the

number of cells is at most
(

R
Rε/D

)O(d log d log (d R
Rε/D

))
=
(
D
ε

)O(d log d log (dD
ε

))
.

The result of lemma 22 is used to show Theorem 2.

49

50

Chapter 5

Implementation

Given a set of N data points in D-dimensional space, queries are performed for the

given inputs (a) query points: {q1, . . . ql}, (b) number of nearest neighbors nn, (c)

error ε, (d) search nearest/furthest (true/false) and (e) perform exact or approximate

search (true/false). The points in Euclidean space of dimension D are identified

with tuples of D real numbers, with the Cartesian product RD. They are prepro-

cessed into a space partitioning data structure, such that, given any query item qi the

set of points can be browsed efficiently. The Randomly-oriented RKD-trees spatial

searching package is designed for data sets that are represented in medium to large

dimension D with the objective of performing highly time-efficient approximate spa-

tial queries in pursuit of one or more approximate nearest neighbors. The space is

intended to be small enough to store the search structure in main memory.

The package contains the implementation written in C++. It is written using

the functions Computational Geometry Algorithms Library (CGAL). It is meant to

extend the current functionality offered in the dD Spatial Searching, increasing search

time efficiency for medium and large dimensional datasets.

5.1 Build

Provided the dataset D-dimensional points the build process is performed as a two

tear process (1) rotation of the ambient space, (2) creation of t trees, the combination

51

of which defines the data structure.

5.1.1 Random rotation

Looking initially at the 2-D case, we gain some insight on how the random rotation

matrix is generated in higher dimensions. Generate a uniformly distributed random

rotation matrix R. The rotation angle θ is uniformly distributed between 0 and 2π.

Let

θ = 2π · U(0, 1) and set R(θ) =

cos θ − sin θ

sin θ cos θ

,

the countercolockwise rotation of a vector v by an angle θ. Obtain a rotated data set

S ′ = R× S for data set S.

Definition 23 (Orthogonal group). 1

O(n) = {M ∈ Mat(n,R) : M
′
M = I}

Mat(n,R) denotes the space of all n× n real matrices; and M
′

denotes the transpose

of matrix M

Definition 24 (Special orthogonal group). 2 The special orthogonal group

SO(n) = {M ∈ O(n) : detM = 1}

is a closed group of the compact group O(n)

SO(n) is itself compact. Note that

M ∈ O(n)⇒ detM = ±1

since

M
′
M = I ⇒ detM

′
detM = 1⇒ (detM)2 = 1

1http://www.maths.tcd.ie/pub/coursework/424/GpReps-II.pdf
2http://www.maths.tcd.ie/pub/coursework/424/GpReps-II.pdf

52

Algorithm 1: Random Rotation
input : The dimension d, the dataset (matrix) R
output: Rotated dataset (matrix)

if d = 0 then
R.resize(0, 0);
return;

end
if d = 1 then

R.resize(1, 1);
return;

end
random theta ← 2∗ PI ∗ uniform number(0, 1);
cos theta ← cos(random theta);
sin theta ← sin(random theta);
R (0,0) = cos theta;
R (0,1) = -sin theta;
R (1,0) = sin theta;
R (1,1) = cos theta;
for i← 0 to 1 do

for j ← 0 to 1 do
R submat(i, j) ← R(i, j);

end

end
A.zeros(d,d);
for dmc ← 2 to d do

v vector ← random unit vec(dmc);
normalize(v vector);
R submat.resize(dmc, dmc);
R submat(dmc, dmc)← 1;
R submat orthonormal ← graham schmidt(R submat);
for i← 0 to dmc do

for j ← 0 to dmc do
R(i, j) ← R submat(i, j);

end

end

end
if determinant(R) < 0 then

R.col(0) ← -R.col(0)
end
return R;

53

since detM
′
= detM .

In high dimensions, using the subgroup algorithm of Diaconis & Shashahani (1987)

[13], we recursively exploit the nested dimensions group structure of SO(n). This is

done as follows. Generate a uniform angle θ and construct a 2 × 2 rotation matrix

R. Stepping from n to n + 1, generate a vector v uniformly distributed on the n-

sphere, aided by the GramSchmidt process3 [33]. Sn embed the n× n matrix in the

next larger size with last column (0, . . . , 0, 1) and rotate the larger matrix so the last

column becomes v.

GramSchmidt process

Define the projection operator by

proju(v) = 〈u,v〉
〈u,u〉 · u

where 〈u,v〉 denotes the inner product of vectors u, v. The operator projects the

vector v into the line spanned by vector u. For u = 0 define proj0 (v) := 0. Then the

Graham-Schmidt process works as follows:

u1 = v1, e1 =
u1

‖u1‖

u2 = v2 − proju1
(v2), e2 =

u2

‖u2‖

u3 = v3 − proju1
(v3)− proju2

(v3), e3 =
u3

‖u3‖

u4 = v4 − proju1
(v4)− proju2

(v4)− proju3
(v4), e4 =

u4

‖u4‖
...

