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Chapter 1

Introduction

1.1 The Basic Model

Visual Cryptography is an encryption technique based on the secret sharing

problem. In this case, visual information is shared, i.e., the message to be

encrypted can be a black and white image, grey scale or a coloured one,

printed text, etc. The encryption of the secret is done in such a way, that

its decryption is very simple since there is no need for any mathematical

calculations: it is done automatically by the human eye. What is more, the

secret is completely safe, since it cannot be revealed by any unauthorized

opponent, even one with infinite computational power.

B. Arazi, I. Dinstein and O. Kafri, in [1] were the first that mentioned

the potentiality of a cipher algorithm which takes advantage of the visual

human ability.

The first concrete definition of k out of n visual secret sharing schemes was

stated in [2] by Moni Naor and Adi Shamir along with specific applications

and extensions of the initial model.
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Two more constructions and properties of k out of n visual secret sharing

schemes, such as bounds on their parameters, are presented in[3] by Eric R.

Verheul and Henk C. A. Van Tilborg. Additionally, an introduction to the

notion of coloured visual secret sharing schemes is introduced and a general

construction is given.

The definitions given and all the constructions and properties mentioned

in [2] and [3] will be described in detail in the following Sections.

The basic model consists of two images of the same size that are composed

of random looking black and white small squares. One can be considered as

the ciphertext and the other as the key. When the key-image is placed on

top of the ciphertext image, a secret message or picture is revealed. However,

by inspecting each of the initial images separately, even an adversary with

infinite computational resources cannot recover the encrypted message or

any part of it. Both the ciphertext image and the key image are called

transparencies. The reason is that each encrypted image must be printed on

a transparent piece of paper for the decryption to succeed. Figure 1.1 from

[22] depicts an example of the above-described model.

Figure 1.1: An example of a visual secret sharing scheme

One could say that it is a visual one-time pad scheme since each cypher-
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text image can be decrypted only by a different key-image. What is more, its

use is very simple since no mathematical calculations or cryptography skills

are needed to disclose the secret message.

1.2 Visual Secret Sharing Schemes

Definition 1.2.1: A k out of n visual secret sharing scheme is an extension

of the basic model: instead of 2, n different transparencies are produced.

Any k of them reveal the secret message while fewer than k of them pass

absolutely no information about it. As a result, the initial model can be

considered as a 2 out of 2 visual secret sharing scheme.

As already mentioned, the basic model describes the share of a black and

white image. The technique is based on the division of each pixel into b black

and white subpixels which form a square or rectangle. In each transparency,

or else share, each pixel is depicted in a different way.

When k transparencies are stacked together and the subpixels are aligned,

the visual result for each subpixel is the boolean “or” of the k different

versions of it: if all the k versions are white, then the result is white while

in any other case the result is black. Additionally, the human eye perceives

a pixel as white (respectively black) if there is a sufficient number of white

(respectively black) subpixels. Hence, the contrast between the two colours

must be as large as possible.
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1.3 Mathematical Description of the Model

The mathematical description of a k out of n visual secret sharing scheme

is described as follows: each pixel is divided into b subpixels. Since white

subpixels do not block light, they are denoted by 0 while black subpixels are

denoted by 1.

Each pixel is described by an n × b matrix A as shown in Figure 1.2.

Each row of the matrix represents the different versions of the pixel in the n

corresponding transparencies. Since each pixel is divided into b subpixels, the

matrix A consists of b columns. If the j-th subpixel in the i-th transparency

is white (respectively black), then A[ij] = 0 (respectively Aij] = 1).

Figure 1.2: An n× b matrix which represents a visual secret sharing scheme

Definition 1.3.1: The parameter b ∈ N is called the blocklength of the

scheme S and since it can be considered as the pixel expansion, we would

like it to be as small as possible. In addition, b needs to be in the form of

m2 (m ∈ N) if we want to preserve the aspect ratio of the original image.

When transparencies i1, i2, . . . , ik from a matrix A are stacked together,

the resulting pixel also consists of b subpixels. Each one of them is the



Mathematical Description of the Model 11

outcome of the boolean “or” of the k corresponding subpixels in i1, i2, . . . , ik

rows, as shown in Figure 1.3:

Figure 1.3: The boolean “or” of r transparencies

Let ~υ be the boolean vector of length b that represents the “or” of k

transparencies of a pixel. As already mentioned, whether the human eye

interprets it as black or white depends on the number of black subpixels that

it consists of, namely, of its Hamming weight (the one coordinates of vector

~υ), denoted w(~υ). If z(~υ) denotes the number of white subpixels, hence, the

zero coordinates of vector ~υ, note that b = z(~υ) + w(~υ).

From the description above it is obvious that in this technique a white

pixel does not consist of white subpixels only, and the same holds for a black

pixel, too: some white subpixels may also be included. Hence, since a pixel is

not purely white or black, the contrast between them is of great significance.

In [2], a threshold d (1 ≤ d ≤ b) and relative difference a > 0 are used

to distinguish between the colours: a pixel is perceived by the visual system

of the users as black if w(~υ) ≥ d and as white if w(~υ) < d− a · b. Since the

relative difference a is a way of expressing contrast, it must be as large as

possible.
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In [3], two non-negative numbers, h and l, are used to make the distinction

between black and white. A pixel is perceived by the human eye as white if

at least h subpixels are white, i.e., z(~υ) ≥ h. Similarly, a pixel is interpreted

as black if at most l of its subpixels are white, i.e., z(~υ) ≤ l.

Two equivalent definitions of a visual secret sharing scheme follow, from

[2] and [3] respectively:

Definition 1.3.2: A k out of n visual secret sharing scheme S = (C0, C1)

used to encrypt a black and white picture consists of two collections of n ×

b Boolean matrices C0 and C1. Collection C0 corresponds to white colour

whereas collection C1 to black. The matrices that are contained in each

collection C0 and C1 are the different versions of representing a white or a black

pixel respectively. More specifically, the n rows of each matrix correspond

to the n transparencies to be shared and the b elements of each row define

the colour of the corresponding subpixels. The scheme must comply with the

following three conditions:

According to [2]:

1. For any matrix A in the collection C0, the “or” ~υ0 of any k out of its n

rows must satisfy

w(~υ0) ≤ d− a · b (1.1)

2. For any matrix A in the collection C1, the “or” ~υ1 of any k out of its n

rows must satisfy

w(~υ1) ≥ d (1.2)

According to [3]:
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1. For any matrix A in C0 collection, the “or” ~υ0 of any k out of its n rows

must satisfy

z(~υ0) ≥ h (1.3)

2. For any matrix A in C1 collection, the “or” ~υ1 of any k out of its n rows

must satisfy

z(~υ1) ≤ l (1.4)

The parameters h and l, where h, l ∈ N, must comply the following

condition: 0 ≤ l < h < b: the condition l = 0 may hold, since there is a

possibility that no white subpixel exists in a black pixel. The condition l < h

must hold since the contrast of the scheme is defined on this difference. Last

but not least, h < b holds because if h = b the security of the scheme would

be compromised.

The third requirement is the same in both papers:

3. The two collections C ′0 and C ′1 attained by limiting all the n×b matrices of

C0 and C1 respectively to s < k rows, i1, i2, . . . , is, are identical, namely, the

matrices that they contain are the same and appear in the same frequencies.

The first two conditions in [2] and [3] are two sides of the same coin:

Naor and Shamir make the distinction between a white and a black pixel

by counting the black subpixels whereas Verheul and Van Tilborg count the

white ones. What is important about the two first conditions is the contrast

between the stacked transparencies that comes from a white and a black

pixel as well as the loss of contrast. In [2], the contrast is implicitly defined

as h− l = (b−w(~υ0))−(b−w(~υ1)) = b−w(~υ0)−b+w(~υ1) = w(~υ1)−w(~υ0) =

d− (d− a · b) = d− d+ a · b = a · b, where w(~υ0) (w(~υ1) respectively) denotes
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the Hamming weight of the ”or” ~υ of any k out of n rows of a matrix from

C0 collection (C1 collection respectively) of the scheme S, i.e.,

contrastSN = h− l = a · b (1.5)

The loss of contrast is defined as

contrastlossSN =
h− l
b

=
a · b
b

= a (1.6)

,

where SN stands for Shamir Naor in equations 1.5 and 1.6.

As stated in [3], these definitions of contrast and loss of contrast are not

really suitable. The following example shows in an intuitive way why: let

us consider two buildings A and B at night. In the first case there are 100

lightened windows in A and 99 in B. In the second case, there is only one

lightened window in A and none in B. In both cases the contrast if measured

using formula (1.5) equals one. However, it is clear that the contrast in the

first case is much less than in the second one. One can also check references

in literature (see [4], p. 272 and [5], p.34). As a result, it is preferable to use

the formulae stated in [3]:

contrastV V T =
h− l
h+ l

(1.7)

is proposed as measure of contrast, and the loss of contrast as

contrastlossV V T =
h− l

b · (h+ l)
(1.8)

,

where VVT stands for Verheul and Van Tilborg in equations 1.7 and 1.8.

We want contrast to be as large as possible and the loss of contrast as

small as possible.
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According to the last condition the scheme is completely safe: even an

unauthorized opponent with infinite computational power cannot make any

deduction about the colour of a pixel when less than k transparencies are

stacked.

Hence, the first two conditions define the contrast of the scheme and the

third one its security.

The important parameters of a k out of n visual secret sharing scheme

are the following:

• the blocklength of the scheme, denoted b.

• the minimum number of white subpixels in a white pixel, denoted h.

• the maximum number of white subpixels in a black pixel, denoted l.

• the number of matrices each collection C0 and C1 contain, denoted r.

We summarize these parameters as [b;h, l; r].

1.4 Some Classifications

Definition 1.4.1: Let S = (C0, C1) be a k out of n visual secret sharing

scheme and ~υ denote the “or” of any s < k transparencies from a matrix

either from C0 or C1. If there is a function f such that f(s) = w(~υ) for

every matrix, i.e., the Hamming weight of ~υ depends only on the number

of transparencies that are used and not from the collection that the matrix

belongs, then S is called uniform.

As one can see, it is preferable to use schemes of high contrast and small

blocklength (parameter b). As already mentioned, the two parameters that
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define the contrast of a scheme are h and l. Since h and l are both positive

numbers and h > l, contrast is maximal when l = 0, i.e. there are no white

subpixels in a black pixel: h−l
h+l

= h−0
h+0

= h
h

= 1.

Definition 1.4.2: The schemes of type [b;h, l = 0] are called maximal con-

trast schemes.

Most of the schemes that are described in the following Sections are con-

structed using the following method: Let A0 and A1 be two n × b boolean

matrices. Additionally, let h, l be two non-negative integers such that h > l.

Then the following conditions must hold:

1. Let ~υ0 denote the “or” of any k out of n rows of A0.

Then, z(~υ0) ≥ h must be satisfied.

2. Let ~υ1 denote the “or” of any k out of n rows of A1.

Then, z(~υ1) ≤ l must be satisfied.

3. Let s < k and i1 < i2 < . . . < is be any subset of {1, 2, . . . , n}. The

matrices A0 and A1 when restricted to rows i1, i2, . . . , is contain the

columns, only in a different order. Mathematically, let A0 = [aij] and

let σ : {1, . . . , n} 7→ {1, . . . , n}. Then, A1 = σ(A0) = [aiσ(j)].

Definition 1.4.3: We call a k out of n scheme S = (C0, C1) generated by A0

and A1 if the matrices contained in the collections C0 and C1 are obtained

by all the permutations of the columns of A0 and A1 respectively. Such a

scheme has parameters [b;h, l; b!].
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Definition 1.4.4: Let S = (C0, C1) be a k out of n visual secret sharing

scheme generated by matrices A0 and A1. We limit A0 and A1 to any s

rows (s < k), namely, i1 < i2 < . . . < is and j1 < j2 < . . . < js in {1, . . . , n}

respectively. If these two submatrices of A0 and A1 contain the same columns,

but in a different order, we call A0 and A1 systematic. What is more, the

scheme that is generated by them is called a strong k out of n visual secret

sharing scheme.
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Chapter 2

Visual Secret Sharing Schemes

for fixed k and n

2.1 A 2 out of 2 Visual Secret Sharing Scheme

The very first scheme that was presented by Naor and Shamir in [2] is a 2

out of 2 visual secret sharing scheme. Although it can be solved by dividing

a pixel into two subpixels, the aspect ratio of the image will be distorted.

As a result, each pixel is divided into four subpixels to form a 2× 2 square.

In Figure 2.1 from [2] are depicted the different squares that can be used for

the scheme.

As one can see, there are three different types of transparencies, horizon-

tal, vertical and diagonal, each consisting of two squares which are comple-

mentary. In order to share a white pixel, two identical squares are chosen,

whereas, to share a black one, two complementary squares are used.

The transition from the visual pattern of a pixel (a square consisting of

2× 2 subpixels) to a row in a matrix is the following, where “ul” denotes the
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Figure 2.1: The different squares that are used for a 2 out of 2 scheme

upper left subpixel, “ur” the upper right, “ll” the lower left, and “lr” the

lower right subpixel:

ul ur

ll lr
;

[
ul ur ll lr

]

As a result, collection C0 consists of the following set of matrices:

C0 =


1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1

0 1 1 0

0 1 1 0

1 0 0 1

1 0 0 1


Collection C1 consists of the following set of matrices:

C1 =


1 1 0 0

0 0 1 1

0 0 1 1

1 1 0 0

1 0 1 0

0 1 0 1

0 1 0 1

1 0 1 0

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0


Any single transparency (corresponding to a single row from an array of

collection C0 or collection C1) consists of two black and two white subpixels

arranged in all possible ways, and looks medium gray. Since the number of

black (white respectively) subpixels is 2 in all the transparencies, the scheme

is uniform.
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As a result, the contrast of the scheme is contrastSN = h− l = 2− 0 = 2

and the relative difference between a black and a white pixel (i.e. the loss of

contrast) is contrastlossSN = a = h−l
b

= 2
4

= 1
2
.

Respectively, contrastV V T = h−l
h+l

= 2−0
2+0

= 2
2

= 1 and contrastlossV V T =

h−l
b·(h+l)

= 2−0
4·(2+0)

= 1
4
. The scheme is of type [b;h, l = 0; r] = [4; 2, 0; 6] and

thus is a maximal contrast scheme. So, when the two transparencies are

stacked together, the visual outcome is either medium gray, which in this

case represents white, or completely black, which represents black.

2.2 A 3 out of 3 Visual Secret Sharing Scheme

A 3 out of 3 visual secret sharing scheme can be generated by the 3 × 4

boolean matrices A0 and A1 as follows:

C0 = {all the matrices obtained by permuting the columns ofA0 =


0 0 1 1

0 1 0 1

0 1 1 0

}

C1 = {all the matrices obtained by permuting the columns ofA1 =


1 1 0 0

1 0 1 0

1 0 0 1

}

As one may notice, the rows of A0 and A1 are the six different squares used

in the 2 out of 2 visual scheme described in Section 2.1. More specifically,

each one of them consists of one horizontal, one vertical, and one diagonal

type of transparencies. As for the security of the scheme: Any single row

contains two black and two white subpixels in any order and any two trans-
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parencies consist of one common and two individual black subpixels, in any

order, too. What is more, the “or” of any two rows consists of one white

and three black subpixels. Hence, it is impossible to distinguish between a

matrix from C0 and a matrix from C1 when less than three transparencies are

inspected. Additionally, the scheme is uniform. However, if we stack three

transparencies from a matrix in C0 one subpixel will be white and the rest

three will be black, whereas when a matrix from C1 is chosen, it is completely

black.

As a result, the contrast of the scheme is contrastSN = h− l = 1− 0 = 1

and the loss of contrast contrastlossSN = h−l
b

= 1
4
.

Respectively, contrastV V T = h−l
h+l

= 1−0
1+0

= 1 and the loss of contrast

contrastlossV V T = h−l
b·(h+l)

= 1−0
4·(1+0)

= 1
4
. The scheme is of type [b;h, l =

0; r] = [4; 1, 0; 24] and thus is a maximal contrast scheme. So, when three

transparencies (shares) are stacked together, the result is either 3/4 gray

(which represents white) or completely black (which represents black).

2.3 A 4 out of 4 Visual Secret Sharing Scheme

A 4 out of 4 visual secret sharing scheme can be generated by the permutation

of the columns of the following two 4× 9 boolean matrices A0 and A1:

A0 =


0 1 1 1 1 1 0 0 0

0 1 0 1 1 0 0 1 1

0 0 1 1 1 0 1 0 1

0 0 0 1 1 1 1 1 0


A1 =


0 1 1 0 1 1 0 1 0

0 1 0 1 1 1 0 0 1

0 1 0 1 1 0 1 1 0

1 0 0 1 1 1 0 1 0


The visual form of the 3 × 3 squares that represent a single pixel are
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shown in Figure 2.2 from [2]:

Figure 2.2: The 3 × 3 squares that represent a single pixel in a 4 out of 4

scheme

As one can see, each square contains 5 black subpixels, any stacked pair of

transparencies contains 7 black ones, and any three of them 8 black subpixels.

However, when four of them are stacked together, if the matrix belongs to C0

collection there exist one white and 8 black subpixels, whereas if it belongs

to C1 all of the subpixels are black. It would be possible to use 8 instead of

9 subpixels, but then the aspect ratio would be distorted.

As a result, the contrast of the scheme is contrastSN = h− l = 1− 0 = 1

and the loss of contrast contrastlossSN = h−l
b

= 1
9
.

Respectively, contrastV V T = h−l
h+l

= 1−0
1+0

= 1 and contrastlossV V T =
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h−l
b·(h+l)

= 1−0
9·(1+0)

= 1
9
. The scheme is of type [b;h, l = 0; r] = [9; 1, 0; 9!] and

thus is a maximal contrast scheme. So, when all four shares are stacked

together, the result is either deep gray (i.e., 8/9 black subpixels), which

represents white, or completely black, which represents black.

2.4 A 2 out of 6 Visual Secret Sharing Scheme

In this Section we describe a 2 out of 6 visual secret sharing scheme. The

scheme is generated by two 6× 4 boolean matrices, A0 and A1.

C0 = {all the matrices obtained by permuting the columns ofA0 =



1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0


}

C1 = {all the matrices obtained by permuting the columns ofA1 =



0 1 0 1

1 0 1 0

1 1 0 0

0 0 1 1

0 1 1 0

1 0 0 1


}

In both A0 and A1, each row consists of two black and two white subpixels

in any order. Hence, no conclusion can be made about the colour of the pixel

and the scheme is secure.
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As a result, the contrast of the scheme is contrastSN = h− l = 2− 1 = 1

and the loss of contrast contrastlossSN = a = h−l
b

= 1
4
.