...

uk = vk −
k−1∑
j=1

projuj (vk), ek =
uk
‖uk‖

.

The normalized vectors e1, . . . , ek form an orthonormal set.

3http://en.wikipedia.org/wiki/Gram-Schmidt_process

54

We implement the above algorithm based on the MATLAB implementation titled:

“Simplex and random rotation”, Maxim Vedenyov (2012) 4

Algorithm 2: Build
input : The data set data, the data set size size, the data’s dimension d, the

bucket size bucket size, number of trees number of trees

points ← matrix multiply(data,random rotation(data));
// For each tree save a root

for j ← 1 to number of trees do
for i← 0 to size do

index [i] ← i;
end
// Uniform random shuffle the index array

index ← shuffle(index);
if size ≤ bucket size then

tree root [j] ← leaf node(points,size,d,bucket size);
end
else

tree root [j] ← internal node(points,size,d,bucket size);
end

end

5.1.2 Hyperplane splits

The rule defined by the mean split estimates the mean and variance of each 1 . . . D

dimensions of the dataset. A hyperplane is used to separate the half spaces in each

node. They are defined by a cutting-dimension (cd) and cutting-value (cv) 5. The

median split is similar to that above, difference being the fact that a random point

is chosen in a closed range near the true median.

The variance of dimensions with the highest values are pooled together out of

which one is chosen uniformly at random. The dimension chosen in the previous step

is set to be the cutting-dimension associated with the node. The cutting-value is

equal to the mean at of the cut-dimension.

4http://www.mathworks.com/matlabcentral/fileexchange/38187-simplex-and-random-rotation/

content/random_rotation.m
5http://doc.cgal.org/latest/Spatial_searching/classCGAL_1_1Plane__separator.html

55

Algorithm 3: InternalNode
input : The node points points, the data set size size, the data’s dimension

d, the bucket size bucket size
output: The node node

cd ← cut dimension(points, size, d);
cv ← cut value(points [cd]);
foreach point in points do

if point ≤ cv then
left points.add(point);

end
else

right points.add(point);
end

end
if left points.size() ≤ bucket size then

node.left child ← leaf node(left points, left points.size(), d,
bucket size);

end
else

node.left child ← internal node(left points, left points.size(), d,
bucket size);

end
if right points.size() ≤ bucket size then

node.right child ← leaf node(right points, right points.size(), d,
bucket size);

end
else

node.right child ← internal node(right points,
right points.size(), d, bucket size);

end
return node

Algorithm 4: LeafNode
input : The node points points, the data set size size, the data’s dimension

d, the bucket size bucket size
output: The node node

// Each point in the bucket size. The size is commonly equal

to one

foreach point in points do
node.data ← point;

end
return node;

56

5.2 Search

For each query point a search is performed. A sorted queue is saved with size equal

to the number of nearest neighbors expected to return. The queue inputs are sorted

according to the Euclidean distance from the query point. The point traverses each

tree down to a leaf node containing a single point (or equal to a predefined bucket

size). If the queue is not full then a point is pushed, otherwise, points are placed into

the sorted queue if the distance is less than the maximum distance in the queue. As

the query traverses the tree a record of the branches not taken is kept in a sorted heap.

The sorted heap contains branches from all t trees. The branches may contain nearer

neighbors than the ones in the priority queue. This is shown as an experimentally

efficient backtracking method [29].

Once the first traversal is performed on each tree the sorted heap is ‘popped’ one

by one and the branch is traversed down to a leaf node referencing a point. This

process is performed until the maximum number of allowed searches is performed or

until the error factor specifies that no more searches need to be performed and the

resulting queue can be returned as output.

The best matches (stored in the sorted queue) are a (1 + ε) approximation of the

true nearest neighbor and are returned as output.

57

Algorithm 5: Search
input : The Node N, the branch distance branch distance, the leaf count

leaf count, the max count max count, the heap heap, leaf been
previously visited checked, nearest neighbor queue priority queue

if then
return;

end
if N.is leaf() then

if checked(N.index()) or (leaf count ≥ max count) then
return;
checked.add(N.index());
leaf count ++;
priority queue.add(N.index(),

distance(N, query));
end

end
split data ← query.get coord(cut dim) - cut value;
if split data ≤ 0 then

best child ← N.left node();
other child ← N.right node();

end
else

best child ← N.right node();
other child ← N.left node();

end
branch distance ← branch distance + split data;
if branch distance ∗(1 + ε) <

priority queue(priority queue.size()−1) then
heap.insert(other child, branch distance);

end
search(best child, branch distance, leaf count, max count, heap,
checked);

58

Chapter 6

Experimental Results

The following results arise from queries performed on SIFT [24] of 128-dimension,

350K size and Gisette [19] of 5000-dimension, 13.5K size datasets performed on a

Intel Core i7-2670QM CPU @ 2.20GHz 8 chip-set, with 5.7 GiB of memory. Each

iteration is a query performed 100 times searching for the 20 nearest neighbors to

each query point.

6.1 build-time

We begin by presenting the results of the build process. It is evident in Figure 6-

1 that the build-time of CGAL k-d tree exceeds build-time of all other structures

(see Table 6.1 for the list of structures tested). The CGAL k-d tree build-time is

approximately eight times as slow as that of Randomly-oriented RKD-trees.

Structure Plot Legend Package Authors

Randomly-oriented RKD-trees ro-rkd - -

BBD-tree bbd ann ANN S. Arya & D. Mount
K-d tree kd ann ANN S. Arya & D. Mount
CGAL k-d tree kd cgal dD Spatial Searching-CGAL H. Tangelder & A. Fabri
RKD-tree rkd flann FLANN M. Muja & D. Lowe

Table 6.1: The list of data structures compared to produce the empirical results

59

The build-time of Randomly-oriented RKD-trees constructed upon 4 trees outper-

forms the BBD-tree build-time approximately four times. The build-times of different

sizes of Randomly-oriented RKD-trees offer a competitive option with respect to the

compared structures.

The result of performing a random rotation of the basis by multiplying the point

set by a random rotation matrix is added to the Randomly-oriented RKD-trees build-

times. Despite the added time needed for Randomly-oriented RKD-trees, the build-

time maintains its competitive edge.

Figure 6-1: Both native and CGAL Randomly-oriented RKD-trees (4 trees) outper-
form all other structure build-times.

6.2 Query Time

The purpose of the following experiments is to perform an approximate k-nearest

neighbor search query given a high-dimensional dataset and measure the search-time

efficiency in relation to the precision. In this context precision is defined as the

closeness in proximity to the exact k nearest neighbors when searching, with values

ranging from 0 to 1, 1 being an exact match to the true k nearest neighbors of the

given query set. A number of different structures (see Table 6.1) are tested against

each other.

Both generated and ‘real world’ datasets are used. The ‘real world’ sets, a 128-

dimensional SIFT [24] and the 5000-dimensional Gisette [19] dataset (see Table 6.3)

60

have been chosen for two reasons. One is to emphasize the efficiency displayed

by Randomly-oriented RKD-trees when searching through datasets of medium and

larger dimension size. Second, even more importantly, test the efficiency displayed by

Randomly-oriented RKD-trees when an embedded low-intrinsic dimension lies within

a much larger ambient dimension, the Gisette dataset contains low-intrinsic embed-

ded dimension within the data’s 5000 ambient dimension. The generated sets are a

number of poison, uniform and a combination of both (see Appendix B). The aim is

to test the data structures’ search-time efficiency when the data may contain a few

high variance dimensions in relation to the remaining ones.

Data Name: SIFT-128

Data Set Characteristics: Multivariate Number of Instances: 300K+

Attribute Characteristics: Integer Number of Attributes: 128

Table 6.2: SIFT dataset

The empirical running times performed on the SIFT data set show there is no sig-

nificant deviation between the RKD-trees (FLANN) [26] algorithm and our Randomly-

oriented RKD-trees when comparing times searched upon structures built with four

and sixteen trees (6-2 (a), (b)). When a search is performed upon a sixteen tree

structure the performance begins to deviate from four trees at values approximating

0.9 precision, given that 1 represents the true k-nearest neighbors. One of the more

significant results of the paper is exhibited in 6-2 (d). The running times of the

native k-d tree (CGAL) [31] is outperformed significantly throughout the domain of

precision, up to an order of magnitude for the SIFT data.

The Randomly-oriented RKD-trees outperform the BBD-tree and k-d tree (ANN) [4]

structures, though admittedly by a smaller margin than exhibited against the k-d tree

(CGAL) structure. Another important observation (see Figure 6-3 (d)) is that the

graphs slope stays relatively constant throughout the increasing precision values. A

log scale plot (see Figure 6-3 (c)) gives a little clearer perspective regarding the margin

61

(a) (b)

(c) (d)

Figure 6-2: In (a) and (b) the graphs show the average searching time when searching
for the 20 nearest neighbors in 100 different queries for the SIFT dataset for two
different data structures, the Randomly-oriented RKD-trees structure implemented
in CGAL and the RKD-trees of the FLANN package, for 4 and 16 trees respectively.
Both implementations perform the queries in approximately the same time for all
values of precision. (c) When comparing the same structure but using a different
number of trees for the same task as that performed in figures (a) and (b) the graph
shows that there the 16 trees outperform the 4 trees structure for high precision
values. (d) The native k-d tree structure (CGAL) is outperformed by both 4 and 16
trees throughout the domain of precision.

of difference, especially for less precise values, where it becomes difficult to observe

the gap between the plotted lines.