Respectively, contrastV V T = h−l
h+l

= 2−1
2+1

= 1
3

and contrastlossV V T =

h−l
b·(h+l)

= 2−1
4·(2+1)

= 1
12

. The scheme is of type [b;h, l; r] = [4; 2, 1; 24]. When

two transparencies are stacked together, the result is either medium gray

(i.e., half subpixels white and half black), which represents white, or (almost)

completely black (at least 3 subpixels back), which represents black (some

cover all four).
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Chapter 3

Visual Secret Sharing Schemes

for fixed k

3.1 A 2 out of n Scheme and its Dual

In this Section a general 2 out of n visual secret sharing scheme is presented

with blocklength b = n using the following collections of n× n matrices:

C0 = {all the matrices obtained by permuting the columns ofA0 =


100 . . . 0

100 . . . 0

. . .

100 . . . 0


}

C1 = {all the matrices obtained by permuting the columns ofA1 =


100 . . . 0

010 . . . 0

. . .

000 . . . 1


}
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As one can see, each row of a matrix in both collections consists of one

black and n − 1 white subpixels. As a result, the scheme complies with the

security condition in Definition 1.3.2. When any two transparencies from

a matrix in C0 are stacked together the “or”-ed vector still consists of one

black and n − 1 white subpixels. However, in C1, there exist two black

and n − 2 white subpixels, which looks relatively darker. By stacking more

transparencies the difference between a black and a white pixel becomes more

obvious. What is more, the scheme is uniform with parameters [b;h, l; r] =

[n;n− 1, n− 2;n!].

As a result, the contrast of the scheme is contrastSN = h− l = (n− 1)−

(n− 2) = 1 and the loss of contrast contrastlossSN = a = h−l
b

= 1
n
.

Respectively, contrastV V T = h−l
h+l

= (n−1)−(n−2)
(n−1)+(n−2)

= 1
2n−3

and contrastlossV V T =

h−l
b·(h+l)

= 1
n·(2n−3)

. However, for large n the contrast of the scheme is nearly

zero.

By switching 0 and 1 (i.e., by getting the complements of the matrices)

a new 2 out of n visual secret sharing scheme is constructed with maximal

contrast 1. In that case the two collections C0 and C1 are:

C0 = {all the matrices obtained by permuting the columns ofA0 =


011 . . . 1

011 . . . 1

. . .

011 . . . 1


}
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C1 = {all the matrices obtained by permuting the columns ofA1 =


011 . . . 1

101 . . . 1

. . .

111 . . . 0


}

As one can see l = 0, so the scheme is a maximal contrast secret sharing

scheme with parameters [b;h, l; r] = [n; 1, 0;n!].

As a result, the contrast of the scheme is contrastSN = h− l = 1− 0 = 1

and the loss of contrast contrastlossSN = a = h−l
b

= 1
n
.

Respectively, contrastV V T = h−l
h+l

= 1−0
1+0

= 1 (maximal contrast scheme)

and contrastlossV V T = h−l
b·(h+l)

= 1
n
.

3.2 A second 2 out of n Visual Secret Sharing

Scheme

The 2 out of 6 visual secret sharing scheme described in Section 2.4 can be

used as a basis to construct a uniform 2 out of n scheme S = (C0, C1). We

choose a non-negative integer m such that
(
m
m/2

)
≥ n. Next, we choose a

“ground set” (any set will do) of size m and consider all of its subsets of size

m/2. As will become obvious later on, m must satisfy
(
m
m/2

)
≥ n because in

this way we ensure that there exist at least n different subsets, i.e., at least n

different transparencies to be used to construct the scheme. Matrix A1 then

is constructed as follows: the ith row in A1 corresponds to the ith subset,

i.e., A1[i, j] = 1 iff the jth element is in the ith subset. A0 is the n × m

matrix where each row is 1m/20m/2. Collections C0 and C1 are obtained from
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all column permutations of A0 and A1 respectively.

The blocklength of the scheme is m and any single transparency contains

an arbitrary collection of m/2 black and m/2 white subpixels. Hence, the

scheme is uniform and perfectly secure. Any two stacked transparencies from

C0 contain m/2 black subpixels whereas any two from C1 contain at least m
2

+1

black subpixels, since the corresponding subsets cannot be the same. The

parameters of the scheme are [b;h, l; r] = [m; m
2
, m

2
− 1;m!].

As a result, the contrast of the scheme is contrastSN = h− l = w(~υ1)−

w(~υ0) = m
2

+ 1− m
2

= 1 and the loss of contrast contrastlossSN = a = h−l
b

=

1
m

.

Respectively, contrastV V T = h−l
h+l

= 1
m−1

contrastlossV V T = h−l
b·(h+l)

=

1
m(m−1)

.

Example 3.2.1: An example follows for n = 5:

We choose m = 4, because
(
m
m/2

)
=
(

4
2

)
= 6 > 5. In this case the ground set

will be J = {j1, j2, j3, j4} and all the subsets of size m
2

= 2 are:

S1 = {j1, j2}, S2 = {j1, j3}, S3 = {j1, j4},

S4 = {j2, j3}, S5 = {j2, j4}, S6 = {j3, j4},

Matrix A0 is the same as in the 2 out of 6 scheme described above. We

choose S1, S2, S3, S4 and S6 subsets for the n = 5 transparencies and we

construct matrix A1. As a result, matrices A0 and A1 are the following:
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A0 =



1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0


A1 =



1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 0 1 1


As a result, the contrast of this scheme is contrastSN = h− l = 1 and the

loss of contrast contrastlossSN = a = h−l
b

= 1
4
. Respectively, contrastV V T =

h−l
h+l

= 1
3

and the loss of contrast contrastlossV V T = h−l
b·(h+l)

= 1
12

. The param-

eters of the scheme are [b;h, l; r] = [4; 2, 1; 24].

3.3 A 3 out of n Visual Secret Sharing Scheme

The 3 out of 3 visual secret sharing scheme described in Section 2.2 can

be used as a basis to construct a uniform 3 out of n scheme S = (C0, C1).

Consider an n×(n−2) matrix B whose elements are all ones (i.e., corresponds

to all black subpixels) and the n × n identity matrix I whose elements are

all zeros except for the diagonal whose values are ones. We denote BI the

n × (2n − 2) matrix which is the concatenation of the matrices B and I.

Additionally, let c(BI) be the boolean complement of BI. Then, we define

C0 = {all the matrices obtained by permuting the columns of A0 = c(BI)}

C1 = {all the matrices obtained by permuting the columns of A1 = BI}

Each transparency from any matrix consists of n − 1 black and n − 1

white subpixels. What is more, any two of them stacked on top of each other

have two individual and n − 2 common black subpixels. Hence, the scheme

complies with the security condition in Definition 1.2.1.



32

The “or” vector of any three transparencies from any matrix in C0 contains

n black subpixels, whereas in C1 collection contains n+1 black subpixels. As a

result, the scheme is a uniform visual secret sharing scheme with parameters

[b;h, l; r] = [2n− 2;n− 2, n− 3;n!].

As a result, the contrast of the scheme is contrastSN = h− l = w(~υ1)−

w(~υ0) = n+1−n = 1 and the loss of contrast is contrastlossSN = a = h−l
b

=

1
2n−2

.

Respectively, contrastV V T = h−l
h+l

= 1
(n−2)+(n−3)

= 1
2n−5

and contrastlossV V T =

h−l
b·(h+l)

= 1
(2n−2)(2n−5)

. For large n the contrast of the scheme is nearly zero.

Example 3.3.1: An example for n = 5 follows:

The n× (n−2) = 5×3 dimensional matrix B and the n×n = 5×5 identity

matrix I are:

B =



1 1 1

1 1 1

1 1 1

1 1 1

1 1 1


I =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


The concatenated matrix BI then, and its Boolean complement c(BI) will

be:

BI =



1 1 1 1 0 0 0 0

1 1 1 0 1 0 0 0

1 1 1 0 0 1 0 0

1 1 1 0 0 0 1 0

1 1 1 0 0 0 0 1


c(BI) =



0 0 0 0 1 1 1 1

0 0 0 1 0 1 1 1

0 0 0 1 1 0 1 1

0 0 0 1 1 1 0 1

0 0 0 1 1 1 1 0


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The blocklength of the scheme is b = 2n− 2 = 2 · 5− 2 = 8. The contrast

of the scheme is contrastNS = h − l = 3 − 2 = 1 and the loss of contrast

contrastlossSN = a = h−l
b

= 1
2n−2

= 1
2·3−2

= 1
4
.

Respectively, contrastV V T = h−l
h+l

= 3−2
2+3

= 1
5

and contrastlossV V T =

h−l
b·(h+l)

= 3−2
8·(3+2)

= 1
40

. The parameters of the scheme are [b;h, l; r] = [8; 3, 2; 5!].
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Chapter 4

k out of k Visual Secret Sharing

Schemes

4.1 A k out of k scheme - Construction I

This k out of k visual secret sharing scheme S = (C0, C1) was presented in

[2] by Naor, Shamir: In order to construct the scheme we will use vectors

of length k over the Galois field GF (2), namely the Vector Space V (k, 2).

In particular, two sets of vectors are needed, denoted J0
1 , J

0
2 , . . . , J

0
k and

J1
1 , J

1
2 , . . . , J

1
k . Every k− 1 vectors of the J0

1 , J
0
2 , . . . , J

0
k are linearly indepen-

dent whereas all k of them are not. An example of such a set is constructed

as follows: J0
i = 0i−110k−i for 1 ≤ i < k and J0

k = 1k−10. On the other hand,

the vectors J1
1 , J

1
2 , . . . , J

1
k are all linearly independent over GF (2). As an

example, we could use the following vectors: J1
i = 0i−110k−i for 1 ≤ i ≤ k.

To construct matrix A0 the following steps must be taken: we construct

a k× k matrix B0 whose rows are the k vectors J0
1 , J

0
2 , . . . , J

0
k . Additionally,
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let F be a k × 2k matrix whose columns consist of all the 2k vectors in

V (k, 2). Then, the multiplication B0 · F results in a new k × 2k boolean

matrix A0. Following the same procedure we construct matrix A1, but vectors

J1
1 , J

1
2 , . . . , J

1
k are used as the rows of matrix B1 respectively.

Lemma 4.1.1: a. If Bt, t ∈ {0, 1} consists of k−1 linearly independent vec-

tors, then At, when limited to k−1 rows contains exactly 2 all-zero columns.

b. If the k vectors that B1 consists of are linearly independent, then each

vector in V (k, 2) occurs exactly once as a column of B1 · F = A1.

Proof. a. Let us denote null(Bt) the dimension of the null-space of Bt and

rank(Bt) the dimension of Bt. Then, it holds that rank(Bt) + null(Bt) = k.

But rank(Bt) = k − 1, hence, null(Bt) = k − (k − 1) = 1. As a result,

matrix At that is constructed by Bt and all the vectors in V (k, 2) will contain

2k−(k−1) = 2 all-zero columns.

b. Let us suppose that this is not the case, i.e., there exist ~r1 and ~r2 ∈

V (k, 2) that appear as columns in F , where ~r1 6= ~r2, such that B1~r1 = ~r3

(equation I) and B1~r2 = ~r3 (equation II), ~r3 ∈ V (k, 2). But B1 consists of

linearly independent vectors, hence, it is invertible, i.e., B−1
1 exists. Then,

from equations I and II it follows that ~r1 = B−1
1 ~r3 and ~r2 = B−1

1 ~r3, i.e.,

~r1 = ~r2, which is a contradiction to the initial hypothesis. Hence, all the

columns of B1 · F = A1 consist of 2k different vectors, i.e., each vector in

V (k, 2) occurs exactly once as a column in A1.

Theorem 4.1.2: The scheme described above is a k out of k visual secret

sharing scheme with b = 2k, a = 1/2k, and r = 2k!. Its parameters are
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[b;h, l; r] = [2k; 2, 1; 2k!].

Proof. Both A0 and A1 are k × 2k matrices, hence, the blocklength of the

scheme is b = 2k.

About the contrast of the scheme: As one can see, matrix A0 contains

two all-zero columns: one corresponds to the all-zero vector and the other

one to vector 0k−11 in F , hence, h = 2. However, from Lemma 4.1.1.b we get

that matrix A1 contains only one all-zero column, the one that corresponds

to the all-zero vector in F , since all the k vectors are linearly independent,

hence, l = 1. The same holds for all the matrices that are obtained from the

column permutations of A0 and A1 respectively.

Hence, the contrast of the scheme is contrastSN = h− l = 2− 1 = 1 and

contrastlossSN = a = (h− l)/b = (2− 1)/2k = 1/2k.

Respectively, contrastV V T = h−l
h+l

= 1
2+1

= 1
3

and contrastlossV V T =

h−l
b·(h+l)

= 1
3·2k .

In order to show security, let us consider the following:

Note that the vectors corresponding to any k− 1 rows in both B0 and B1

are linearly independent over GF (2). By Lemma 4.1.1.a we get that when

A0 and A1 are limited to any k−1 rows they both have two all-zero columns.

Since this is the case for any k− 1 rows, it will hold for less than k− 1 rows,

too. As a result, there cannot be a distinction between A0 and A1 when

they are limited to less than k rows. The same will hold for all the column

permutations of them and as a result, the scheme complies with the security

condition of Definition 1.3.2.

Since the blocklength of the scheme is 2k, it follows that the cardinality
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of both collections C0 and C1 is r = 2k!.

Example 4.1.3: Consider k = 4, so the two lists of vectors will be:

J0
1 = 1000, J0

2 = 0100, J0
3 = 0010, and J0

4 = 1110

J1
1 = 1000, J1

2 = 0100, J1
3 = 0010, and J1

4 = 0001

As one can see, any k− 1 vectors of list J0
i are linearly independent while all

k are not. Additionally, all k vectors of list J1
i are linearly independent.

The vector space V (4, 2) consists of the following 2k = 24 = 16 vectors:

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100,

1101, 1110, and 1111.

To create A0 we index its columns by the 16 vectors of V (4, 2) and calculate

the inner product of each one of them with the vectors consisting list J0
i .

The result is the following:

A0 =


0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1


Similarly for A1:

A1 =


0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


In this scheme the contrast is contrastSN = h − l = 2 − 1 = 1 and the

loss of contrast contrastlossSN = a = 1
2k

= 1
25

.
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Accordingly, contrastV V T = h−l
h+l

= 1
2+1

= 1
3

and contrastlossV V T =

h−l
b·(h+l)

= 1
3·2k = 1

3·25 . The parameters of the scheme are [b;h, l; r] = [16; 2, 1; 16!].

4.2 A k out of k scheme - Construction II

This k out of k visual secret sharing scheme S = (C0, C1) generated by ma-

trices A0 and A1 was also presented in [2] by Naor, Shamir: In order to

construct it a ground set of k elements W = {e1, e2, . . . , ek} will be used as a

basis. Let us denote {π1, π2, . . . , π2k−1} the list of all the 2k−1 subsets of W

of even cardinality and {σ1, σ2, . . . , σ2k−1} the list of all the subsets of W of

odd cardinality.

Both A0 and A1 will be k × 2k−1 dimensional matrices. The elements of

A0 will be defined by the formula: A0[ij] = 1 iff ei ∈ πj, where 1 ≤ i ≤ k

and 1 ≤ j ≤ 2k−1. In exactly the same way, the elements of A1 are defined

by: A1[ij] = 1 iff ei ∈ σj, 1 ≤ i ≤ k, and 1 ≤ j ≤ 2k−1.

By permuting the columns of matrices A0 and A1 in all possible ways we

get the collections C0 and C1 of the scheme respectively.

Theorem 4.2.1: The scheme described above is a k out of k visual secret

sharing scheme with b = 2k−1, a = 1/2k−1, and r = 2k−1!. Its parameters are

[b;h, l; r] = [2k−1; 1, 0; 2k−1!]. What is more, it is a maximal contrast scheme.

Proof. For each set W of k elements there exist 2k different subsets, 2k−1

of even and 2k−1 of odd cardinality. Hence, both A0 and A1 consist of 2k−1

columns, i.e., the blocklength of the scheme is b = 2k−1.
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About the contrast of the scheme: There exists exactly one empty subset

of W and it is contained in the list {π1, π2, . . . , π2k−1} of the even cardinality

subsets. Hence, in matrix A0 there exists an all-zero column, whereas in A1

there is none. As a result, h = 1 and l = 0.

About the security of the scheme: The row of both A0 and A1 is defined

by the element while the column by the subset. Since each element is in

exactly half of the subsets, the number of zeros and ones is the same in each

row, in both A0 and A1. Hence, a single row cannot reveal any secret about

the colour of the pixel.

Additionally, when restricted to any k − 1 rows, matrix A0 has one all-

zero column, and A1 has one all-zero column, too. The latter corresponds to

a subset that has only one element, the one which does not index any of the

k − 1 chosen rows, but it indexes the k-th.Using the same technique for less

than k − 1 rows, the same result follows.

As a result, the contrast of the scheme is contrastSN = h− l = 1− 0 = 1

and the loss of contrast contrastSN = a = h−l
b

= 1
2k−1 .

Accordingly, contrastV V T = h−l
h+l

= 1−0
1+0

= 1 and contrastlossV V T =

h−l
b·(h+l)

= 1−0
2k−1·(1+0)

= 1
2k−1 . Since l = 0, the scheme is of type [b;h, l =

0] = [2k−1; 1, 0] and thus is a maximal contrast scheme. So, when two shares

are stacked together, the result is either deep gray (which represents white)

or completely black (which represents black).

Example 4.2.2: Let k = 4 and the ground set W be: W = {e1, e2, e3, e4}.

Then the subsets of even cardinality are the 2k−1 = 24−1 = 23 = 8 following:

∅, {e1, e2}, {e1, e3}, {e1, e4}, {e2, e3}, {e2, e4}, {e3, e4}, {e1, e2, e3, e4}

Accordingly, the subsets of odd cardinality are the 2k−1 = 24−1 = 23 = 8
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following:

{e1}, {e2}, {e3}, {e4}, {e1, e2, e3}, {e1, e2, e4}, {e1, e3, e4}, {e2, e3, e4}

To construct A0 we index the rows of the matrix by the elements of the

ground set W , i.e. e1, e2, e3 and e4 and the columns by the subsets of even

cardinality of W . Then we have:

A0 =


0 1 1 1 0 0 0 1

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1


The construction of A1 is similar with the exception that the columns of

the matrix are indexed by the odd cardinality subsets of W . Thus, we have:

A1 =


1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1


As a result, the contrast of this scheme is contrastSN = h− l = 1− 0 = 1

and the loss of contrast contrastlossSN = a = h−l
b

= 1
2k−1 = 1

23
= 1

8
.

Accordingly, contrastV V T = h−l
h+l

= 1 and contrastlossV V T = h−l
b·(h+l)

=

1
23

= 1
8
. The parameters of the scheme are [b;h, l; r] = [8; 1, 0; 8!].