62

(a) (b)

(c)

Figure 6-3: (a) The k-d tree structure (CGAL) is outperformed by k-d tree and
BBD-tree structures of the ANN package. When searching on the SIFT dataset, all
three structures are outperformed by Randomly-oriented RKD-trees. (b) A more
refined view of the k-d tree, BBD-tree and Randomly-oriented RKD-trees shows the
difference in search-time efficiency. (c) The logarithmic scaled time shows that for
values of less precision the trees are all outperformed by the Randomly-oriented RKD-
trees throughout the precision domain.

The last set of running times (see Figure 6-4) are those displayed by the approx-

imate nearest neighbor search algorithms’ execution on the GISETTE data set. We

observe the different structures’ dependence on dimension size, additionally, we ex-

amine how the structures perform when the data set contains a lower dimensional

63

manifold describing the data. Even though the data set is significantly smaller in size

NGISETTE < NSIFT ⇒ 13e3 < 30e4, the running times exhibited for similar precision

rates are much higher. For values of approximately 0.7 the query times of Randomly-

oriented RKD-trees for SIFT data are 40-50 milliseconds, whereas for the GISETTE

data are 7e3-8e3 milliseconds. Two factors are important in the large margin between

the run times, the dimension of the data and the structure of the data.

Data Name: Gisette

Data Set Characteristics: Multivariate Number of Instances: 13500

Attribute Characteristics: Integer Number of Attributes: 5000

Table 6.3: Gisette dataset

Once more Randomly-oriented RKD-trees outperform by an order of magnitude

both the BBD-trees and k-d tree (CGAL) structures. As the precision increases

the the running time margin increases by a significant about. The slopes of both

outperformed structures are much larger than the one displayed by the ANN search

algorithm built upon Randomly-oriented RKD-trees.

Throughout the different experiments the approximate nearest neighbor algorithm

using Randomly-oriented RKD-trees consistently outperforms all other tested algo-

rithms. The higher the precision we expect to obtain as a result the larger the expected

gain in running time. Randomly-oriented RKD-trees offer a favorable alternative to

the CGAL k-d tree nearest neighbor algorithm for medium and larger dimensional

data sets. This is true for data sets with an underlying structure (ex. SIFT, Gisette)

and without an underlying structure (ex. uniformly randomly generated data).

64

(a) (b)

Figure 6-4: (a) The graph shows that for the 5000-dimension GISETTE data set,
the average searching time for 100 different queries when searching for the 20 nearest
neighbors, Randomly-oriented RKD-trees outperforms the BBD-tree structure for all
values of precision. (b) The graph shows that the order of magnitude difference
between Randomly-oriented RKD-trees and the BBD-tree in average search-time is
multiplied with respect to the search-time of the k-d tree (CGAL), especially for
values of high precision.

65

66

Chapter 7

Conclusion

In this paper we introduce Randomly-oriented RKD-trees. We provide a bound (The-

orem 7) of the number of levels required to decrease the size of the tree cells by a

factor equal to s ≥ 2. Theorem 7 may be used to improve the bound Theorem 2 of

[32]. We further provide a bound on the smallest cell, in a cell created in Randomly-

oriented RKD-trees, that completely contains a fixed ball B of radius R, by showing

that the aspect ratio bound is O
(
d
√
d log d

)
.

We provide an implementation of the Randomly-oriented RKD-trees approximate

nearest neighbor search (ANNS) algorithm. The implementation extends the Com-

putational Geometry Algorithms Library (CGAL) [1] library. The implementation is

provided with doxygen1 documentation. Results show that search times are highly

competitive against the current state of the art ANNS algorithms.

The bounds are the same as the bounds provided for RPTREE-MAX in [12], though

they do not paint the entire picture regarding Randomly-oriented RKD-trees bounds.

Attention needs to placed on the effect of the multi-tree greedy approach that make

both RKD-trees and Randomly-oriented RKD-trees so effective in practice. Results

show that Randomly-oriented RKD-trees implementations exhibit higher performance

than BBD-trees. It is likely that the greedy selection of space partition branches offers

an advancement that has not been fully analyzed in this paper.