4.3 An upper bound on a for k out of k schemes

Theorem 4.3.1: Let S = (C0, C1) be any k out of k scheme visual secret

sharing scheme. Then a ≤ 1
2k−1 and b ≥ 2k−1.
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Proof. In order to prove that a ≤ 1
2k−1 the following combinatorial fact will be

used (see [6], [7]). Let us consider a ground set G and two lists of subsets of it,

denoted X1, X2, . . . , Xk and Y1, Y2, . . . , Yk. If for every subset U ⊂ {1, . . . , k}

of size less than k (i.e. ≤ k − 1) it holds that | ∩i∈U Xi| = | ∩i∈U Yi|, then

| ∪ki=1 Xi| ≤ 1
2k−1 · |G|+ | ∪ki=1 Yi|. Namely, if all the intersections of less than

k of the sets Xi and Yi, 1 ≤ i ≤ k, contain the same number of elements,

then the difference in their union cannot be too large.

Let us consider a k out of k visual secret sharing scheme S = (C0, C1). The

ground set that will be used contains b·r elements which are indexed by (x, y),

where 1 ≤ x ≤ r and 1 ≤ y ≤ b. The two lists of subsets X1, X2, . . . , Xk

and Y1, Y2, . . . , Yk are constructed in the following way: element (x, y) of G

is in Xi iff A0
x[i, y] = 1. Symmetrically, it is in Yi iff A1

x[i, y] = 1. The idea is

that, for each row i we count all the ones in all matrices of collection C0 (C1

respectively) and add the corresponding elements in Xi (Yi respectively).

The security condition of all visual secret sharing schemes implies that

for any U ⊂ {1, . . . , k} of size s < k it holds that | ∩i∈U Xi| = | ∩i∈U Yi| since

there can be no distinction between matrices from C0 and C1 when limited

to less than k rows. Then from the combinatorial fact described in the first

paragraph we get that

| ∪ki=1 Yi| ≤ 1
2k−1 · rb+ | ∪ki=1 Xi|

Namely, the difference of the Hamming weight of the “or” of any k rows

of a matrix in C0 and one in C1 is at most 1
2k−1 · b, which implies that w(~υ1)−

w(~υ0) ≤ 1
2k−1 · b. Since a = h−l

b
= w(υ1)−w(υ0)

b
, from the previous formula if we

divide by b we get: a ≤ 1
2k−1 .
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The contrast condition of the scheme implies that the difference between

the Hamming weight of the ”or” of the k rows of a matrix in C0 and the

Hamming weight of the ”or” of the k rows of a matrix in C1 must be at least

1. Hence, from the same formula we conclude that: 1 ≤ 1
2k−1 · b, namely,

b ≥ 2k−1.
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Chapter 5

General k out of n Visual

Secret Sharing Schemes

5.1 A k out of n Scheme - Construction I

The following k out of n scheme was presented in [2] by Naor, Shamir. In

particular, a given k out of k scheme is used in the construction of a k out

of n scheme:

We consider a uniform k out of k scheme S = (C0, C1) with parameters b,

a, and r. Each collection C0 and C1 consists of r k×b matrices T d1 , T
d
2 , . . . , T

d
r ,

d ∈ {0, 1}.

We recall that a scheme is uniform when the number of zeros of the “or”

of any q < k rows, in any matrix T di , 1 ≤ i ≤ r and d ∈ {0, 1} depends only

on the number q. Consequently, a function f(q) can be used to describe it for

both collections and as a result there is no way to decide if it is about a white

or a black pixel. All the visual secret sharing schemes that are described so
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far have this property.

In order to transform a k out of k scheme to a k out of n scheme a

collection H of ` (hash) functions must be used with the following properties:

1. For every h ∈ H it holds: h : {1, . . . , n} 7→ {1, . . . , k}

2. If Y = |{h(i1), h(i2), . . . , h(ik)}|, i ∈ {1, . . . , n}, is a random variable

and βq is the probability that Prob[Y = q], then βq is the same for

every h ∈ H.

Let us name S ′ = (C ′0, C ′1) the new k out of n scheme.

Each collection C ′0 and C ′1 consists of r` different n× b · ` matrices. Each

matrix is indexed by a vector t, where t = (t1, t2, . . . , t`), 1 ≤ ti ≤ r. The ele-

ments of the matrices are calculated by the formula Adt [i, (j, h)] = T dth [h(i), j],

d ∈ {0, 1}, 0 ≤ i ≤ n − 1, 1 ≤ j ≤ b, and 1 ≤ h ≤ `. Additionally, th de-

notes the h-th entry in vector t, and T dth [h(i), j] the corresponding element

of matrix T dth in Cd collection. As one can see, the blocklength of the scheme

is b · `.

Lemma 5.1.1: By using a k out of k visual secret sharing scheme with

parameters b, a, and r, one can construct a k out of n visual secret sharing

scheme S ′ with parameters b′ = b · `, a′ = a · βk, and r′ = r`, where ` denotes

the number of the hash functions in the H family.

Proof. From the construction above, it is obvious that each matrix Adt has

blocksize ` times the blocksize of the matrices T di , 1 ≤ i ≤ r, namely, b · `.

We have already mentioned that βq denotes the probability that Prob[Y =

q], where Y = |{h(i1), h(i2), . . . , h(ik)}| is a random variable, i ∈ {1, . . . , n}.
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By definition, βq is the same for every h ∈ H. From the security of S it is

ensured that if q < k then the number of black subpixels (i.e., the Hamming

weight of the “or”-ed q rows) is equal to f(q) for all matrices in both C0 and

C1 collections. Hence, only when h is limited to any k values is 1 − 1, i.e.,

yields k different values, there is a distinction between a white and a black

pixel. If we denote by βk the probability that this event takes place, then,

βk = k!
kk
≥ (k/e)k

kk
√

2πk
= e−k
√

2πk
.

Considering all the above mentioned, the Hamming weight of an ”or” of

k rows of a white pixel (a matrix from C ′0 collection) is at most

w(~υ0) ≤ `(βk · (d− ab) +
k−1∑
q=1

βq · f(q)),

and the weight of a black pixel (a matrix from C ′1 collection) is at least

w(~υ1) ≥ `(βk · d+
k−1∑
q=1

βq · f(q)).

The above mentioned relation holds for w(~υ0) because when k out of n

shares are chosen, one of the following will happen: (a) they will be mapped

to k different values, with probability βk, and then, there will be at most

b − ad black subpixels in a white pixel. In this case it will be clear that it

is a white pixel. (b) they will be mapped to q < k values, with probability

βq, and as stated in the definition of uniformity, the number of the black

subpixels in this case is described by a function f(q), i.e., it depends only

on the number of rows q. Hence, there are q different events that may take

place with βq probability each. In such a case there is no way to tell if the

shares describe a white or a black pixel.

The same applies to w(~υ1): when k out of n shares are chosen, one of the

following will happen: (a) they will be mapped to k different values, with

probability βk, and as a result there will be at least d black subpixels in a



48

black pixel. It will be clear that it is a black pixel. (b) they will be mapped

to q < k values, with probability βq, and again the number of the black

subpixels is described by a function f(q). Similarly, there are q different

events that may take place with βq probability each. It is again impossible

to decide the colour of the pixel.

If we do the calculations, w(~υ1)− w(~υ0) ≥ ` · βk · a · b.

Then, the contrast of the scheme is contrastSN = h−l = w(~υ1)−w(~υ0) =

` · βk · a · b and the relative difference (i.e., loss of contrast of the scheme) is

contrastlossSN = a′ = w1(~υ)−w0(~υ)
b′

= `·βk·a·b
b·` = a · βk.

As for the security of the scheme, as mentioned in the beginning of the

Proof, each matrix Adt consists of ` matrices from the corresponding Cd col-

lection. Hence, the security of the k out of k scheme implies the security of

the new k out of n scheme.

5.1.1 Construction of H

In order to create this family of hash functions the following must be taken

under consideration:

Definition 5.1.1.1: A family H of hash functions H = {h : U 7→ [m]} is k-

wise independent if for every h ∈ H, and for all distinct values x1, x2, · · · , xk ∈

U and any k (not necessarily distinct) values y1, y2, . . . , yk ∈ [m], it holds:

Pr[h(x1) = y1 & h(x2) = y2 & . . . & h(xk) = yk] = 1
mk

Alternatively we could say:

1. For any random h ∈ H and for a fixed x ∈ U , any value in [m] is

equally likely to represent h(x), namely, h(x) is uniformly distributed
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in [m].

2. If h is chosen randomly from H, then for any fixed distinct values

x1, . . . , xk ∈ U the outcomes h(x1), . . . , h(xk) ∈ [m] are independent

random variables, i.e., they have the same probability distribution

which cannot be influenced by the occurrence of the other values.

Such constructions are described in [8], [9], and [10].

For a general k out of n scheme, we want to construct H in such a way that

for every h ∈ H if we choose k different values x1, x2, . . . , xk from {1, . . . , n}

then h(x1), h(x2), . . . , h(xk) are completely independent and as a result the

probability βq is the same for all of them.

A simple construction of such a family H follows:

We take k to be a prime and find a number p such that kp ≥ n. Then,

there exist (kp)k different polynomials q(x) of degree k− 1 over GF (kp). We

take for every h ∈ H, h(x) = w(q(x)) and construct the H collection, where

w : GF (kp) 7→ GF (k). Since |H| = (kp)k and kp ≥ n, |H| ≥ nk.

Combining Lemma 5.1.1 with the above described construction the fol-

lowing Theorem holds:

Theorem 5.1.1.2: A visual secret sharing scheme with parameters b′ =

nk · 2k−1, a′ = 2(2e)−k/
√

2πk, and r′ = (2k−1!)n
k

can be constructed for any

n and any k.

Proof. This k out of n construction is based on a k out of k visual secret

sharing scheme. Let us assume that the latter is the second k out of k scheme

described earlier in Section 4.2, with b = 2k−1, a = 1
2k−1 , and r = 2k−1!.
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From Lemma 5.1.1 we get that b′ = b · `, a′ = a · βk, and r′ = r` are the

parameters for the new k out of n scheme. Since ` = nk and βk = e−k
√

2πk
, we

get b′ = 2k−1 · nk, a′ = 1
2k−1 · e−k

√
2πk

= 2·(2e)−k
√

2πk
, and r = (2k−1!)n

k
.

In the case of a 2 out of n visual scheme, a construction of a pairwise

independent family of hash functions which is presented in [9] can be used.

In this case, the construction is described as follows: Let us assume that we

want to create a family of hash functions H such that for each h ∈ H it holds

that: h : A 7→ B, where A = {0, . . . , n− 1}, B = {0, . . . , k − 1}, and n > k.

We choose the smallest prime p such that p ≥ n and the family of hash

functions is constructed using the formula h(x) = ((cx + w) mod p) mod k,

where c, w ∈ Zp and c 6= 0. Hence, |H| = p(p− 1) ' n2.

Example 5.1.1.2: An example will enlighten the details of the construction

of the scheme:

We will create a 2 out of 3 visual secret sharing scheme starting from a 2

out of 2 scheme, whose collections C0 and C1 are created by the permutations

of the following two matrices:

T0 =

0 0 1 1

0 0 1 1

 T1 =

0 0 1 1

1 1 0 0


The above 2 out of 2 visual secret sharing scheme is uniform. Each

collection, C0 and C1, consists of r = 4! = 24 matrices, so, the parameters of

the scheme are [b;h, l; r] = [4; 2, 0; 24].

Since k = 2, in order to create H we will use the construction from [9],

which was described above. Then, collection H will consist of the following

6 hash functions, i.e., ` = 6:
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h1(n) = (n mod 3) mod 2

h2(n) = ((n+ 1) mod 3) mod 2

h3(n) = ((n+ 2) mod 3) mod 2

h4(n) = (2n mod 3) mod 2

h5(n) = ((2n+ 1) mod 3) mod 2

h6(n) = ((2n+ 2) mod 3) mod 2

As one can see, all of them fulfill the requirements stated before:

• For all of them we have: hi : {1..3} 7→ {1..2} and

• If Y = |{h(i1), h(i2), h(i3)}|, i ∈ {1, . . . , 3}, is a random variable and

βq is the probability that Prob[Y = q], then βq is the same for every

h ∈ H.

The vectors that will index the matrices of the collections C ′0 and C ′1 are

[1, 1, 1, 1, 1, 1] up to [24, 24, 24, 24, 24, 24], i.e., each collection consists of 246

matrices.

In the new 2 out of 3 scheme each matrix Ad[t1,t2,t3] has 3 rows, since n = 3,

and ` · b = 6 · 4 = 24 columns.

Its elements are calculated by the formula Adt [i, (j, h)] = T dth [h(i), j]. Ap-

plying this formula, A0
[1,1,1,1,1,1] and A1

[1,1,1,1,1,1] matrices of the new scheme

will be the following:

A0
[1,1,1,1,1,1] =


0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1



A1
[1,1,1,1,1,1] =


0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1

1 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 1 0

0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1


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Each single line either from matrix A0
[1,1,1,1,1,1] or matrix A1

[1,1,1,1,1,1] con-

sists of 12 zeros and 12 ones. Hence, there there is no way to decide if the

matrix belongs to either C ′0 or C ′1 judging from only one transparency. The

boolean “or” of any 2 rows of matrix A0
[1,1,1,1,1,1] consist of 4 zeros while in

A1
[1,1,1,1,1,1] consist of 12 zeros.

As a result, the contrast of the scheme is contrastSN = h− l = 12−4 = 8

and the loss of contrast contrastlossSN = a = h−l
b

= 8
24

= 1
3
.

Accordingly, contrastV V T = h−l
h+l

= 8
16

= 1
2

and contrastlossV V T =

h−l
b(h+l)

= 8
16·24

= 1
48

.

Collections C ′0 and C ′1 consist of all the 246 matrices.

As a result, the parameters of the new scheme S ′ are: [b′;h′, l′; r′] =

[24; 12, 4; 246].

5.2 A k out of n Scheme - Construction II

5.2.1 Relaxing the conditions on H

As the size of collection H is very big, it is about nk as mentioned in the

previous section, it would be preferable to reduce it since it affects the block-

length and the size of the collections C0 and C1 of the scheme. In order to

accomplish this, we could modify condition 2 from Section 5.1 of H as fol-

lows: the probability bq that k different values from {1, . . . , n} to {1, . . . , k}

are mapped to q different values is the same for a randomly chosen function

h ∈ H to within ±ε. Namely,

∀q ∃βq such that ∀xi1, xi2, . . . xik, where i1, i2, . . . , ik ∈ {1, . . . , n},

|Prob[|{h(x1), . . . , h(xk)}| = q]− βq| ≤ ε, for a randomly chosen h ∈ H.
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In such a case it is possible to construct H in such a way that its size can

be significantly smaller. If we apply such a family in the construction of the

previous section we observe the following:

The Hamming weight of an ”or” of k rows of a white pixel is at most:

w(~υ0) ≤ `((βk + ε) · (d− ab) +
k−1∑
q=1

(βq + ε) · f(q))

and the weight of a black pixel is at least:

w(~υ1) ≥ `((βk − ε) · d+
k−1∑
q=1

(βq − ε) · f(q))

As a result, the difference between a black and a white pixel is therefore at

least:

w(~υ1)−w(~υ0) = `(βkab+eab−2εd−2ε
k−1∑
q=1

f(q)) ≥ `(βkab−2εd−2ε
k−1∑
q=1

f(q))

But f(q) ≤ d− ab, hence,
k−1∑
q=1

f(q)) ≤ (k − 1)(d− ab), and as a result,

w(~υ1)− w(~υ0) ≥ `(βkab− 2εkd− 2εb)

Hence, it follows that the relative difference of the new scheme will be

a′ ≥ βka− 2ε(1 + kd/b).

Since fewer than k transparencies never result in k different values, the

security of the scheme is ensured.

5.2.2 Construction of relaxed H:

In order to reduce the size of H we will use the concept of small-bias sample

spaces. A small-bias sample space (also defined as δ-biased sample space, δ-

biased generator, or small-bias probability space) is a probability distribution

that is very similar to the uniform distribution, to within a factor δ ( in the

bibliography it can be found as ε-biased but since ε is used in another way

-see previous section- it is denoted by δ). One can consult [8], [11], and [12]
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for constructions of such sample spaces.

Let x1, . . . , xn be n random variables that take values from {0, 1} and let

D denote their joint probability distribution.

Definition 5.2.2.2: We define

biasD(S) =

∣∣∣∣ProbD [(∑
i∈S

xi = 0

)
mod 2

]
− ProbD

[(∑
i∈S

xi = 1

)
mod 2

]∣∣∣∣
to be the bias of a subset S ⊆ {1, . . . , n} for some distribution D. Then,

the above mentioned variables x1, . . . , xn are δ-biased if for every subset

S ⊆ {1, . . . , n} it holds that biasD(S) ≤ δ. What is more, we define them as

k-wise δ-biased if for every subset S such that |S| ≤ k, biasD(S) ≤ δ.

We will construct a collection H of smaller size, namely, a collection

that grows logarithmically with the number of tranparencies n, according to

[11]: we choose k to be a power of 2 and we will use a k log k-wise δ-bias

probability space R on n log k random variables. Each function h corresponds

to an element of R. Then, as stated in [11], the size of such a probability

space is 2O(k log k) log n, i.e., |H| = 2O(k log k) log n.

We now define the collection H: The n log k random variables of the

sample space are denoted by Yij, 1 ≤ i ≤ n, 1 ≤ j ≤ log k, and take values

in {0, 1}. The choice of the function h determines the values of all random

variables Yij. Each function h is defined as h(x) = Yx1Yx2 . . . Yx log k. Since

each Yxi is equal to 0 or 1, for a fixed x, Yx1Yx2 . . . Yx log k can be viewed as a

number between 0 and k−1. Namely, each h maps values from {1, . . . , n} to

{0, . . . , k − 1}. This is the case because x takes values from {1, . . . , n} and

Yx1Yx2 . . . Yx log k is treated as a number which takes values from {0, . . . , k−1}.

As it was stated previously in Definition 5.1.1.1, a family H of hash
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functions H = {h : U 7→ [m]} is k-wise independent if for every h ∈ H, and

for all distinct x1, x2, · · · , xk ∈ U and any k (not necessarily distinct) values

y1, y2, . . . , yk ∈ [m], it holds:

Pr[h(x1) = y1 & h(x2) = y2 & . . . & h(xk) = yk] = m−k.

Additionally, it can be shown:

∀q ∃βq such that ∀xi1, xi2, . . . xik, where i1, i2, . . . , ik ∈ {1, . . . , n},

Prob[|{h(x1), . . . , h(xk)}| = q] = βq, for a randomly chosen h ∈ H.

In our case where m = k, according to [2] it can be proved that for a

k-wise δ-bias family of hash functions and for all x1, x2, . . . , xk ∈ {1, . . . , n}

and for all y1, y2, . . . , yk ∈ {0, . . . , k − 1} we have:

1
kk
− δ · kk ≤ Prob[h(x1) = y1, h(x2) = y2, . . . , h(xk) = yk] ≤ 1

kk
+ δ · kk.

We will prove that condition 2 stated in Section 5.2.1 holds, i.e.:

The probability βq that k different values from {1, . . . , n} to {1, . . . , k}

are mapped to q different values is the same for a randomly chosen function

h ∈ H to within ±ε. Namely,

Proposition 5.2.2.6: ∀q ∃βq such that ∀xi1, xi2, . . . xik, where i1, i2, . . . , ik ∈

{1, . . . , n}, |Prob[|{h(x1), . . . , h(xk)}| = q] − βq| ≤ ε, for a randomly chosen

h ∈ H.

Proof. Let us denote by h a k-wise independent hash function. Then as

already mentioned, for every y1, . . . , yk ∈ {1, . . . , k} it holds:

Pr [h(x1) = y1, . . . , h(xk) = yk] = 1
kk

Equation (I)

Additionally, let h̃ denote a δ-bias k-wise independent hash function.
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Then, for every y1, . . . , yk ∈ {1, . . . , k} it holds:

Pr
[
h̃(x1) = y1, . . . , h̃(xk) = yk

]
≤ 1

kk
+ δ · kk Equation (II)

Let us denote:

h(x1) = y1, . . . , h(xk) = yk as h1...k and

h̃(x1) = y1, . . . , h̃(xk) = yk as h̃1...k.

As a result, Equation (I) now is Pr [h1...k] = 1
kk

.

Respectively, Equation (II) is Pr
[
h̃1...k

]
≤ 1

kk
+ δ · kk

Then, Pr
[
|{h̃(x1), . . . , h̃(xk)}| = q

]
=∑

y1,...,yk

Pr
[
|{y1, . . . , yk}| = q|h̃1...k

]
·Pr

[
h̃1...k

]
Equation (III)

Let us denote Iqy1,...,yk =

 1 if |{y1, . . . , yk}| = q

0 otherwise

By substituting in Equation (III) the previous formula and Equation (II) we

get:

Pr
[
|{h̃(x1), . . . , h̃(xk)}| = q

]
≤

∑
y1,...,yk

Iqy1,...,yk · (
1
kk

+ δ · kk) =∑
y1,...,yk

Iqy1,...,yk · (Pr [h1...k] + δ · kk) =∑
y1,...,yk

Iqy1,...,yk · Pr [h1...k] + δ · kk ·
∑

y1,...,yk

Iqy1,...,yk =∑
y1,...,yk

Pr [|y1, . . . , yk| = q|h1...k] · Pr [h1...k] + δ · kk ·
∑

y1,...,yk

Iqy1,...,yk =

Pr [|h(x1), . . . , h(xk)| = q] + δ · kk ·
∑

y1,...,yk

Iqy1,...,yk =

βq + δ · kk ·
∑

y1,...,yk

Iqy1,...,yk = βq + δ · k2k, i.e.,

Pr
[
|{h̃(x1), . . . , h̃(xk)}| = q

]
≤ βq + δ · k2k

Combining the above result with the following formula that must hold:

∀q ∃βq such that ∀xi1, xi2, . . . xik, where i1, i2, . . . , ik ∈ {1, . . . , n},

|Prob[|{h(x1), . . . , h(xk)}| = q]− βq| ≤ ε, for a randomly chosen h ∈ H,

we get: ε = δ · k2k. If we choose δ to equal 1
(2k)2k

we get: ε = k2k

(2k)2k
= 1

22k
,

which is small.
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Since |H| = 2O(k log k) log n in the scheme we constructed, the blocklength

of the scheme b grows only logarithmically with the number of shares (trans-

parencies) n.

Theorem 5.2.2.7: A k out of n visual secret sharing scheme with parameters

b = log n·2O(k log k), a = 2−Ω(k), and r′ = (2k−1!)2O(k log k) logn can be constructed

for any k and any n.

Proof. This k out of n construction is based on any k out of k visual secret

sharing scheme. Let us assume that the latter is the second k out of k scheme

described earlier in Section 4.2, with b = 2k−1, and a = 1
2k−1 . From Lemma

5.1.1 and Subsection 5.2.1 we get that b′ = b · ` and a′ = a ·βk− 2ε(1 + kd/b)

are the parameters for the new k out of n scheme. Since ` = log n · 2O(k log k),

βk = e−k
√

2πk
, and ε ≤ 1

22k
from Proposition 5.2.2.6, we get b′ = 2k−1 · log n ·

2O(k log k) = log n · 2O(k log k), and a′ = 2−Ω(k). Similarly, since r = 2k−1! and

r′ = r`, by substitution it results that r′ = (2k−1!)2O(k log k) logn.

5.3 A k out of n Scheme - Construction III

5.3.1 Some Preliminaries

Before describing the following constructions of visual secret schemes, let us

state some terminology, definitions, and theorems that will prove useful later

on.

Definition 5.3.1.1: A vector space V (k, q) over the Galois Field GF (q)

is the set of all possible k-dimensional vectors over GF (q). As a result,
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|V (k, q)| = qk.

Definition 5.3.1.2: Algebraically speaking, a projective space over GF (q)

denoted PG(k, q) consists of all the non-zero subspaces of V (k + 1, q). In

a geometric point of view, a projective space over a vector space V includes

sets of points, lines, planes, and hyperplanes.

A hyperplane in a k + 1-dimensional vector space is a subset of k dimen-

sions which is “flat”, i.e., it is described by a degree-one algebraic equation.

Sometimes it is called codimension 1 subspace. The term dimension refers

to the number of vectors the basis of the subspace consists of. If V is fi-

nite dimensional then points and hyperplanes are in a 1-1 correspondence

as will become clear later on. This is the reason why a hyperplane can be

represented by a (k + 1)-tuple, too, just like a point.

When the vector space V is defined over the Galois Field GF (q), i.e.,

V (k + 1, q), then the projective space denoted as PG(k, q) consists of finite

sets of the above mentioned elements.

Homogeneous coordinates are a system of coordinates used in Projective

Geometry. All the elements of a Projective Geometry can be given homo-

geneous coordinates and these will be used in the following Sections. Us-

ing homogeneous coordinates, if (x0, x1, . . . , xk) is a point in PG(k, q), then

(λ·x0, λ·x1, . . . , λ·xk) is the same point, where λ is any non-zero element (also

called scalar) of GF (q), and xi ∈ GF (q). Since there exist qk+1− 1 non-zero

(k + 1)-tuples, and each point appears q − 1 times (there are q − 1 non-zero

scalars in GF (q)), the number of points is (qk+1−1)/(q−1) = 1+q+ . . .+qk.

One important concept in Projective Geometry is that of Duality : as far



A k out of n Scheme - Construction III 59

as the elements of a Projective Geometry are concerned, there is a certain

“symmetry” in definitions and theorems: a point is dual with a hyperplane.

As an example, let us assume the projective plane, which is 2-dimensional,

where the lines are the hyperplanes: points and lines are dual and can be

interchanged in any valid statement to yield another. In 3-dimensional Pro-

jective Geometry a point is dual with a plane. In this case, the planes are

the hyperplanes of the 3-space.

The property of containment holds when the inner product of the corre-

sponding point and hyperplane, i.e., their homogeneous coordinates, is zero.

As an example, in a plane, a point is on a line, or symmetrically, a line passes

through a point, if and only if their inner product is zero. In general, we say

a point p = (x0, . . . , xk) is on a hyperplane L = (y0, . . . , yk) if and only if

x0 · y0 + x1 · y1 + . . .+ xk · yk = 0.

Since in PG(k, q) the terms hyperplane and point can be interchanged,

there are (qk+1−1)/(q−1) = 1 + q+ . . .+ qk hyperplanes, too. Additionally,

there are (qk − 1)/(q − 1) points in any hyperplane and respectively, each

point is contained in (qk − 1)/(q − 1) hyperplanes.

Definition 5.3.1.4: In V (k, q) vector space, an n-arc is a set of n vectors

(n ≥ k + 1) with the property that any k of them are linearly independent.

An arc is called complete when n takes the maximum possible value.

An Alternative Definition for arc 5.3.1.5: In Projective Geometry

PG(k, q) an n-arc is a set of n points with n ≥ k+1 such that no k+1 points

lie on a hyperplane, i.e., at most k points lie on a hyperplane. Symmetrically,

it is a set of n hyperplanes no k + 1 of which pass through a single point.
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In an intuitive way, they form “curved” figures. Loosely speaking, they are

sets of points that are not straight -like lines are- in a plane, or “flat” in

a three-dimensional space. An n-arc is called complete if it is not properly

contained in a larger arc and is denoted by r(k, q).

The size of a complete arc has been a major open problem for a long time

in Finite Geometry. Some results of research work on this topic are shown

in the following table:

V (k, q) k q r(k, q)

V (3, q) 3 odd q + 1

V (3, q) 3 even q + 2

V (k, q) 3, 4, 5 6= 3 q + 1

V (k, q) 3, 4, 5 3 k + 3

V (4, q) 4 > 2 q + 1

For more results and a more detailed inspection of the problem one can

refer to [13].

A (k+ 1)-arc in V (k, q) if k ≥ q can be constructed in the following way:

Let us assume that a basis for V (k, q) consists of the following k vectors:

~a1,~a2, . . . ,~ak, where ~ai = (ωi1, ωi2, . . . , ωik), ωij ∈ GF (q). These k vectors

are linearly independent. We construct a new vector, ~ak+1, such that ~ak+1 =
k∑
i=1

~ai = (
k∑
i=1

xi1,
k∑
i=1

xi2, . . . ,
k∑
i=1

xik). Then, the set {~a1,~a2, . . . ,~ak,~ak+1} con-

sists of k+ 1 vectors any k of them are linearly independent, i.e., we created

a (k + 1)-arc.

In order to create a (q + 1)-arc in V (k, q) if k < q, we use the following

method: we take the vectors (0, . . . , 0, 1) and (1, ω1
i , . . . , ω

k−1
i ) with ωi in
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GF (q), 1 ≤ i ≤ q, as columns in a matrix. Without the first column,

this is just a Vandermonde matrix. As is well known, the columns of a

Vandermonde matrix consist of q linearly independent vectors. By adding

vector (0, . . . , 0, 1), we have found a (q + 1)-arc.

The following visual secret sharing scheme is described in [3]. Some new

concepts must be defined, as well:

Definition 5.3.1.6: In a vector space V (k, q) a functional F (x) is de-

fined by the formula F (~x) = (~f, ~x) = f1x1 + f2x2 + · · · + fkxk, where ~f =

(f1, f2, . . . , fk) is the corresponding to F vector in V (k, q), and ~x ∈ V (k, q).

Let us consider k functionals, denoted Fi, 1 ≤ i ≤ k. If ~fi, their corre-

sponding vectors in V (k, q), are linearly independent, then, the functionals Fi

are also linearly independent. Since the k-dimensional vector space V (k, q)

consists of qk vectors, let us denote a numbering of all the vectors in V (k, q),

say ~u1, ~u2, . . . , ~uqk .

Definition 5.3.1.7: Let n ≥ k. The n × qk representation matrix S of n

functionals Fi(~uj), for all the vectors in V (k, q), is defined by

Si,j = Fi(~uj), 1 ≤ i ≤ n, and 1 ≤ j ≤ qk. (5.1)

In order to construct a representation matrix we do the following: we

construct an n × k matrix B whose rows are the n functionals and another

matrix F , with dimension k× qk, whose columns consist of all the qk vectors

in V (k, q). Then, the multiplication of B and F results in a new n × qk

matrix named S, which is the representation matrix of these functionals.
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Lemma 5.3.1.8: (a) Let n (n ≥ k) functionals in V (k, q), and m (m ≤ k)

of them be linearly independent, hence, the dimension of their linear span on

V (k, q) is m. Then, their corresponding representation matrix S will contain

exactly qk−m all-zero columns.

(b) If k = m, and any k out of n functionals are linearly independent, when

their representation matrix S is limited to any k rows, then, each vector in

V (k, q) occurs exactly once as a column in S.

Proof. a. Let us construct an n × k matrix B whose rows are the n func-

tionals, where each m (m ≤ k) are linearly independent vectors in V (k, q).

Additionally, let us denote null(B) the dimension of the null-space of B

(i.e., the dimension of the set of all vectors ~r in V (k, q) for which B~r = ~0)

and rank(B) the dimension of B. Then, according to the Rank - Nullity

Theorem it holds that rank(B) + null(B) = k. But rank(B) = m, hence,

null(B) = k−m. As a result, the representation matrix S that is constructed

by B and all the vectors in V (k, q) will contain qk−m all-zero columns.

b. Let us construct the two matrices B and F as described earlier which

are used for the construction of the representation matrix S and limit matrix

B to any k rows, named B′. We will show by contradiction that each vector

in V (k, q) occurs exactly once as a column in S.

Let us suppose that this is not the case, i.e., there exist ~r1 and ~r2 ∈ V (k, q)

that appear as columns in F , where ~r1 6= ~r2, such that B′~r1 = ~r3 (equation

I) and B′~r2 = ~r3 (equation II), ~r3 ∈ V (k, q). But B′ consists of linearly

independent vectors, hence, it is invertible, i.e., (B′)−1 exists. Then, from

equations I and II it follows that ~r1 = (B′)−1~r3 and ~r2 = (B′)−1~r3, i.e.,

~r1 = ~r2, which is a contradiction to the initial hypothesis. Hence, all the
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columns of S when limited to any k rows consist of qk different vectors, i.e.,

each vector in V (k, q) occurs exactly once as a column in S.

5.3.2 A k out of n scheme construction:

In order to create a strong k out of n visual secret sharing scheme (see

Definition 1.4.4) we do the following:

1. We choose k, q such that r(k−1, q) ≥ n and r(k, q) ≥ n for V (k−1, q)

and V (k, q) respectively.

2. Let V (k, q) consist of the vectors ~u1, ~u2, . . . , ~uqk . We discard the all-

zero vector as well as all the vectors that are scalar multiples of each

other. Geometrically speaking, in that way the remaining vectors are

all the distinct (qk − 1)/(q − 1) hyperplanes in PG(k − 1, q). Let

~υ1, ~υ2, . . . , ~υ(qk−1)/(q−1) be that reduced set of vectors.

3. We choose n functionals on V (k, q), i.e., F1, F2, . . . , Fn, such that any

k of them are linearly independent. This is the reason why we chose

r(k, q) ≥ n.

4. We name S the n × qk representation matrix of the functionals Fi,

1 ≤ i ≤ n on all the qk vectors of V (k, q) ~u1, ~u2, . . . , ~uqk . By A1 we

denote the n × (qk − 1)/(q − 1) representation matrix of the reduced

set of vectors ~υ1, ~υ2, . . . , ~υ(qk−1)/(q−1).

5. We replace all the non-zero values in A1 by 1. The matrices that are

obtained by permuting the columns of A1 form the collection C1. Since
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A1 is an n× (qk− 1)/(q− 1)-dimension matrix, |C1| = (qk− 1)/(q− 1)!.

6. Accordingly, we choose n functionals G′1, G
′
2, . . . , G

′
n on V (k − 1, q)

with the property that any (k − 1) of them are linearly independent.

We increase the number of their dimension by 1, by adding the zero

value and get functionals G1, G2, . . . , Gn i.e., Gi(x1, . . . , xk−1, 0) :=

G′i(x1, . . . , xk−1), 1 ≤ i ≤ n. The dimension of V (k−1, q) is k−1, hence,

any k − 1 of the functionals Gi, q ≤ i ≤ n are linearly independent,

whereas any k of them are linearly dependent.

7. We name T the n × qk representation matrix of the functionals Gi,

1 ≤ i ≤ n on all the qk vectors of V (k, q) ~u1, ~u2, . . . , ~uqk . By A0 we

denote the n × (qk − 1)/(q − 1) representation matrix of the reduced

set of vectors ~υ1, ~υ2, . . . , ~υ(qk−1)/(q−1).

8. We replace all the non-zero values in A0 by 1. The matrices that are

obtained by permuting the columns of A0 form the collection C0. Since

A0 is an n× (qk− 1)/(q− 1)-dimension matrix, |C0| = (qk− 1)/(q− 1)!.

Theorem 5.3.2.1: The above scheme is a maximal contrast k out of n

visual secret scheme with parameters b = (qk − 1)/(q − 1), h = 1, l = 0,

r = |C0| = |C1| = (qk − 1)/(q − 1)!, and contrast a = 1.

Proof. In order to get S we constructed the representation matrix of func-

tionals Fi, 1 ≤ i ≤ n, which have the property that each k of them are linearly

independent. Because of that, according to Lemma 5.3.1.8, each vector in

V (k, q) occurs exactly once as a column of the representation matrix, when

limited to any k rows. The same applies to the all-zero vector, as well, which
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is the result of the dot product of the functionals and the all-zero vector in

V (k, q). However, in order to obtain A1 from S we remove the all-zero vector,

hence, A1 does not have an all-zero column when limited to any k rows. As

a result, l = 0.

As already mentioned, the functionals Gi, 1 ≤ i ≤ n, used for the con-

struction of T have the property that each k − 1 of them are linearly inde-

pendent but any k of them is not. Hence, the dimension of the linear span

of any k functionals of them is k − 1. By Lemma 5.3.1.8, the representation

matrix T of these functionals when limited to any k rows will contain exactly

qk−m = qk−(k−1) = q all-zero columns.

In order to create a column of matrix A0, we calculate the inner product of

a vector in V (k, q) to all the functionalsG1, G2, . . . , Gn. Therefore, an all-zero

column in matrix A0 is obtained as follows: since the last coordinate of the

functionals is zero, the vectors that their inner product with the functionals

is zero are of the form (0, . . . , 0, x), where x ∈ GF (q). But in order to obtain

A0 we remove all scalar multiples, all but one of these vectors, i.e., we remove

q−1 vectors, including the all-zero one. As a result, there is only one column

that is all zeros in matrix A0 when limited to any k rows, i.e., h = 1.

As a result, the contrast of the scheme is contrastSN = a = h − l =

1− 0 = 1 and the loss of contrast contrastlossSN = h−l
b

= q−1
qk−1

.

Respectively, contrastV V T = h−l
h+l

= 1 and contrastlossV V T = h−l
b(h+l)

=

q−1
qk−1

.

About the security of the scheme:

The (qk − 1)/(q − 1) vectors indexing the columns of A0 and A1 can be

considered as the hyperplanes of PG(k−1, q) and the n functionals indexing
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their rows respectively as n points in PG(k−1, q). As mentioned before, each

point is contained in (qk−1− 1)/(q− 1) hyperplanes, i.e., their corresponding

inner products will produce exactly (qk−1− 1)/(q− 1) zeros. As a result, the

number of zeros in each row of both A0 and A1 is a fixed number.