Acknowledging that the open questions have first been raised for RPTREE-MAX

1http://www.doxygen.org/

67

[12], an open question may be left providing a stronger guarantee, bounding the

query time based on the doubling dimension. The following may be shown to be true

if the theoretical results of the multi-tree method is further pursued thus providing

guarantees similar to the ones found for BBD-trees:

• Bounded Depth: depth of the tree should be (log n)O(1)

• Packing Guarantee:
(
R
r

)(d log R
r

)O(1)

• Space Partitioning Guarantee: size reduction by a factor s in (d log s)O(1)

levels

68

Appendix A

Proofs

A.1 Proofs of Lemmas

A.1.1 Lemma 10

Proof of Lemma 10 taken from [32]. We begin by reporting an important assumption

for the purposes of this proof. Let there exist a projection orthogonal to the arbitrary

subspace V , and a subsequent projection to a random vector in subspace V ⊥, call it

W . If we assume the size of W is large enough then any projection to this subspace

is similar (and sufficient for our purposes) to projecting to a random vector in full

space – the method RP-trees are based on.

Pick a minimum cover of S ⊂ B(x,∆). From the definitions of doubling dimension

the cover has at most 2d balls of radius ∆/2. Without loss of generality, we may

assume that the centers of these balls lie in B(x,∆). Each ball B induces a subset

S ∩ B; cover each such subset by 2d smaller balls of radius ∆/4, with centers in B.

Continuing this process, the final result is a hierarchy of covers, at increasingly finer

granularities.

Fix a ball B(xi,∆/2
k) at level k, and consider one of the balls, B(xj,∆/2

k+1), that

covers it. Let W = V ⊥. For the centers xi and xj it is true that ‖xi − xj‖≤ ∆/2k.

69

From Lemma 8 and with β =
√

2(d+ log (2/δ)) we have:

P
[
‖πv(xi − xj)‖≥ β

√
k + 1

∆/2k√
D − d

]
≤ P

[
‖πv(πW (xi − xj))‖≥ β

√
k + 1

‖πW (xi − xj)‖√
D − d

]
≤ 2

β
· 1√

k + 1
· e
−
(√

2(d+log(2/δ))
2

2
(k+1)

)

=
2

β
· 1√

k + 1
· e−((d+log(2/δ))(k+1))

≤ 2

β
·
(

2

3

)k
· e−(d(k+1))e− log(2/δ)(k+1)

≤ 2

β
· 1√

k + 1
·
(
δ

2

)k
·
(
δ

2

)
· e−(d(k+1))

≤ δ

β
·
(
δ

2

)k
· e−(d(k+1))

Take a union bound over all edges (xi, xj) in the tree. There are 2(k+1)d edges

between levels k and k + 1, via use of the chain rule:

P
[
∃k : ∃xi in level k with child xj : ‖πv(xi − xj)‖≥ β

√
k + 1

∆/2k√
D − d

]
≤

∞∑
k=0

2d(k+1) δ

β

(
δ

2

)k
e−d(k+1)

≤ δ

β

1

1− (δ/2)
≤ δ

Thus with probability at least 1− δ, for all k, every point y ∈ S satisfies

‖πv(y)− πv(x)‖ ≤ β∆√
D − d

∞∑
k=0

√
k + 1

2k
≤ 3∆√

D − d

√
2(d+ log (2/δ)).

70

A.1.2 Lemma 11

Proof. Fix a random point x chosen on some projected vector v. By lemma 8 the

expectation that πv(x) is greater than the radius O(∆/
√
D) is:

E
[
1
(
|πv(z)− πv(x)| ≥ c · ‖z−x‖√

D

)]
≤ 2

c
e−c

2/2 ≤ δε.

All this while seeting c =
√

2 log 1
δε

. Abriviate Fx = 1
(
|πv(z)− πv(x)| ≥ c · ‖z−x‖√

D

)
Pπv(S) [Eµ [Fx]] ≤

Eπv(S)[Eµ[Fx]]

ε
=

Eµ[Eπv(S)[Fx]]
ε

< δ

A.1.3 Lemma 12

Proof of Lemma 12. Suppose µ is the mean of a normal ditribution and M is its

median. The density funtion is then given by

f(x) =
1

σ
√

2π
exp

(
−1

2
·
(
x− µ
σ

)2
)
, for −∞ < x <∞.