According to Definition 5.3.1.5, functionals Fi, 1 ≤ i ≤ n, form an n-

arc, i.e., a set A of n points in PG(k − 1, q) with the property that every

hyperplane is incident with at most k− 1 points. Hence, if we restrict A1 to

any k− 1 rows there will be exactly one all-zero column. This holds because

the hyperplanes are distinctly represented, i.e., they are represented only

once and each k − 1 points are incident with only one hyperplane.

Algebraically speaking now, if we limit A0 in any k − 1 rows, since the

dimension of the span of the functionals is k − 1, each vector will appear in

the columns of A0 exactly once, hence, there is exactly one all-zero column

in it, too. Since for all (k − 1)× (qk − 1)/(q − 1) submatrices of A0 and A1

the above facts hold, there is no way that someone can conclude that any

k − 1 shares come from a white or a black pixel. The same holds for shares

that correspond to less than k − 1 rows.

As we will later see in Theorem 7.1.11, the blocklength of the scheme is

almost optimal.

Example 5.3.2.2: Let us create a 3 out of 4 visual secret sharing scheme

according to the above described construction: we choose q = 5, k = 3 and

n = 4. As a result, the vector space will be V (k, q) = V (3, 5), and in such a

case, since k < q and q odd, r(k, q) = q + 1 = 6. Hence, we can find n = 4

vectors in V (3, 5) such that any 3 of them are linearly independent. These
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vectors will be the functionals Fi (1 ≤ i ≤ 4) of the construction. We will

use F1 = [001], F2 = [010], F3 = [100], and F4 = [111].

In V (3, 5) vector space there are qk = 53 = 125 vectors. By discarding

the all-zero vector and the vectors that are a scalar multiple of each other we

get (qk − 1)/(q − 1) = (53 − 1)/(5− 1) = 31 vectors, which are the points of

PG(k− 1, q) = PG(2, 5). These are: (001), (010), (011), (012), (013), (014),

(100), (101), (102), (103), (104), (110), (111), (112), (113), (114), (120),

(121), (122), (123), (124), (130), (131), (132), (133), (134), (140), (141),

(142), (143), and (144).

As for the vector space V (k − 1, q) = V (2, 5), the same holds for r(k −

1, q) = r(2, 5), i.e., since k − 1 ≤ q − 1 and q odd, r(k − 1, q) = q + 1 = 6.

Hence, we can find n = 4 vectors in V (2, 5) such that each 2 of them are

linearly independent. These vectors will be the functionals Gi (1 ≤ i ≤ 4) of

the construction. We will use G′1 = [01], G′2 = [11], G′3 = [21], and G′4 = [31].

We extend them by one coordinate and we get G1 = [010], G2 = [110],

G3 = [210], and G4 = [310]. Each three of these new functionals are linearly

dependent, while each two of them are linearly independent.

In order to construct matrix A1 we index its rows by the Fi functionals and

its columns by the 31 vectors that were not discarded in the previous step, i.e.,

the points of PG(2, 5). Hence, A1 has dimension n×(qk−1)/(q−1) = 4×31.

Each element of A1[i, j], 1 ≤ i ≤ 4 and 1 ≤ j ≤ 31 is the inner product of

the corresponding vector-row and the corresponding vector-column:
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A1 =


1 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 3 4 0 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3 0 1 2 3 4


By substituting all non-zero elements by 1 we get:

A1 =


1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1

0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1


The n × (qk − 1)/(q − 1) = 4 × 31 binary matrices generated by the

permutation of A1 form the collection C1. As one can see, |C1| = (qk −

1)/(q − 1)! = 31!.

The same procedure is followed to get collection C0: In order to construct

matrix A0 we index its rows by the Gi functionals and its columns by the 31

vectors that were not discarded, i.e., the points of PG(2, 5). Hence, A0 has

dimension n× (qk − 1)/(q − 1) = 4× 31. Each element of A0[i, j], 1 ≤ i ≤ 4

and 1 ≤ j ≤ 31 is the inner product of the corresponding vector-row and the

corresponding vector-column.

A0 =


0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 0 0 0 0 0

0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 0 0 0 0 0 1 1 1 1 1

0 1 1 1 1 1 3 3 3 3 3 4 4 4 4 4 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2


By substituting all non-zero elements by 1 we get:
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A0 =


0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1


The n × (qk − 1)/(q − 1) = 4 × 31 binary matrices generated by the

permutation of A0 form the collection C0. As one can see, |C0| = (qk −

1)/(q − 1)! = 31!.

As a result, the contrast of the scheme is contrastSN = a = h − l =

1 and the loss of contrast contrastlossSN = q−1
qk−1

= 1
31

. Respectively,

contrastV V T = h−l
h+l

= 1 and contrastlossV V T = h−l
b(h+l)

= 1
31

.

The above scheme has parameters b = 31, h = 1, l = 0, a = 1, and

r = 31!. It is a maximal contrast visual secret sharing scheme.

If n − 1 is a prime power, hence can be used as a Galois field basis, one

can take q = n− 1. In such a case, the blocklength of this k out of n scheme

equals ((n− 1)k − 1)/(n− 2).

The above scheme can be used to construct a maximal (i.e., l = 0) k

out of k visual secret sharing scheme, too. In this case one can take q = 2,

since r(k, q) = k + 1 if k ≥ q. In this case, by substituting q by 2 we get:

b = (qk − 1)/(q − 1) = (2k − 1)/(2 − 1) = 2k − 1, a = h−l
b

= 1
2k−1

, and

r = b! = (2k − 1)!. The parameters of the first k out of k construction

presented in Section 4.1, were b = 2k, a = 1
2k

, and r = 2k!. Hence, the

parameters in this construction are slightly improved compared to the ones

of the k out of k scheme described in Section 4.1.
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Example 5.3.2.3: We will construct a 3 out of 3 visual secret sharing scheme

for k = n = 3 and q = 2 following the above instructions:

Let F1 = [001], F2 = [010], and F3 = [100] whose corresponding vectors

are linearly independent in V (k, q) = V (3, 2). Let G′1[01], G′2 = [10], and

G′3 = [11], any two of them are linearly independent vectors in V (k− 1, q) =

V (2, 2). We increase their coordinates by one and get G1 = [010], G2 = [100],

and G3 = [110].

The V (3, 2) vector space consists of the following 23 = 8 vectors: (000),

(001), (010), (011), (100), (101), (110), and (111). Since there are no scalar

multiples we remove only the all-zero vector (000). The rest (qk−1)/(q−1) =

(23−1)/(2−1) = 7 vectors will be used to construct A0 and A1. Since there no

other elements except 0 and 1 in GF (2) there in no need for any substitution,

hence:

A0 =


0 1 1 0 0 1 1

0 0 0 1 1 1 1

0 1 1 1 1 0 0

 A1 =


1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1



As one can see, its blocklength is b = qk−1
q−1

= 7, h = 1, l = 0, r = qk−1
q−1

! =

7!. Hence, the parameters of the scheme are [b;h, l; r] = [7; 1, 0; 7!] and it is

a maximal contrast scheme.

As a result, its contrast is contrastSN = a = h − l = 1 and the loss of

contrast contrastlossSN = h−l
b

= 1
7
. Respectively, contrastV V T = h−l

h+l
= 1

and contrastlossV V T = h−l
b(h+l)

= 1
7
.
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5.4 A k out of n Scheme - Construction IV

5.4.1 A k out of n scheme construction:

In order to create a strong k out of n visual secret sharing scheme (see

Definition 1.4.4) we do the following:

1. We choose k, q such that r(k, q) ≥ n+ 1.

2. Similarly to Construction II, we choose n + 1 functionals on V (k, q),

i.e., G,F1, F2, . . . , Fn, such that any k of them are linearly independent.

This is the reason why we chose r(k, q) ≥ n+ 1.

3. Let ~uj, 1 ≤ j ≤ qk−1 be the vectors on V (k, q) such that G(~uj) = 0.

We construct the n× qk−1 representation matrix A0 by using these ~uj

vectors and the following formula:

Sij = Fi(~uj), 1 ≤ i ≤ n, 1 ≤ j ≤ qk−1 (5.2)

4. We replace all the non-zero values in A0 by 1. The matrices that are

obtained by permuting the columns of A0 form the collection C0. Since

A0 is an n× qk−1-dimensional matrix, |C0| = qk−1!.

5. Accordingly, let ~υj, 1 ≤ j ≤ qk−1 be the vectors on V (k, q) such that

G(~υj) = 1. We construct the n × qk−1 representation matrix A1 by

using these ~uj vectors and the following formula:

Tij = Fi(~υj), 1 ≤ i ≤ n, 1 ≤ j ≤ qk−1 (5.3)
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6. We replace all the non-zero values in A1 by 1. The matrices that are

obtained by permuting the columns of A1 form the collection C1. Since

A1 is an n× qk−1-dimensional matrix, |C1| = qk−1!.

Theorem 5.4.2.1: The above scheme is a maximal contrast k out of

n visual secret sharing scheme with parameters b = qk−1, h = 1, l = 0,

a = h− l = 1, and |C0| = |C1| = qk−1!.

Proof. Let us consider a vector ~x = (x1, x2, . . . , xk) in V (k, q), and let us

suppose that we want to calculate the inner product of it with all the qk

vectors in V (k, q), denoted ~y = (y1, y2, . . . , yk), yi ∈ GF (q). For every q

vectors in a row, i.e., vectors (y1, y2, . . . , yk−1, 0) to (y1, y2, . . . , yk−1, q − 1)

this function is injective, hence, each number {0, . . . , q − 1} appears exactly

once. Since there are qk−1 such “cycles” of q vectors in V (k, q), each number

in GF (q) appears qk−1 times as the result of the inner product of ~x with all

the qk vectors in V (k, q). This means that matrices A0 and A1 are n× qk−1

dimensional, hence, b = qk−1.

From Lemma 5.3.1.8 we get that each vector appears exactly once as a

column when the dot product of k linearly independent functionals with all

the vectors of V (k, q) is calculated. In the construction of A0, its columns

are indexed by the vectors ~x in V (k, q) that G(~x) = 0 whereas in A1, the

vectors that index the columns of it are those in V (k, q) that G(~x) = 1.

There cannot be a vector ~x such that G(~x) = 0 and G(~x) = 1. Hence, since

the all-zero vector indexes one column in A0, an all-zero column appears in

A0, and there is no all-zero column in A1, i.e., h = 1 and l = 0.

As a result, the contrast of the scheme is contrastSN = h− l = 1 and the
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loss of contrast contrastlossSN = h−l
b

= 1
qk−1 . Respectively, contrastV V T =

h−l
h+l

= 1 and contrastlossV V T = h−l
b(h+l)

= 1
qk−1 .

For the security of the scheme: The vectors that index the rows of A0 are

k linearly independent, and as a result they are k − 1 linearly independent,

too. What is more, as already mentioned, A0 and A1 consist of qk−1 columns.

Hence, when A0 is limited to k−1 rows, from Lemma 5.3.1.8 we get that each

vector in V (k − 1, q) is calculated exactly once as a column of the matrix.

The same holds for A1, too. Hence, the two matrices, A0 and A1, when

restricted to any k − 1 rows, they both consist of the same columns. Since

this fact holds for any k − 1 rows, it follows that A0 and A1 consist of the

same columns, but in a different order.

SinceA0 andA1 are n×qk−1-dimensional matrices, |C0| = |C1| = qk−1!.

As we will later see in Theorem 7.1.11, the blocklength of the scheme is

almost optimal.

Example 5.4.2.2: We will construct a 3 out of 4 scheme and we choose

k = 3, n = 4, and q = 4 = 22. As a result, the vector space will be V (k, q) =

V (3, 4), and in such a case, since k < q and q even, r(k, q) = q+2 = 4+2 = 6.

Hence, we can find n + 1 = 4 + 1 = 5 vectors in V (3, 4) such that any 3 of

them are linearly independent. These vectors will be the functionals G,Fi,

1 ≤ i ≤ 4 of the construction. We will use G = (001), F1 = (010), F2 = (100),

F3 = (11a), and F4 = (baa). Galois Field GF (4) = GF (22) consists of the

following elements {0, 1, a, b = a2} and the addition and multiplication tables

respectively are depicted below:
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+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

∗ 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a b 1

b 0 b 1 a

The qk−1 = 43−1 = 42 = 16 vectors ~x in V (3, 4) such that G(~x) = 0

are the following: (000),(010), (0a0), (0b0), (100), (110), (1a0), (1b0), (a00),

(a10), (aa0), (ab0), (b00), (b10), (ba0), and (bb0).

The qk−1 = 43−1 = 42 = 16 vectors ~x in V (3, 4) such that G(~x) = 1

are the following: (001),(011), (0a1), (0b1), (101), (111), (1a1), (1b1), (a01),

(a11), (aa1), (ab1), (b01), (b11), (ba1), and (bb1).

In order to construct matrix A0 we index its rows by the Fi, 1 ≤ i ≤ 4,

functionals and its columns by the 16 vectors ~x in V (3, 4) with the property

that G(~x) = 0. Hence, A0 has dimensions n× qk−1 = 4× 16. Each element

of A0[i, j], 1 ≤ i ≤ 4, 1 ≤ j ≤ 16 is the inner product of the corresponding

vector-row and the corresponding vector-column:

A0 =


0 1 a b 0 1 a b 0 1 a b 0 1 a b

0 0 0 0 1 1 1 1 a a a a b b b b

0 1 a b 1 0 b a a b 0 1 b a 1 0

0 a b 1 b 1 0 a 1 b a 0 a 0 1 b



By substituting all non-zero elements by 1 we get:
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A0 =


0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0

0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1


The n× qk−1 = 4× 16 binary matrices generated by the permutation of

A0 form the collection C0. As one can see, |C| = qk−1! = 16!.

The same procedure is followed to get collection C1: In order to construct

matrix A1 we index its rows by the Fi, 1 ≤ i ≤ 4 functionals, and its columns

by the 16 vectors ~x in V (3, 4) with the property that G(~x) = 1. Hence, A1

has dimensions n × qk−1 = 4 × 16. Each element of A1[i, j], 1 ≤ i ≤ 4,

1 ≤ j ≤ 16 is the inner product of the corresponding vector-row and the

corresponding vector-column:

A1 =


0 1 a b 0 1 a b 0 1 a b 0 1 a b

0 0 0 0 1 1 1 1 a a a a b b b b

a b 0 1 b a 1 0 0 1 a b 1 0 b a

a 0 1 b 1 b a 0 b 1 0 a 0 a b 1


By substituting all non-zero elements by 1 we get:

A1 =


0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 1

1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1


The n× qk−1 = 4× 16 binary matrices generated by the permutation of

A0 form the collection C0. As one can see, |C| = qk−1! = 16!.
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As a result, the contrast of the scheme is contrastSN = h− l = 1 and the

loss of contrast contrastlossSN = a = h−l
b

= 1
16

. Respectively, contrastV V T =

h−l
h+l

= 1 and contrastlossV V T = h−l
b(h+l)

= 1
16

.

The above scheme has parameters b = 16, h = 1, l = 0, a = 1
16

, and

r = 16!. It is a maximal contrast visual secret sharing scheme.

Remarks 5.4.2.3: If k = n and q = 2 the scheme that is constructed

has the same parameters as the k out of k visual secret sharing scheme in

Construction II, described in [2]. What is more, if n is a prime power, we

can choose q = n. In such a case, the blocklength of the scheme will equal

qk−1 = nk−1.
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Summary of the Schemes

presented so far:

A table with the parameters of all the visual secret sharing schemes for

specific values of n and k that were presented in [2] follows:

k n b h l r a Described

in

2 2 4 2 0 6 1/2 2.1

3 3 4 1 0 4! 1/4 2.2

4 4 9 1 0 9! 1/9 2.3

2 6 4 2 1 6 1/4 2.4

A table with the parameters of all the visual secret sharing schemes for

specific values of k described in [2] and [3] is the following:
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k n b h l r a Described Remarks

in

2 n n n− 1 n− 2 n 1/n 3.1

2 n n 1 0 n 1/n 3.1

2 n m m
2

m
2
− 1 m! 1/m 3.2 m s.t.

(
m
m/2

)
≥ n

3 n 2n− 2 n n− 1 (2n− 2)! 1
2n−2

3.3

A table with the parameters of all the k out of k visual secret sharing schemes

presented in [2] and [3] follows:

k n b h l r a Described Remarks

in

k k 2k 2 1 2k! 1
2k

4.1

k k 2k−1 1 0 2k−1! 1
2k−1 4.2

k k 2k−1 1 0 2k−1! 1
2k−1 5.3 special case of a k out of n scheme

A table with the parameters of the four k out of n visual secret sharing

schemes that were described in [2] and [3] follows:

k n b h l r a Described

in

k n nk2k−1 * * (2k−1!)n
k

2(2e)−k/
√

2πk 5.1

k n log n · 2O(k log k) * * (2k−1!)2O(k log k) logn 2−Ω(k) 5.2

k n qk−1

q−1
1 0 qk−1

q−1
! q−1

qk−1
5.3

k n qk−1 1 0 qk−1! 1
qk−1 5.4

* Since in both constructions different families of hash functions can be

used, it is not possible to calculate the number of the white subpixels in the

schemes



Chapter 7

Bounds on k out of n Visual

Secret Sharing Schemes

7.1 Some General Concepts

In this Section several properties of k out of n visual secret sharing schemes

will be introduced. In order to prove them, we will use the method of in-

duction, i.e., the break of a k out of n scheme into two k − 1 out of n − 1

schemes. Before the theorems that define bounds about the blocklength are

presented, some definitions much be given:

Definition 7.1.1: Let A be an n × b matrix and i one of its rows, any

one will do. Then the 1-restriction (respectively 0-restriction) matrix of

A considering a row i of it, is a new matrix Ã1 (respectively Ã0) which is

obtained by removing the i-th row and by limiting the rest of the matrix

to the columns where row i has value 1 (respectively 0). As a result, Ã1

(respectively Ã0) is a submatrix of A consisting of n − 1 rows, whereas its
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number of columns depends on the weight of row i. It is obvious that the

sum of the number of columns in both Ã1 and Ã0 equals b.

Let us now consider a k out of n visual secret sharing scheme S = (C0, C1)

with parameters [b;h, l]. In all matrices in both C0 and C1, each i-th row,

i ∈ {1, 2, . . . , n}, can be considered as a binary vector ~υ. Then, the concepts

of 0-restriction and 1-restriction can be extended to each collection C0 and C1:

they can be defined as the subsets containing the corresponding submatrices.

What is more, if we denote b0 the number of zeros in ~υ, and b1 the number

of ones respectively, then it follows that b = b0 + b1.

In order to decompose S the following procedure is followed:

1. Let a k out of n scheme S = (C0, C1) with parameters [b;h, l].

2. We fix a vector ~υ that appears as an i-th row in a matrix of C0 and

hence of C1.

3. Let us consider all the matrices in C0 (respectively C1) that their i-th

row has the same weight as ~υ. We denote this subset C̃0 (respectively

C̃1).

4. We denote D0 (respectively D1) the 0-restriction of C̃0 (respectively C̃1).

5. Symmetrically, we denote E0 (respectively E1) the 1-restriction of C̃1

(respectively C̃0). Note that in this case we have swapped 0 with 1.

Lemma 7.1.2: The above construction is a k − 1 out of n− 1 visual secret

sharing scheme denoted S1 = (D0, D1) with parameters [b0;h, l].

Proof. By construction, the submatrices D0 and D1 have b0 columns and

n− 1 rows, namely, the blocklength of the scheme is b0.
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Since the newly formed matrix is a 0-restriction, it does not matter if the

i-th row is included or not in the k rows that are chosen each time; the “or”

of any k − 1 rows is not affected and there will be h zeros in D0 and l zeros

in D1.

About the security of the scheme: By the definition of S it holds that for

each matrix in C0, when limited to less than k rows, there exists one exactly

the same in C1, with the same frequency. Let us denote A0 and A1 these

matrices.

Case 1: The i-th row is included in the k−1 or less rows: when we remove

it from both A0 and A1, the new matrices are also indistinguishable when

limited to k − 2 (or less) rows.

Case 2: The i-th row is not included in the k − 1 or less rows: then, A0

and A1 are also indistinguishable when limited to k − 2 or less rows.

Hence, S1 = (D0, D1) is a k− 1 out of n− 1 visual secret sharing scheme

with parameters [b0;h, l].

Definition 7.1.3: Let us consider a k out of n visual secret sharing scheme

S = (C0, C1) with parameters [b;h, l] and its restrictions C̃0 and C̃1. Let ~u be

the “or” of any k − 1 rows (except the i-th row) of any matrix in either C̃0

or C̃1. We denote zmax the maximal number of z(~u), i.e., the largest number

of zeros obtained by the “or” of any k− 1 rows of any matrix in either C̃0 or

C̃1. Respectively, let zmin denote the minimal number of z(~u). If the scheme

is uniform, then it holds that zmax = zmin.

Lemma 7.1.4: Let us consider a k out of n visual secret sharing scheme

S = (C0, C1) with parameters [b;h, l], which is generated by A0 and A1. If
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zmax−zmin < h−l, then the scheme S2 = (E0, E1) as defined above is a a k−1

out of n−1 visual secret sharing scheme with parameters [b1; zmin−l, zmax−h].

Additionally, if the original scheme S is uniform, i.e., zmax = zmin, then the

scheme (E0, E1) is also uniform.

Proof. By construction, the submatrices in E0 and E1 have b1 columns and

n− 1 rows, namely, the blocklength of the scheme is b1.

As already stated, E0 is the 1-restriction of the set C̃1. Let Ẽ0 be a

member of E0. If we follow this procedure step by step, we can denote Ã1

the n − 1 × b matrix that is obtained if we remove the i-th row from A1, a

matrix in C̃1. Then, we get Ẽ0 by restricting Ã1 to the columns that in the

i-th row of A1 are ones. As one can see, Ã1 is an (n − 1) × b submatrix of

n× b A1 and in turn, Ẽ0 is an (n− 1)× b1 submatrix of Ã1.

Let us denote z the number of zeros in the “or” of any k − 1 rows in Ã1.

Some of them correspond to zero coordinates in the i-th row, denoted z0,

and some to one coordinates respectively, denoted z1. Hence, z = z0 + z1.

As one can see, z0 is the number of zeros in the “or” of any k rows in A1.

What is more, z1 is the number of zeros in the “or” of any k− 1 rows in Ẽ0.

By definition zmin ≤ z, hence zmin ≤ z0 + z1. Additionally, from the

definition of the visual secret sharing scheme, for any matrix in C1 it holds

that z0 ≤ l. Hence, zmin ≤ l + z1, i.e., zmin − l ≤ z1. This means that the

number of zeros of the “or” of any k − 1 rows of Ẽ0 is at least zmin − l, i.e.,

it complies with condition 1 of a visual secret sharing scheme (Result 1 ).

Respectively, let E1 be the 1-restriction of the set C̃1. Let Ẽ1 be a member

of E1. We denote Ã0 the n− 1× b matrix that is obtained if we remove the

i-th row from A0. Then, we get Ẽ1 by restricting Ã0 to the columns that in
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the i-th row of A0 were ones. As one can see, Ã0 is an n − 1 × b submatrix

of n× b A0 and in turn, Ẽ1 is an n− 1× b1 submatrix of Ã0.

We denote z the number of zeros in the “or” of any k − 1 rows in Ã0.

Some of them correspond to zero coordinates in the i-th row, denoted z0,

and some to one coordinates respectively, denoted z1. Hence, z = z0 + z1.

As one can see, z0 is the number of zeros in the “or” of any k rows in A0.

What is more, z1 is the number of zeros in the “or” of any k− 1 rows in Ẽ1.

By definition z ≤ zmax, hence z0 + z1 ≤ zmax. Additionally, from the

definition of the visual secret sharing scheme, for any matrix in C0 it holds

that h ≤ z0. Hence, h+ z1 ≤ zmax, i.e., z1 ≤ zmax − h. This means that the

number of zeros of the “or” of any k− 1 rows of Ẽ1 is at most zmax− h, i.e.,

it complies with condition 2 of a visual secret sharing scheme (Result 2 ).

Taking into account Results 1 and 2, and if zmax − zmin < h − l, then,

S2 = (E0, E1) satisfy the first two conditions of a visual secret sharing scheme.

About the security of the scheme: By the definition of S it holds that for

each matrix in C0, when limited to less than k rows, there exists one in C1,

with the same frequency. Let us denote A0 and A1 these matrices.

Case 1: The i-th row is included in the k−1 or less rows: when we remove

it from both A0 and A1, the new matrices are also indistinguishable when

limited to k − 2 (or less) rows.

Case 2: The i-th row is not included in the k − 1 or less rows: then, A0

and A1 are also indistinguishable when limited to k − 2 or less rows.

Hence, S2 = (E0, E1) is a k − 1 out of n− 1 visual secret sharing scheme

with parameters [b1; zmin − l, zmax − h].

Let us suppose that S = (C0, C1) is uniform, i.e., the Hamming weight
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of any s < k transparencies depends only on the number of transparencies

that are used and not from the collection that the matrix belongs to. So, let

s < k and C be a (s+1)× b matrix, submatrix of collection C0. Let C̃ denote

a s × b 1-restriction submatrix of C and E a s × b1 submatrix of C̃. Let z

denote the number of zeros of the ”or“ of the s rows of C̃. In the C matrix,

some of these z zeros correspond to zero coordinates in the i-th row, denoted

z0, and some to one coordinates respectively, denoted z1. Hence, z = z0 + z1.

As one can see, z0 is the number of zeros in the “or” of any s rows in C.

What is more, z1 is the number of zeros in the “or” of any s rows in E. But

z and z0 depend only on s since S is uniform. As a result, z1 depends only

on s and S2 = (E0, E1) is uniform, too.

An example follows:

Example 7.1.5: Let a 3 out of 5 scheme S = (C0, C1) with parameters

[8; 3, 2] that is generated by the following A0 and A1 matrices respectively:

A0 =



0 0 0 0 1 1 1 1

0 0 0 1 0 1 1 1

0 0 0 1 1 0 1 1

0 0 0 1 1 1 0 1

0 0 0 1 1 1 1 0


A1 =



1 1 1 1 0 0 0 0

1 1 1 0 1 0 0 0

1 1 1 0 0 1 0 0

1 1 1 0 0 0 1 0

1 1 1 0 0 0 0 1


The 0-restriction of the above matrices will be constructed by considering

the second row, i.e., i = 2. Then, the sets D0 and D1 are obtained by the

permutation of the columns of the following submatrices:
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D̃0 =


0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1


D̃1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


A 2 out of 4 visual secret sharing scheme S1 = (D0,D1) is constructed

with parameters [4; 3, 2].

Similarly, the sets E0 and E1 are obtained by the permutation of the

columns of the following submatrices:

Ẽ0 =


1 1 1 0

1 1 1 0

1 1 1 0

1 1 1 0


Ẽ1 =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0


A 2 out of 4 visual secret sharing scheme S2 = (E0, E1) is constructed with

parameters [4; 1, 0].

Theorem 7.1.6: For any k out of n visual secret sharing scheme with pa-

rameters [b;h, l] it holds that b ≥ (h− l)2k−1.

Proof. This Theorem will be proved for a k out of k uniform scheme, since one

can take any k out of the n rows of a k out of n scheme in order to construct

a k out of k one. Hence, a k out of k visual secret sharing scheme S = (C0, C1)

will be used, which has parameters [b;h, l; r]. We will use induction in k in

order to prove the Theorem:

For k = 1 it holds that b ≥ (h− l)2k−1, since b ≥ (h− l).

Let us assume that the statement holds for any k − 1 out of k − 1 visual

secret sharing scheme, i.e., b ≥ (h− l)2(k−1)−1, or b ≥ (h− l)2k−2.
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Let us assume a k out of k scheme with parameters [b;h, l] that is gen-

erated by two boolean matrices A0 and A1. According to Lemmas 7.1.2 and

7.1.4, if we take the 0-restriction and 1-restriction of these two matrices, for

example on the first row of them, two k−1 out of k−1 schemes are generated

with parameters [b0;h, l] and [b1; z − l, z − h], respectively.

From the induction step we get that b0 ≥ (h−l)2k−2 and b1 ≥ (z−l−(z−

h))2k−2, or b1 ≥ (h − l)2k−2. From the construction of the two k − 1 out of

k− 1 visual secret sharing schemes it holds that b = b0 + b1. Using the above

relations we get that b ≥ (h− l)2k−2 + (h− l)2k−2, hence, b ≥ (h− l)2k−1.

In order to prove the Theorem for any k out of k scheme S, and not only

for schemes that are generated by two matrices, the following technique is

used:

From the collections C0 and C1 of S we construct two boolean n× (b · r)

matrices A′0 and A′1 which are the concatenation of all the matrices in these

collections respectively. Then, a new scheme S ′ is generated by them, with

parameters [r · b; r ·h, r · l] and the Theorem holds since r · b ≥ r · (h− l) ·2k−1,

which implies that b ≥ (h− l) · 2k−1.

Theorem 7.1.7: 1. Let S = (C0, C1) be a uniform k out of n scheme with

parameters [b;h, l]. If we denote b(k, n) the minimal blocklength of S, then

b(k, n) ≥ 2 · b(k − 1, n− 1).

2. Additionally, if g is the smallest integer such that
(

g
bg/2c

)
≥ n− k + 2,

then b(k, n) ≥ g · 2k−2.

3. If k 6= n then b(k, n) ≥ 3 · 2k−2.

Proof. From Lemmas 7.1.2 and 7.1.4 we already know that a k out of n



Some General Concepts 87

visual secret sharing scheme S with parameters [b;h, l] can be decomposed

into two k − 1 out of n − 1 visual secret sharing schemes with parameters

[b0;h, l] and [b1; z− l, z−h]. If b(k−1, n−1) = min{b0, b1}, i.e., the minimal

blocklength of the two k − 1 out of n − 1 schemes that are produced by S.

Since b = b0 + b1, then b(k, n) ≥ 2 · b(k − 1, n− 1).

In order to prove the second statement, the method of induction will be

used. For k = 2 the statement is:

If g is minimal with respect to
(

g
bg/2c

)
≥ n, then b(2, n) ≥ g.

Hence, we consider a 2 out of n visual secret sharing scheme S = (C0, C1).

Its blocklength will be denoted by b. The security of the scheme implies

that for any row in a matrix A0 in collection C0 there exists a matrix A1

in collection C1 containing the same row. Additionally, by the definition

of the scheme, for any matrix A0 (respectively A1) in C0 (respectively C1)

collection, the “or” denoted by ~υ0 (respectively ~υ1) of any k out of its n rows

must satisfy z(~υ0) ≥ h (respectively z(~υ1) ≤ l). Two identical rows produce

the maximum value of z(~υi), i ∈ {0, 1}. Since the contrast of the scheme

is defined by the equation contrast = h−l
h+l

, there cannot be two identical

rows in any matrix of the C1 collection, or else there would be no distinction

between a white and a black pixel (recall that this is a 2 of out of 2 visual

secret sharing scheme). Let us denote by x the number of ones in each row

(transparency) of a matrix in A1. Then it must hold
(
b
x

)
≥ n. We can safely

assume that x can take any value from 1 to b− 1 depending on the scheme.

Since
(

b
bb/2c

)
≥
(
b
x

)
for every 1 ≤ x ≤ b, implies that the number g will be

the minimal one to satisfy the relation
(

g
bg/2c

)
≥ n, hence, g is less or equal

to b, and for k = 2 the statement holds.
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Let us assume that the statement holds for k − 1, n − 1, i.e., if g is the

smallest integer such that
(

g
bg/2c

)
≥ (n−1)−(k−1)+2, then b(k−1, n−1) ≥

g · 2k−1−2, namely, if g is the smallest integer such that
(

g
bg/2c

)
≥ n − k + 2,

then b(k − 1, n− 1) ≥ g · 2k−3.

For a k out of n scheme, using statement 1, we get: if g is the smallest

integer such that
(

g
bg/2c

)
≥ n−k+2, then b(k, n) ≥ 2·b(k−1, n−1). From the

inductive step it holds that if g is minimal with respect to
(

g
bg/2c

)
≥ n−k+2,

then b(k − 1, n − 1) ≥ g · 2k−3. By combining the two relations we get that

if g is minimal with respect to
(

g
bg/2c

)
≥ n− k + 2, then b(k, n) ≥ g · 2k−2.

About the third statement: If k 6= n, then n − k + 2 equals at least 3,

hence,
(

g
bg/2c

)
≥ 3. The minimal g for the latter inequality to hold is 3, hence,

b(k, n) ≥ 3 · 2k−2.

We repeat the following definition before stating the next Theorem:

Definition 7.1.8: Let a k out of n visual secret sharing scheme generated

by matrices A0 and A1. We limit A0 and A1 to any s rows (s < k), namely,

i1 < i2 < . . . < is and j1 < j2 < . . . < js in {1, . . . , n} respectively. If these

two submatrices of A0 and A1 contain the same columns in a different order,

we call A0 and A1 systematic. What is more, the scheme that is generated

by them is called a strong k out of n visual secret sharing scheme.

Theorem 7.1.9: If a k out of n visual secret sharing scheme S = (C0, C1)

with parameters [b;h, l] is uniform, then any pair of matrices A0 and A1

in C0 and C1 respectively are systematic. What is more, the scheme that is

constructed by the permutation of the columns of A0 and A1 is a strong k out
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of n visual secret sharing scheme with the same parameters as S.

Proof. In order to prove the Theorem, induction in k will be used.

For k = 2: Since the scheme is uniform, by definition the number of ones

in the “or” of any s < k rows depends only on the number s. Hence, for

s = 1, the number of ones is the same in all the rows of any matrix in either

collection C0 or C1. This means, that if we choose any two matrices, e.g.,

A0 from C0 and A1 from C1, they contain the same elements when limited to

only one row (any single row), only in a different order. Hence, in this case

the pair A0 and A1 is systematic.

As an inductive step, let us assume that the Theorem holds for any uni-

form k − 1 out of n− 1 scheme.

Next, we will prove the Theorem for any uniform k out of n visual secret

sharing scheme. Let S = (C0, C1) be a uniform k out of n scheme, and let

A0 be a matrix in the collection C0 and A1 a matrix in the collection C1

respectively.

At first, let us consider that A0 and A1 have a common row, denoted i.

From Lemmas 7.1.2 and 7.1.4 we get that S can be decomposed with respect

to row i into two k − 1 out of n − 1 visual secret sharing schemes. As a

result, A0 will be decomposed into two matrices, D0 and E1, and A1 into

D1 and E0, respectively. By the inductive step we get that D0 and D1 are

systematic. The same holds for E0 and E1. Since A0 (respectively A1) can

be reconstructed from D0 and E1 (respectively D1 and E0), by adding the

common i row, the A0 and A1 pair is also systematic.

If A0 and A1 do not have a common row, we will proceed as follows:

two subsets of matrices can be used, one from C0 and one from C1. Let
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A0.1, A0.2, . . . , A0.t be the subset of C0 and A1.1, A1.2, . . . , A1.t the one from

C1 respectively. The matrix A0.1 to be A0 and matrix A1.t to be A1. The

security of the scheme implies that for any row in a matrix A0 in collection

C0 there exists a matrix A1 in collection C1 containing the same line. Taking

this under consideration, the matrices that the collections consist of have the

following property: the A1.j matrix, j ∈ {1, . . . , t}, has at least one common

row with A0.j and A0.j+1.. In this way, a chain of matrices with common

rows is created starting from A0 and ending with A1. Figure 7.1 depicts the

described method.

Figure 7.1: A chain of matrices with common rows

Since each pair of matrices A0.j and A1.j, i ∈ {1, . . . , t} have at least

one row in common, the statement holds for each pair of them, i.e., the

corresponding pair of matrices is systematic. This property is transitive,

hence, the original pair A0 and A1 is systematic.

As a result, if a k out of n scheme S = (C0, C1) is uniform, then, any two

matrices from collection C0 and C1 are systematic. As a result, the scheme

that they generate is a strong k out of n scheme with the same parameters

as S.
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The next Theorem gives a bound on the blocklength of maximal contrast

visual secret sharing schemes, i.e., schemes with parameters [b;h, 0].

Theorem 7.1.10: Consider a maximal contrast k out of n visual secret

sharing scheme S = (C0, C1) with parameters [b;h, 0]. Then, it holds that

b ≥ h ·
(
n
k−1

)
.

Proof. From the definition of the scheme we know that when limited to k

(or less) rows any matrix in C0 consists of at least h all-zero columns. Hence,

from the security of the scheme we get that when restricted to k−1 rows, all

matrices from both C0 and C1 collections will have at least h all-zero columns.

What is more, since l = 0 it follows that in any matrix in C1 there are

no more than k − 1 zeros in any of their columns. Considering all the above

mentioned, the blocklength b of the scheme must be at least h times the

number of combinations of (k−1)-subsets of {1, . . . , n}, i.e., b ≥ h·
(
n
k−1

)
.

Remark 7.1.11: If we fix k, for large n,
(
n
k−1

)
is approximately equal to

nk−1/(k − 1)!. As a result, the maximal contrast schemes described in Con-

structions III and IV (Sections 5.3.2 and 5.4.2 respectively) are quite optimal

as far as the blocklength of the scheme is concerned.