∫ M

−∞
f(x) dx =

1

2
⇒ 1

σ
√

2π

∫ M

−∞
exp

(
− (x− µ)2 /2σ2

)
dx =

1

2

⇒ 1

σ
√

2π

[∫ µ

−∞
exp (− (x− µ) /2σ) dx +

∫ M

µ

exp (− (x− µ) /2σ) dx

]
=

1

2

For standard normal variate Z = x−µ
σ

,
∫ µ
−∞(·) = 1

2
. Thus, 1

σ
√

2π

∫ µ
−∞ exp (− (x− µ) /2σ) dx

⇒ 1

2
+

1

σ
√

2π

∫ M

µ

exp (− (x− µ) /2σ) dx =
1

2

⇒ 1

σ
√

2π

∫ M

µ

exp (− (x− µ) /2σ) dx = 0⇒ µ = M .

71

A.1.4 Lemma 14

Proof of Lemma 14. Following the same proof guidelines of Lemma 7 in [32], and

using the result of the triangle inequality it is shown that ‖πv(z − x)‖≤ 3∆/
√
D and

‖µπv(S) − πv(x)‖≤ 3∆/
√
D. Let β =

√
8 then from Lemma 9 (b)

P(‖πv(z − x)‖≥ β
‖z − x‖√

D
) ≤ 2

β
e−β

2/2 ≤ 1√
2e4

Given that d < D
9

we get

β
‖z − x‖√
D − d

≤
√

8
‖z − x‖√
D − D

9

= 3
‖z − x‖√

D

showing that

P(‖z − x‖≥ 3
‖z − x‖√

D
) ≤ 1

Continuing and setting δ = 2/e9/2

‖µπv(S) − πv(x)‖ ≤ ∆√
D

√
2log(

2

δ
)

≤ 3∆√
D

The total failure probability is upper bounded by: 1√
2e4

+ 2
e9/2

< 1
20

72

Appendix B

Supplementary Experimental

Results

(a) Time (milliseconds) vs. Precision [0,1] (b) Lg(Time) vs. Precision [0,1]

Figure B-1: (a) Compare the search time of 4 and 16 tree structures of CGAL
Randonly-oriented RKD-trees with the native CGAL ANN search, of randomly gener-
ated Poisson distributed data. (b) The log scaled y-axis of the comparison illustrated
in figure (a).

73

(a) Time (milliseconds) vs. Precision [0,1] (b) Lg(Time) vs. Precision [0,1]

Figure B-2: (a) Compare the search time of 4 and 16 tree structures of CGAL
Randonly-oriented RKD-trees with the native CGAL ANN search, of randomly gen-
erated Poisson in addition to high variance and uniformly distributed data. (b) The
log scaled y-axis of the comparison illustrated in figure (a).

(a) Time (milliseconds) vs. Precision [0,1]

Figure B-3: (a) Compare 16 tree Randonly-oriented RKD-trees search result times
for Poisson and Poisson w/ uniform distributed datasets.

74

Appendix C

User Manual

C.1 Introduction

The spatial searching package implements exact and approximate query searching by

providing implementations of algorithms supporting

• Nearest and furthest neighbor searching

• Exact and approximate searching

• Approximate k-nearest and k-furthest searching

• Query items representing points (extending to spatial objects)

A set of N data points in D-dimensional space is given. The points in Euclidean

space of dimension D are identified with tuples of D real numbers, with the Carte-

sian product RD. They are preprocessed into a space partitioning data structure,

such that, given any query item q the set of points can be browsed efficiently. The

Randomly-Oriented RKD-trees spatial searching package is designed for data sets

that are represented in medium to large dimension D with the objective of perform-

ing highly time-efficient and accurate approximate spatial queries in pursuit of one

or more approximate nearest nearest neighbors. The space is intended to be small

enough to store the search structure in main memory.

75

C.1.1 Build Randomly-oriented random k-d trees

Random kdtree k neighbor search defines the functionality for performing approx-

imate nearest search. The main input is the vector of RKd tree structures of Point

and index tuples. For each tree the root function is called. The function builds the

tree and returns the root node to the RKd tree. For each tree the point set is shuffled

and a new random tree is built. The leaf nodes reference a single node. Each node is

split in accordance to the splitting definition passed as a template parameter.

Random rotation

The class Prior to defining the package associated with the build process, we present

the random rotation method. It is responsible for transforming the data so that

RKD-trees are assured to adapt to the intrinsic dimensionality of the data.

C.1.2 Neighbor Searching

For each query point a search is performed. The point traverses each tree down to

a leaf node containing a single point. The point is passed into a sorted queue if

the distance is less than the distance of the longest distance in the queue. As the

queue traverses the tree a record of the branches not taken is kept in a heap if the

branch possibly contains points nearer points than the ones in the queue. A search

is performed for all trees and the best matches are kept in a single sorted queue

which is returned as the output. The size of the queue is equal to the number of

nearest neighbors the query is performed for. Once a first traversal is performed on

each tree the heap is ’popped’ one by one and the branch is traversed down to a leaf

node referencing a point. This process is performed until the maximum number of

searches is performed or until the error factor specifies that no more searches need to

be performed and the resulting queue can be returned as output.

76

C.2 Splitting Rules

In addition to the splitting rules of dD Spatial Searching, a user may, select one of

the following splitting rules, which are tailord for use in a RKD-tree:

mean split

This splitting rule cuts a rectangle through an approximation of its mean or-

thogonal to one of its high variance sides.

median split

This splitting rule cuts a rectangle through a random point within a user defined

range centered around its median orthogonal to one of its high variance sides.

C.3 Example Programs

Listing C.1: code/example1.c

#include <cstdint >

#include <vector >

#include <algorithm >

#include <chrono >

#include <cmath >

#include <time.h>

#include <utility >

#include <CGAL/Cartesian_d.h>

#include <CGAL/point_generators_d.h>

#include <CGAL/Kd_tree.h>

#include <CGAL/Search_traits_d.h>

#include <CGAL/Orthogonal_k_neighbor_search.h>

#include <CGAL/Euclidean_distance.h>

#include <CGAL/property_map.h>

#include <CGAL/basic.h>

#include <CGAL/Search_traits_d.h>

#include <CGAL/Search_traits_adapter.h>

#include <boost/iterator/zip_iterator.hpp >

#include "Random_kdtree_k_neighbor_search.h"

typedef CGAL:: Cartesian_d <double > K;

typedef K:: Point_d Point_d;

typedef CGAL:: Search_traits_d <K> Traits;

typedef CGAL:: Random_points_in_cube_d <Point_d > Random_points_iterator;

typedef CGAL:: Counting_iterator <Random_points_iterator > N_Random_points_iterator;

typedef CGAL:: Plane_separator <K> SpatialSeparator;

77

typedef CGAL:: Midpoint_of_max_spread <Traits , SpatialSeparator > Midpoint_Seperator;

typedef CGAL:: Kd_tree_node <Traits , Midpoint_Seperator , bool > Tree_Node;

typedef CGAL:: Euclidean_distance <Traits > Distance;

// RKd_tree_neighbor_search tests

typedef boost::tuple <Point_d ,int > Point_and_int;

typedef CGAL:: Search_traits_d <K> Traits_base;

typedef CGAL:: Search_traits_adapter <Point_and_int ,

CGAL:: Nth_of_tuple_property_map <0, Point_and_int >,

Traits_base > Traits_t;

typedef CGAL:: Random_kdtree_k_neighbor_search <Traits_t > K_neighbor_search_t;

typedef K_neighbor_search_t ::Tree Tree_t;

typedef K_neighbor_search_t :: Distance Distance_t;

#define EXIT 0

using namespace std;

int main(int argc , char **argv) {

const unsigned int K = 1;

const unsigned int dim = 3;

const unsigned int n_points = 10;

double size = 100.0;

CGAL:: Random_points_in_cube_d <Point_d > gen (dim , size);

std::vector <Point_d > points;

std::vector <int > indices;

// generate n_points number of points along

// with its associated index

for(unsigned int i=0; i<n_points; ++i) {

points.push_back ((* gen++));

indices.push_back(i);

}

const unsigned int n_trees = 2;

std::vector <Tree_t > trees;

trees.resize(n_trees);

// build n_trees number of trees

for(unsigned int i=0; i<n_trees; ++i) {

Tree_t* tree =

new Tree_t(boost :: make_zip_iterator(boost:: make_tuple(points.begin(), indices.begin())),

boost:: make_zip_iterator(boost :: make_tuple(points.end(), indices.end())));

trees[i] = *tree;

}

Point_d query ((*gen++)); // random query point

K_neighbor_search_t search(trees , query , K);

// nearest neighbor indices

std::vector <std::vector <int >> result;

result.push_back(search.get_resulting_points ());

cout << "The point with indeces: ";

for(auto res_it : result) {

for(auto neigh_it : res_it)

std::cout << neigh_it << " ";

78

}

std::cout << std::endl;

cout << "each at a distance ";

// nearest neighbor distances

for(auto dist_it : search.get_resulting_distances ()) {

std::cout << dist_it << " ";

}

cout << "from the query point";

return EXIT;

}

79

80

Bibliography

[1] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.

[2] Sunil Arya, Theocharis Malamatos, and David M. Mount. Space-efficient ap-
proximate voronoi diagrams. In STOC, pages 721–730, 2002.

[3] Sunil Arya and David M. Mount. Approximate nearest neighbor queries in fixed
dimensions. In Proceedings of the Fourth Annual ACM/SIGACT-SIAM Sympo-
sium on Discrete Algorithms, 25-27 January 1993, Austin, Texas., pages 271–
280, 1993.