Constructions III and IV of k out of n visual secret sharing schemes (Sec-

tions 5.3.2 and 5.4.2, respectively) are both based on Projective Geometry,

which is characterized, as mentioned, by the Principle of Duality. What is

more, we have already created in Section 3.1 the dual of a 2 out of n visual

secret sharing scheme. However, the dual of a k out of n scheme is not always

a visual secret sharing scheme itself. As an example, let us consider two 2

out of 2 visual secret sharing schemes S1 = (C1
0 , C1

1) and S2 = (C2
0 , C2

1), both
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with parameters [4; 2, 1; 4!], which are generated by the following matrices

respectively:

A1
0 =

0 0 1 1

0 0 1 1

 A1
1 =

0 0 1 1

0 1 0 1


and

A2
0 =

0 0 1 1

0 0 0 1

 A2
1 =

0 0 1 1

1 0 0 1


The union of S1 and S2 denoted S = (C0, C1) is a valid 2 out of 2 visual

secret sharing scheme with parameters [4; 2, 1; 2 · 4!]. Let us consider now

the dual scheme of it, S∗ = (C∗0 , C∗1). This is not a valid visual secret sharing

scheme: the dual of A2
0 which is in the C∗0 collection and the dual of A1

1 which

is in the C∗1 collection are the following:

A∗0 =

1 1 0 0

1 1 1 0

 ∈ C∗0 A∗1 =

1 1 0 0

1 0 1 0

 ∈ C∗1
As one can see, the “or” of the 2 rows in both matrices yield one zero

and three ones, i.e., they are exactly the same, hence, there is no difference

between a black and a white pixel.

However, when the scheme is uniform this is not the case as Theorem

7.1.9 states. In order to prove it, the following Lemma is needed:

Lemma 7.1.12: Let us consider a uniform k out of n visual secret sharing

scheme S = (C0, C1) with parameters [b;h, l]. We denote by A a k× b subma-

trix of any matrix in C0 or C1. Additionally, let us denote ~u1, ~u2 two vectors

in V (k, 2) that appear as columns in A. If w is the number of coordinates
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that ~u1, ~u2 differ, and e(~ui), i ∈ {1, 2} is the number of times ~ui appears as

a column in A, then the expression e(~u1) + (−1)1+we(~u2) is independent of

A.

Proof. We will use induction in w.

For w = 1, i.e., the two vectors differ in only one coordinate (an example

is shown in Figure 7.2): without loss of generality let us consider that ~u1

and ~u2 differ in their first coordinate. If we remove the first row from A,

we get a k − 1 × b matrix A′. In this case, e(~u1) + e(~u2) is the number of

times the k − 1 common coordinates that are left appear as columns in A′.

Since the scheme is uniform, from Theorem 7.1.8 we know that all of its

matrices are systematic, and hence, e(~u1) + e(~u2) depends only on k− 1, i.e.,

is independent of A.

For w = 2: Without loss of generality, let ~u1 and ~u2 differ in the first two

coordinates - an example is depicted in the following figure. Additionally, let

us denote by ~u3 another vector in V (k, 2), which differs in the first coordinate

with ~u1 and in the second coordinate with ~u2. Since ~u3 differs by only one

coordinate with ~u1 and ~u2 respectively, from step 1 we get that e(~u1) + e(~u3)

and e(~u2) + e(~u3) are independent of A. The same holds for their difference,

e(~u1) + e(~u3)− e(~u2)− e(~u3), i.e., e(~u1)− e(~u2) is independent of A.

Inductive step: Let us consider that the formula is true for w = 2i + 1

and for w = 2i+ 2.

Then, for w = 2i + 3 we get: as done for w = 1 and w = 2 we assume

that ~u1 and ~u2 differ in the first three coordinates. Let us consider another

vector, ~u3 in V (k, 2) that differs in the first two coordinates with ~u1 and in one

coordinate (the third one) with ~u2. From the two first steps of the induction
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Figure 7.2: Visual representation for w = 1 and w = 2

we get that e(~u1)−e(~u3) is independent of A and e(~u2)+e(~u3) is independent

of A, too. As a result, their sum, e(~u1)−e(~u3)+e(~u2)+e(~u3) = e(~u1)+e(~u2)

is independent of A. Hence, for w = 2i+ 3 the formula holds.

For w = 2i + 4 we get: as done in all previous cases we assume that ~u1

and ~u2 differ in the first four coordinates. Let us consider another vector,

~u3 in V (k, 2) that differs in the first two coordinates with ~u1 and in two

coordinates (the third and forth one) with ~u2. From the induction step we

get that e(~u1)−e(~u3) is independent of A and e(~u3)−e(~u2) is independent of

A, too. As a result, their sum, e(~u1)− e(~u3) + e(~u3)− e(~u2) = e(~u1)− e(~u2)

is independent of A. Hence, for w = 2i+ 4 the formula holds.

As a result, the expression e(~u1) + (−1)1+we(~u2) is independent of A.

Theorem 7.1.14: Consider a k out of n uniform visual secret sharing
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scheme S = (C0, C1). Let F (respectively G) denote the set of all the ma-

trices in C0 (respectively C1) in which we have replaced the ones by zeros and

vice versa.

a. For k even, the scheme (F ,G) is a uniform k out of n visual secret

sharing scheme with parameters [b; z + h, z + l].

b. For k odd, the scheme (G,F) is a uniform k out of n visual secret

sharing scheme with parameters [b; z − l, z − h].

Proof. a. For k even: Let A0 denote a matrix in C0 and A1 a matrix in C1.

Additionally, let A′0 and A′1 be their limitations to any k rows. By ~u1 we

denote the “all-one” vector and by ~u2 the “all-zero” vector in V (k, 2) which

may appear as columns in A′0 and A′1. Since k is even, from Lemma 7.1.10

we get that z = e(~u1)− e(~u2) is independent of A′0 and A′1.

Since the number of zeros in the “or” of the rows in A′0 is at least h, the

same holds for the number of all-zero vectors in it, i.e., the number of all-zero

vectors in A′0 is at least h, i.e., e(~u2) ≥ h. Hence, the number of all-ones

columns in A′0 is at least z + h.

Symmetrically, since the “or” of the rows in A′1 is at most l, the same

holds for the number of all-zero vectors in it, i.e., the number of all-zero

vectors in A′1 is at most l, i.e., e(~u2) ≤ l. Hence, the number of all-ones

columns in A′1 is at most z + l.

We interchange the one coordinates with zero and vice versa in all matri-

ces of C0 and C1 and get the sets F and G respectively. Then, all the matrices

in F when limited to k rows have at least z + h all-zero columns, hence, the

“or” of any k rows results is at least z + h zeros. Similarly, all the matrices

in G when limited to k rows have at most z + l all-zero columns, hence, the
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“or of any k rows results is at most z + l zeros. Since z + h > z + l and

considering all the above mentioned, it follows that (F ,G) is a k out of n

uniform visual secret sharing scheme with parameters [b; z + h, z + l].

b. For k odd: Let A0 denote a matrix in C0 and A1 a matrix in C1.

Additionally, let A′0 and A′1 be their limitations to any k rows. By ~u1 we

denote the “all-one” vector and by ~u2 the “all-zero” vector in V (k, 2) which

appear as columns in A′0 and A′1. Since k is odd, from Lemma 7.1.10 we get

that z = e(~u1) + e(~u2) is independent of A′0 and A′1.

Since the number of zeros in the “or” of the rows in A′0 is at least h,

the same holds for the number of “all-zero” vectors in it, i.e., the number of

“all-zero” vectors in A′0 is at least h, i.e., e(~u2) ≥ h. Hence, the number of

“all-one” columns in A′0 is at most z − h.

Symmetrically, since the “or” of the rows in A′1 is at most l, the same

holds for the number of “all-zero” vectors in it, i.e., the number of “all-zero”

vectors in A′1 is at most l, i.e., e(~u2) ≤ l. Hence, the number of “all-one”

columns in A′1 is at least z − l.

We interchange the one coordinates with zero and vice versa in all matri-

ces of C0 and C1 and get the sets F and G respectively. Then, all the matrices

in F when limited to any k rows have at most z−h all-zero columns, hence,

the “or” of any k rows results is at most z−h zeros. Similarly, all the matrices

in G when limited to any k rows have at least z− l “all-zero” columns, and as

a result, the “or of any k rows results is at least z−l zeros. Since z−l > z−h

and considering all the above mentioned, it follows that (G,F) is a k out of

n uniform visual secret sharing scheme with parameters [b; z − l, z − h].



Chapter 8

Extensions

The basic model of considering only black and white messages (written texts

or images) can be further extended to continuous tone images, coloured im-

ages, etc. What is more, efficient techniques can be used to conceal the

very fact of the use of Visual Cryptography. Some of these techniques are

explained in the following Sections.

8.1 Continuous Tone Visual Encryption Prob-

lem

In the case of a continuous tone image where pixels have gray scaling ranging

from 0 to 255, one first technique can be followed: For each pixel with g level

of gray, a 16× 16(= 256) array can be used which will consist of g black and

256− g white subpixels. Each one of them, in turn, can be encrypted using

one of the techniques mentioned in the previous chapters.

However, a more efficient solution can be used. It is a 2 out of 2 scheme.
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This time each original pixel is not divided into subpixels, but it is represented

by a circle which is half black and half white. It is the relative angle between

the circles in the two transparencies that determines the colour of each pixel.

It ranges from medium gray which represents white (when the two circles have

zero relative angle) to completely black, representing black (their relative

angle is 180o). Figure 8.1 from [2] depicts an example of the sharing of a

medium gray coloured pixel:

Figure 8.1: Sharing a medium gray coloured pixel

Additionally, a random absolute angle is used for each circle in both

transparencies while preserving the specified relative angle between them.

As a result, each transparency will look gray and can reveal no information

about the original hidden message. The only effect of the encryption is that

when the message is revealed, it will look darker than the original one.

8.2 Extended Visual Cryptography

An interesting version of the original problem is the following: the two trans-

parencies that are required to reveal the hidden message are not random
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looking patterns but ordinary - black and white - images with a visual mean-

ing. In this way, it is difficult for someone to even imagine that putting these

two images on top of one another a hidden message is disclosed. What is

more, it is easier for the dealer to recognize each transparency. This problem

is solved by the use of Extended Visual Cryptography, an example of which

one can see in Figure 8.2 taken from [30].

Figure 8.2: A 2 out of 3 scheme of extended visual cryptography

A 2 out of 2 extended visual scheme is described: Each pixel is divided into

4 subpixels, hence, we consider 2× 4 matrices. Since the two transparencies

to be combined are common images like a cat or a boat, the colour of their

pixels must be taken under consideration, too.

As a result, in order to represent a white pixel, one of the top row combi-

nations of Figure 8.3 (taken from [2]) must be used, depending on the colour

of the pixels of the two image-transparencies. In order to represent a black

pixel, a choice from the bottom row combinations must be used. For exam-
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Figure 8.3: To share a black or a white pixel

ple, if the colour of the final pixel is white and the corresponding pixels are

white, too, then the upper left combination of subpixels is used.

The matrices that represent a white pixel are the permutations of the fol-

lowing:

0 0 1 1

1 0 1 0

 0 0 1 1

1 0 1 1

 1 0 1 1

1 0 1 1


two white shares white and black shares two black shares

Similarly, the matrices that represent a black pixel are the permutations of

the following:

1 1 0 0

0 0 1 1

 0 0 1 1

1 1 1 0

 0 1 1 1

1 1 1 0


two white shares white and black shares two black shares
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As one can see, in the two transparencies a white pixel is represented by

two black and two white subpixels, whereas a black pixel is represented by

three black and one white subpixel. In the resulting image, a white pixel is

represented by one white and three black subpixels, i.e., h = 1, and a black

one by four black subpixels, i.e., l = 0. What is more, it is obvious that

not any of the two transparencies alone uncover any information about the

hidden message. Hence, this is a maximal contrast scheme with parameters

[b;h, l] = [4; 1, 0].

8.3 Coloured k out of n Secret Sharing Schemes

8.3.1 Introduction

Let us consider a coloured image where c colours are used, and we will denote

them k0, k1, . . . , kc−1. In an analogous way, a gray tone image with c levels of

grayness can be considered as a coloured image where g0, g1, . . . , gc−1 denote

the different tones of gray that are used in it. An example of such a scheme

is shown in Figure 8.4 taken from [31].

In the general model, in each transparency, every pixel is divided into

b subpixels. The reason why we divide a pixel in subpixels is to define its

colour via a collection of basic colour components (red, green, blue). Each

one of them can take any one of the c colours. This time it is the subpixels

that are depicted as circles of small radius. Each one of them is divided

into c equal slices 0, 1, . . . , c − 1. When the subpixel is of colour ci, then

the corresponding slice is coloured ci and the remaining area of the circle is

black. As a result, when the shares are placed on top of each other in a way
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Figure 8.4: Example of a coloured visual secret sharing scheme from [31]

that the corresponding subpixels align, if all of them are of the same colour

ci then the resulting colour is ci. In any other case it is black.

Figure 8.5 (taken from [3]) shows the subpixels of such a scheme using

k = 3 colours.

In the mathematical model of this technique, the following must be men-

tioned: First of all, the number c of the colours consisting the image must
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Figure 8.5: Example of the pixels that can be used for a 3-colour scheme

(taken from [3])

be a prime or a prime power, and hence, the colours k0, k1, . . . , kc−1 are rep-

resented by elements of a Galois field. As one can deduce from the figure

above, if all of them are of the same colour ki, then ki will be the colour

of the resulted subpixel. By • we denote the result of differently coloured

subpixels placed on top of each other. More specifically, • does not refer to

any of the k0, k1, . . . , kc−1 colours, even if black is one of them. What is more,

if a vector’s ~u coordinates are in {k0, k1, . . . , kc−1} ∪ {•}, then we denote by

zi(~u), (i = 0, 1, . . . , c − 1) the number of its coordinates that are equal to

colour ki.

Definition 8.3.1.1: A k out of n c-coloured visual secret sharing scheme

S = (C0, C1, . . . , Cc−1) used to encrypt a coloured image is a set of collections

of n × b matrices whose elements are in a Galois field GF (q), c ≤ q. Each

collection corresponds to one of the colours that are used in the image. The

matrices that are contained in a collection Ci, 0 ≤ i ≤ c− 1, are the different

versions of representing a subpixel of colour ci. More specifically, the n rows

of each matrix correspond to the n transparencies that are distributed to the

participants of the scheme and the b elements of each row define the colour of

its subpixels. The scheme must comply with the following three conditions:
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1. For any matrix in a collection Ci, 0 ≤ i ≤ c− 1, the “or” of any k out of

its n rows must satisfy zi(~u) ≥ h.

2. For any matrix in a collection Ci, 0 ≤ i ≤ c− 1, the “or” of any k out of

its n rows must satisfy zj(~u) ≤ l, for every j 6= i.

3. The collections C ′j, 0 ≤ j ≤ c − 1, obtained by limiting all the n × b

matrices in the corresponding Cj to s < k rows, i1 < i2 < . . . < is, are

identical, namely, the matrices that they contain are the same and appear in

the same frequencies.

As already mentioned in the definition of a black and white visual secret

sharing scheme, the parameters h and l (h, l ∈ N) must comply the following

condition: 0 ≤ l < h < b: the condition l = 0 may hold, since there is a

possibility that no white subpixel exists in a black pixel. The condition l < h

must hold since the contrast of the scheme is defined on this difference. Last

but not least, h < b holds because if h = b the security of the scheme would

be compromised.

The parameters of such a c-coloured visual secret sharing scheme S =

(C0, C1, . . . , Cc−1) will be [c; b;h, l; r], where c is the number of the colours,

b the blocklength of the scheme, i.e., the number of subpixels a pixel is

divided into, and r the cardinality of the collections. It holds that h > l and

|C0| = |C1| = . . . = |Cc−1| = r.

In order to construct a c-coloured visual secret sharing scheme the fol-

lowing are necessary:

Definition 8.3.1.2: An n-arc of functionals G,F1, F2, . . . , Fn−1 on V (k, q) is

called coinciding with respect to G if for every k-subset K of {1, 2, . . . , n−1}

it holds that
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(⋂
i∈K

F−1
i (1)

)
∩G−1(1) 6= ∅. (8.1)

We denote s(k, q) the maximum n for which a coinciding n-arc of func-

tionals with respect to G exists in V (k, q).

Lemma 8.3.1.3: Let s(k, q) denote the maximum coinciding n-arc of

functionals in V (k, q). Then, for any Galois field GF (q) and k-dimensional

space V (k, q) the following statements hold:

1. s(k, q) ≥ q.

2. If k − 1 and q − 1 are not relatively prime, then s(k, q) ≥ q + 1.

3. s(k, q) ≥ k.

4. If q > 2 or k is odd (and q = 2), then s(k, q) ≥ k + 1.

Proof. 1. Let us consider as functionals G,F1, . . . , Fq−1 the vectors in V (k, q)

of the form (1, ω1
i , . . . , ω

k−1
i ), where ωi ∈ GF (q), 1 ≤ i ≤ q − 1 and all the

vectors from the permutations of the ωji elements. It can be easily verified

that the relation

( ⋂
i∈K

F−1
i (1)

)
∩ G−1(1) 6= ∅ holds, since there exists at

least one vector in V (k, q), the vector [1, 0, . . . , 0], that fulfills it. Hence,

s(k, q) ≥ |GF (q)| = q.

2. Let us add vector (0, 0, . . . , 1) to the above described q-arc s(k, q) and

obtain a q + 1 set of functionals. If k − 1 and q − 1 are not relatively prime,

then the mapping ω 7→ ωk−1 is not surjective, and hence, there exists at least

one element x ∈ GF (q) such that ωk−1 6= x for every ω ∈ GF (q). Since

this holds, the inner product of the functionals in s(k, q) with the vector

(−x, 0, 0, . . . , 1) is non-zero. In order to make this inner product equal 1,

we do the following: we calculate the values yi, 1 ≤ i ≤ q which are the
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results of each one of the functionals to the vector (−x, 0, 0, . . . , 1). Next,

we divide the members of s(k, q) by their corresponding non-zero value yi,

i.e., we multiply by −yi. As a result, the outcome of all the functionals to

vector (−x, 0, 0, . . . , 1) equals 1 and we have constructed a coinciding arc of

functionals of size q + 1. Hence, s(k, q) ≥ q + 1.

3. Let us consider the set s(k, q) to consist of all the unit vectors of

V (k, q), i.e., (1, 0, . . . , 0), (0, 1, 0, . . . , 0), etc. The inner product of each one

of them with the vector (1, 1, . . . , 1) equals 1, hence, we have created a k-arc

of coinciding functionals, i.e., s(k, q) ≥ k.