[4] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and An-
gela Y. Wu. An optimal algorithm for approximate nearest neighbor searching
fixed dimensions. J. ACM, 45(6):891–923, 1998.

[5] Patrice Assouad. Plongements lipschitziens dans Rn. (Lipschitz embeddings into
Rn). Bull. Soc. Math. Fr., 111:429–448, 1983.

[6] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, 1975.

[7] K.L. Clarkson. Fast algorithms for the all nearest neighbors problem. In Foun-
dations of Computer Science, 1983., 24th Annual Symposium on, pages 226–232,
Nov 1983.

[8] R. Scott Cost and Steven Salzberg. A weighted nearest neighbor algorithm for
learning with symbolic features. Machine Learning, 10:57–78, 1993.

[9] Chang da Bei and R.M. Gray. An improvement of the minimum distortion en-
coding algorithm for vector quantization. Communications, IEEE Transactions
on, 33(10):1132–1133, Oct 1985.

[10] Sanjoy Dasgupta and Yoav Freund. Random projection trees and low dimen-
sional manifolds. In STOC, pages 537–546, 2008.

[11] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In Symposium on Com-
putational Geometry, pages 253–262, 2004.

81

[12] Aman Dhesi and Purushottam Kar. Random projection trees revisited. CoRR,
abs/1010.3812, 2010.

[13] Persi Diaconis and Mehrdad Shahshahani. The subgroup algorithm for generat-
ing uniform random variables. Probability in the Engineering and Informational
Sciences, 1:15–32, 1 1987.

[14] Herbert Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of
EATCS Monographs on Theoretical Computer Science. Springer, 1987.

[15] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy
Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining.
AAAI/MIT Press, 1996.

[16] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses
in improved network optimization algorithms. J. ACM, 34(3):596–615, 1987.

[17] Jerome H. Friedman, Forest Baskett, and Leonard J. Shustek. An algorithm for
finding nearest neighbors. IEEE Trans. Computers, 24(10):1000–1006, 1975.

[18] Jerome H. Friedman, Jon Louis Bentley, and Raphael A. Finkel. An algorithm
for finding best matches in logarithmic expected time. ACM Trans. Math. Softw.,
3(3):209–226, 1977.

[19] Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror. Result analysis of
the nips 2003 feature selection challenge. In L.K. Saul, Y. Weiss, and L. Bottou,
editors, Advances in Neural Information Processing Systems 17, pages 545–552.
MIT Press, 2005.

[20] Piotr Indyk. Nearest neighbors in high-dimensional spaces. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry.
CRC Press LLC, Boca Raton, FL, 2nd edition, April 2004.

[21] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz maps into a Hilbert
space. 1984.

[22] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and
Searching. Addison-Wesley, 1973.

[23] Vincent Lepetit and Pascal Fua. Keypoint recognition using randomized trees.
IEEE Trans. Pattern Anal. Mach. Intell., 28(9):1465–1479, 2006.

[24] David G. Lowe. Object recognition from local scale-invariant features. In ICCV,
pages 1150–1157, 1999.

[25] Marvin Minsky and Seymour Papert. Perceptrons: An introduction to compu-
tational geometry. 1969.

[26] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. In VISAPP (1), pages 331–340, 2009.

82

[27] Nick Roussopoulos, Stephen Kelley, and Frédéic Vincent. Nearest neighbor
queries. In Proceedings of the 1995 ACM SIGMOD International Conference
on Management of Data, San Jose, California, May 22-25, 1995., pages 71–79,
1995.

[28] Michael Ian Shamos and Dan Hoey. Closest-point problems. In 16th Annual
Symposium on Foundations of Computer Science, Berkeley, California, USA,
October 13-15, 1975, pages 151–162. IEEE Computer Society, 1975.

[29] Chanop Silpa-Anan and Richard Hartley. Optimised kd-trees for fast image
descriptor matching. In CVPR, 2008.

[30] Robert F. Sproull. Refinements to nearest-neighbor searching in k-dimensional
trees. Algorithmica, 6(4):579–589, 1991.

[31] Hans Tangelder and Andreas Fabri. dD spatial searching. In CGAL User and
Reference Manual. CGAL Editorial Board, 4.4 edition, 2014.

[32] Santosh Vempala. Randomly-oriented k-d trees adapt to intrinsic dimension.
In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors,
FSTTCS, volume 18 of LIPIcs, pages 48–57. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2012.

[33] Charles M Werneth, Mallika Dhar, Khin Maung Maung, Christopher Sirola, and
John W Norbury. Numerical gramschmidt orthonormalization. European Journal
of Physics, 31(3):693, 2010.

83