4. If q > 2, or if q = 2 and k is odd, we can find a non-zero element t in

GF (q) such that the equation λ = k− 1 + t 6= 0. Then, the inner product of

the vector λ−1(1, . . . , 1, t) to vector (1, . . . , 1) equals λ−1(k−1+t) = λ−1 ·λ =

1. We add vector λ−1(1, . . . , 1, t) to the k-arc above, and get a k + 1-arc of

coinciding functionals. Hence, s(k, q) ≥ k + 1 if q > 2 or q = 2 and k is

odd.

8.3.2 A k out of n c-colour scheme construction

In order to construct a k out of n c-colour visual secret sharing scheme

S = (C0, C1, . . . , Cc−1) we do the following steps:

1. Let us choose a Galois field GF (q) such that q ≥ c and s(k, q) ≥ n+ 1.

Then, we select any c-subset {k0, k1, . . . , kc−1} of elements in GF (q).

2. We create an n + 1 = (q + 1)-arc of coinciding functionals in V (k, q)

using Lemma 8.3.1.3.

3. For each ki, 0 ≤ i ≤ c−1, we form the representation matrices Ai of the
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functionals Fj, 1 ≤ j ≤ n using only the vectors ~u in V (k, q) such that

G(~u) = ki as follows: we construct an n× k matrix B whose rows are

the n functionals and another matrix F , with dimension k×qk−1, whose

columns consist of all the qk−1 vectors in V (k, q) such that G(~u) = ki.

Then, the multiplication of B and F results in a new n× qk−1 matrix

named Ai, which is the representation matrix of these functionals. It

holds (⋂
i∈K

F−1
j (ki)

)
∩G−1(ki) 6= ∅ (8.2)

for any k subset K of {1, . . . , n} and i ∈ {0, . . . , c− 1}.

4. The collections Ci, 0 ≤ i ≤ c − 1 of S consist of all the matrices

generated by permuting the columns of the corresponding Ai matrices

created in the previous step.

Theorem 8.3.2.1: The above scheme is a maximal contrast c-colour k out

of n visual secret sharing scheme with parameters b = qk−1, h = 1, l = 0,

and r = qk−1!.

Proof. Without loss of generality let us consider c = q. As already mentioned

in Section 5.4.1, the result of a functional in V (k, q) with all the qk different

vectors in V (k, q) equals qk−1 times the q different elements of GF (q). Hence,

the blocklength of the scheme is b = qk−1.

From equation 8.2 we conclude that in each of these matrices, when lim-

ited to any k rows, there exists at least one “all-ki” column. Since the vectors

that correspond to the functionals are linearly independent, from Lemma

5.3.1.8 we get that each k-length vector appears exactly once. Hence, h = 1.
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It is obvious that each representation matrix is created considering dif-

ferent vectors in GF (q), since, there is no ~u ∈ GF (q) such that its image via

G(~u) takes two different values, say ki, kj, 0 ≤ i, j ≤ k−1, at the same time.

Let us create a matrix Ã which is the concatenation of all the representation

matrices Ai, 0 ≤ i ≤ q − 1. Since each Ai consists of qk−1 columns, Ã will

consist of q · qk−1 = qk columns. What is more, as mentioned in 5.3.1, the set

that is constructed by the vectors (0, 0, . . . , 1) and (1, ω1
i , . . . , ω

k−1
i ), where

ωi ∈ GF (q), 0 ≤ i ≤ q− 1, constitutes a (q+ 1)-arc, i.e., an (n+ 1)-arc. This

implies that the n functionals that are used to create Ã are k-wise linearly

independent and as a result, from Lemma 5.3.1.8 when Ã is limited to any

k rows we get that each vector in V (k, q) occurs exactly once as a column in

Ã. Hence, the all-ki columns appear exactly once, each in its corresponding

matrix Ai. For example, since the all-zero vector appears as a column in

matrix A0, no such vector appears as a column in the rest of the Ai matrices.

As a result, for the scheme it holds that l = 0.

For the security of the scheme: As already mentioned, the vectors that

index the rows of Ai are k linearly independent, and as a result they are k−1

linearly independent, too. What is more, as already mentioned, each matrix

Ai consists of qk−1 columns. Hence, when they are limited to k−1 rows, from

Lemma 5.3.1.8 we get that each vector in V (k − 1, q), |V (k − 1, q)| = qk−1,

is calculated exactly once as a column of the matrix. As a result, all the

matrices Ai, 0 ≤ i ≤ q − 1, when restricted to any k − 1 rows consist of the

same columns, namely, they are indistinguishable.

Remark 8.3.2.2: If c is a prime power and c = q, then the following types

of schemes can be constructed taking Lemma 8.3.1.3 under consideration:
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1. A k out of k c-colour visual secret sharing scheme for all k.

2. A k out of c−1 c-colour visual secret sharing scheme for k < c. As one

can see, in this case n = c− 1.

3. A k out of c c-colour visual secret sharing scheme when k− 1 and c− 1

are relatively prime.

The following construction depicts the above-described model, case 3 in par-

ticular:

Example 8.3.2.3: We will construct a 3 out of 5 5-colour visual secret

sharing scheme. Let us choose q = c = 5 and as a result GF (5) will be used.

Additionally, we choose V (k, q) = V (3, 5). Since k− 1 = 2 and q− 1 = 4 are

not relatively prime, we can create a 6-arc of coinciding functionals, according

to Lemma 8.3.1.3 - 2nd part: We take the vectors created by the formula

(1, ω, . . . , ωk−1), for every ω ∈ GF (5). These are the vectors (1, 0, 0), (1, 1, 1),

(1, 2, 4), (1, 3, 4), and (1, 4, 1). To these 5 vectors we add vector (0, 0, 1). As

one can see, element ω 7→ ωk−1 6= 2 for every ω ∈ GF (q). Hence, the value

of the inner product of (−2, 0, 1) = (3, 0, 1) with any of the 6 vectors is non-

zero. In order for this result to equal one, we divide each vector by this result.

Then the 6-arc of coinciding functionals will be: F1 = (2, 0, 0), F2 = (4, 4, 4),

F3 = (3, 1, 2), F4 = (3, 4, 2), F5 = (4, 1, 4), and G = (0, 0, 1). As one can see,

the inner product of all these 6 vectors with the vector (3, 0, 1) equal 1.

We now create the 5 representation matrices:

Functional G = (0, 0, 1) equals 0 for the following vectors in V (3, 5):

(0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 3, 0), (0, 4, 0), (1, 0, 0), (1, 1, 0) (1, 2, 0), (1, 3, 0),

(1, 4, 0), (2, 0, 0), (2, 1, 0), (2, 2, 0), (2, 3, 0), (2, 4, 0), (3, 0, 0), (3, 1, 0), (3, 2, 0),

(3, 3, 0) (3, 4, 0), (4, 0, 0), (4, 1, 0), (4, 2, 0), (4, 3, 0), and (4, 4, 0).
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Hence, the representation matrix for the zero value is the following:

A0 =



0 0 0 0 0 2 2 2 2 2 4 4 4 4 4 1 1 1 1 1 3 3 3 3 3

0 4 3 2 1 4 3 2 1 0 3 2 1 0 4 2 1 0 4 3 1 0 4 3 2

0 1 2 3 4 3 4 0 1 2 1 2 3 4 0 4 0 1 2 3 2 3 4 0 1

0 4 3 2 1 3 2 1 0 4 1 0 4 3 2 4 3 2 1 0 2 1 0 4 3

0 1 2 3 4 4 0 1 2 3 3 4 0 1 2 2 3 4 0 1 1 2 3 4 0



Functional G = (0, 0, 1) equals 1 for the following vectors in V (3, 5):

(0, 0, 1), (0, 1, 1), (0, 2, 1), (0, 3, 1), (0, 4, 1), (1, 0, 1), (1, 1, 1) (1, 2, 1), (1, 3, 1),

(1, 4, 1), (2, 0, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (2, 4, 1), (3, 0, 1), (3, 1, 1), (3, 2, 1),

(3, 3, 1) (3, 4, 1), (4, 0, 1), (4, 1, 1), (4, 2, 1), (4, 3, 1), and (4, 4, 1).

Hence, the representation matrix for value one is the following:

A1 =



0 0 0 0 0 2 2 2 2 2 4 4 4 4 4 1 1 1 1 1 3 3 3 3 3

4 3 2 1 0 3 2 1 0 4 2 1 0 4 3 1 0 4 3 2 0 4 3 2 1

2 3 4 0 1 0 1 2 3 4 3 4 0 1 2 1 2 3 4 0 4 0 1 2 3

2 1 0 4 3 0 4 3 2 1 3 2 1 0 4 1 0 4 3 2 4 3 2 1 0

4 0 1 2 3 3 4 0 1 2 2 3 4 0 1 1 2 3 4 0 0 1 2 3 4



Functional G = (0, 0, 1) equals 2 for the following vectors in V (3, 5):

(0, 0, 2), (0, 1, 2), (0, 2, 2), (0, 3, 2), (0, 4, 2), (1, 0, 2), (1, 1, 2) (1, 2, 2), (1, 3, 2),

(1, 4, 2), (2, 0, 2), (2, 1, 2), (2, 2, 2), (2, 3, 2), (2, 4, 2), (3, 0, 2), (3, 1, 2), (3, 2, 2),

(3, 3, 2) (3, 4, 2), (4, 0, 2), (4, 1, 2), (4, 2, 2), (4, 3, 2), and (4, 4, 2).

Hence, the representation matrix for value two is the following:
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A2 =



0 0 0 0 0 2 2 2 2 2 4 4 4 4 4 1 1 1 1 1 3 3 3 3 3

3 2 1 0 4 2 1 0 4 3 1 0 4 3 2 0 4 3 2 1 4 3 2 1 0

4 0 1 2 3 2 3 4 0 1 0 1 2 3 4 3 4 0 1 2 1 2 3 4 0

4 3 2 1 0 2 1 0 4 3 0 4 3 2 1 3 2 1 0 4 1 0 4 3 2

3 4 0 1 2 2 3 4 0 1 1 2 3 4 0 0 1 2 3 4 4 0 1 2 3



Functional G = (0, 0, 1) equals 3 for the following vectors in V (3, 5):

(0, 0, 3), (0, 1, 3), (0, 2, 3), (0, 3, 3), (0, 4, 3), (1, 0, 3), (1, 1, 3) (1, 2, 3), (1, 3, 3),

(1, 4, 3), (2, 0, 3), (2, 1, 3), (2, 2, 3), (2, 3, 3), (2, 4, 3), (3, 0, 3), (3, 1, 3), (3, 2, 3),

(3, 3, 3) (3, 4, 3), (4, 0, 3), (4, 1, 3), (4, 2, 3), (4, 3, 3), and (4, 4, 3).

Hence, the representation matrix for value three is the following:

A3 =



0 0 0 0 0 2 2 2 2 2 4 4 4 4 4 1 1 1 1 1 3 3 3 3 3

2 1 0 4 3 1 0 4 3 2 0 4 3 2 1 4 3 2 1 0 3 2 1 0 4

1 2 3 4 0 4 0 1 2 3 2 3 4 0 1 0 1 2 3 4 3 4 0 1 2

1 0 4 3 2 4 3 2 1 0 2 1 0 4 3 0 4 3 2 1 3 2 1 0 4

2 3 4 0 1 1 2 3 4 0 0 1 2 3 4 4 0 1 2 3 3 4 0 1 2



Functional G = (0, 0, 1) equals 4 for the following vectors in V (3, 5):

(0, 0, 4), (0, 1, 4), (0, 2, 4), (0, 3, 4), (0, 4, 4), (1, 0, 4), (1, 1, 4) (1, 2, 4), (1, 3, 4),

(1, 4, 4), (2, 0, 4), (2, 1, 4), (2, 2, 4), (2, 3, 4), (2, 4, 4), (3, 0, 4), (3, 1, 4), (3, 2, 4),

(3, 3, 4) (3, 4, 4), (4, 0, 4), (4, 1, 4), (4, 2, 4), (4, 3, 4), and (4, 4, 4).

Hence, the representation matrix for value four is the following:
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A4 =



0 0 0 0 0 2 2 2 2 2 4 4 4 4 4 1 1 1 1 1 3 3 3 3 3

1 0 4 3 2 0 4 3 2 1 4 3 2 1 0 3 2 1 0 4 2 1 0 4 3

3 4 0 1 2 1 2 3 4 0 4 0 1 2 3 2 3 4 0 1 0 1 2 3 4

3 2 1 0 4 1 0 4 3 2 4 3 2 1 0 2 1 0 4 3 0 4 3 2 1

1 2 3 4 0 0 1 2 3 4 4 0 1 2 3 3 4 0 1 2 2 3 4 0 1


As one can see, in each one of the matrices Ai, 0 ≤ i ≤ 4, there is a

column whose elements are all equal to number i. The parameters of the

scheme are [c; b;h, l; r] = [5; 25; 1, 0; 25!].



Chapter 9

Applications of Visual

Cryptography

Although Visual Cryptography has some advantages compared to other cryp-

tographic schemes, practical applications based on it took a while to evolve.

Two were the main reasons: the visual noise added at the printing process,

and the difficulty in the correct alignment of the transparencies. Some so-

lutions to the latter were developed, such as a frequency domain alignment

scheme [18].

Another problem of Visual Cryptography is that because of the expansion

of the original image, the schemes are not effective when the hidden message

is longer than a single word or a small phrase. The same holds for images to

be shared with high resolution.

One field where Visual Cryptography can be used is e-voting: Since every-

thing is handled by a computer program and there is no physical substance of

a vote, there must be some way for all voters to verify that their voting deci-

sion is counted correctly. However, a receipt that clearly declares the identity
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of the voter along with their voting choices may cause coercion or vote selling

problems. Some solutions using Visual Cryptography are proposed.

For example, Chaum in [19] presents a secret-ballot receipt system. In this

case, after a voter has made their choices, a two-layer (two transparencies)

receipt is created using a 2 out of 2 visual secret sharing scheme and then

is printed. When these two layers are put on top of each other, the choices

of the voter are shown. However, when separated, an unreadable pattern of

random black and white subpixels is only visible in the place of the vote. One

layer is kept by the voter while the other is destroyed by a poll worker before

the voter. A serial number that is printed on the layer the voter keeps enables

him to verify that his voting decisions was correctly counted by the system.

In figure 9.1 from [19] one can see the initial representation of the letter

“e”, the two layers (transparencies) produced using the visual secret sharing

scheme and their representation when they are stacked together in Chaum’s

secret ballot receipt system. What is more, electronic voting schemes have

been proposed that combine visual cryptography and digital processing [18].

In [34], Visual Cryptography is used in a remote Internet voting scheme as

assistance to transform the construction into a verification protocol.

Figure 9.1: Chaum’s secret-ballot receipt

Another field where Visual Cryptography can be applied is Biometric Au-
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thentication. As an example, ID cards using fingerprints as an authentication

medium can be constructed as follows: a fingerprint image of an eligible per-

son is divided into two shares. One is placed on their ID card while the other

is stored in a centralized database. During the authentication phase, the

two images are superimposed and from the resulting fingerprint the minutiae

(small details) of the finger are extracted. Next, a fresh image of the finger-

print is obtained with the help of any fingerprint scanner and the minutiae of

the latter are compared with the minutiae of the secret fingerprint image. If

they match, the authentication succeeds. An example of such a construction

is presented in Figure 9.2 from [23]. Since Visual Cryptography Schemes are

perfectly secure, ID card spoofing can be avoided. What is more, the side

effects of a potential database compromise are eliminated.

Figure 9.2: (a) Original image, (b) First share, (c) Second share, (d) Super-

imposed shares
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Many other constructions and improvements have been presented, re-

garding authentication using visual cryptography schemes. Examples can

be found in [24], [25], [26] and [27]. Additionally, methods for creating im-

age copyright protection and watermarking using Visual Cryptography are

presented in [32] and [33]. An important use of Extended Visual Cryptogra-

phy could be the transfer over the Internet of military maps or commercial

secrets.

Several enhancements involving security have been presented, too: in

[28] for example, the use of Digital Watermarking is introduced in visual

secret sharing schemes. Other approaches involve encoding without pixel

expansion, as described in [29]. Additionally, the concept of sharing multiple

secrets is described in [35] and [36]. The general technique that is used is that

the first secret message is revealed by stacking the transparencies, while the

second one by first rotating one of them. Research is also done regarding the

combination of Coloured and Extended Visual Cryptography (an example in

[37]), where two meaningful ordinary coloured images are used to encrypt a

secret coloured image.

An application of a coloured visual secret sharing scheme can be the share

of special short messages whose symbols are colours and not alphanumerical

characters, for example passwords or combinations to safes. Exactly like all

the other techniques described in previous sections, no calculations of any

form are necessary since the decryption is very simple and is accomplished

by the human visual system.



Chapter 10

Conclusion

From 1994, where the first paper was presented by Shamir and Naor, Visual

Cryptography has never stopped being a field of research with steadily grow-

ing interest. Its basic model is still being enhanced in different ways: many

innovative ideas and extensions are proposed. The special properties that

make Visual Cryptography an interesting field of study are its perfect safety,

effectiveness, and simplicity. These properties are fulfilled because its con-

structions are based on special mathematical models. As digital technology

becomes more and more part of our lives, Visual Cryptography may play a

significant role in the future.
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Notation List

S = (C0, C1) A visual secret sharing scheme consisting of two collections of

matrices, C0 and C1

C0: A collection of matrices each one of which represent the shares of a

white pixel

C1: A collection of matrices each one of which represent the shares of a

black pixel

A0 A matrix from which collection C0 is constructed via permutation

of its columns

A1 A matrix from which collection C1 is constructed via permutation

of its columns

b The blocklength of the scheme, i.e., the number of subpixels a pixel

is divided

w(~υ) The Hamming weight, i.e., the number of non-zero coordinates of a

vector ~υ

z(~υ) The number of zero coordinates of a vector ~υ

The minimum number of white subpixels in a white pixel.

h Alternatively, the minimum number of zeros required in the

blocklength of a matrix to represent a white pixel
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The maximum number of white subpixels in a black pixel.

l Alternatively,the maximum number of zeros allowed in the

blocklength of a matrix to represent a black pixel

a The relative difference between a black and a white pixel.

Defined in [2] as a = (h− l)/b. Must be as large as possible

r The cardinality of C0 and C1 (r = |C0| = |C1|)

GF (k) The Galois Field of order k, where k is a prime or a prime

power

A vector space over the Galois Field GF (q), i.e., the set of all

V (k, q) possible k-dimensional vectors over GF (q). As a result,

|V (k, q)| = qk

PG(k, q) A projective space over GF (q) which consists of all the non-

zero subspaces of V (k + 1, q) with respect to inclusion

r(k, q) The maximum n for which an n-arc exists in V (k, q)

s(k, q) The maximum n for which a coinciding n-arc

of functionals exists in V (k, q)
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