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Chapter 1

Introduction

1.1 The Basic Model

Visual Cryptography is an encryption technique based on the secret sharing
problem. In this case, visual information is shared, i.e., the message to be
encrypted can be a black and white image, grey scale or a coloured one,
printed text, etc. The encryption of the secret is done in such a way, that
its decryption is very simple since there is no need for any mathematical
calculations: it is done automatically by the human eye. What is more, the
secret is completely safe, since it cannot be revealed by any unauthorized
opponent, even one with infinite computational power.

B. Arazi, I. Dinstein and O. Kafri, in [1] were the first that mentioned
the potentiality of a cipher algorithm which takes advantage of the visual
human ability.

The first concrete definition of £ out of n visual secret sharing schemes was
stated in [2] by Moni Naor and Adi Shamir along with specific applications

and extensions of the initial model.



Two more constructions and properties of k out of n visual secret sharing
schemes, such as bounds on their parameters, are presented in[3] by Eric R.
Verheul and Henk C. A. Van Tilborg. Additionally, an introduction to the
notion of coloured visual secret sharing schemes is introduced and a general
construction is given.

The definitions given and all the constructions and properties mentioned
in [2] and [3] will be described in detail in the following Sections.

The basic model consists of two images of the same size that are composed
of random looking black and white small squares. One can be considered as
the ciphertext and the other as the key. When the key-image is placed on
top of the ciphertext image, a secret message or picture is revealed. However,
by inspecting each of the initial images separately, even an adversary with
infinite computational resources cannot recover the encrypted message or
any part of it. Both the ciphertext image and the key image are called
transparencies. The reason is that each encrypted image must be printed on
a transparent piece of paper for the decryption to succeed. Figure 1.1 from

[22] depicts an example of the above-described model.

Original Share 1 Share 2 Share 1+2

Figure 1.1: An example of a visual secret sharing scheme

One could say that it is a visual one-time pad scheme since each cypher-
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text image can be decrypted only by a different key-image. What is more, its
use is very simple since no mathematical calculations or cryptography skills

are needed to disclose the secret message.

1.2 Visual Secret Sharing Schemes

Definition 1.2.1: A k out of n visual secret sharing scheme is an extension
of the basic model: instead of 2, n different transparencies are produced.
Any k of them reveal the secret message while fewer than k£ of them pass
absolutely no information about it. As a result, the initial model can be

considered as a 2 out of 2 visual secret sharing scheme.

As already mentioned, the basic model describes the share of a black and
white image. The technique is based on the division of each pixel into b black
and white subpixels which form a square or rectangle. In each transparency,

or else share, each pixel is depicted in a different way.

When £ transparencies are stacked together and the subpixels are aligned,
the visual result for each subpixel is the boolean “or” of the k different
versions of it: if all the k versions are white, then the result is white while
in any other case the result is black. Additionally, the human eye perceives
a pixel as white (respectively black) if there is a sufficient number of white
(respectively black) subpixels. Hence, the contrast between the two colours

must be as large as possible.
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1.3 Mathematical Description of the Model

The mathematical description of a k out of n visual secret sharing scheme
is described as follows: each pixel is divided into b subpixels. Since white
subpixels do not block light, they are denoted by 0 while black subpixels are
denoted by 1.

Each pixel is described by an n x b matrix A as shown in Figure 1.2.
Each row of the matrix represents the different versions of the pixel in the n
corresponding transparencies. Since each pixel is divided into b subpixels, the
matrix A consists of b columns. If the j-th subpixel in the i-th transparency

is white (respectively black), then A[ij] = 0 (respectively Aij] = 1).

+«——— Db subpixels —»
I |
I |

n transparencies (shares)

Figure 1.2: An n x b matrix which represents a visual secret sharing scheme

Definition 1.3.1: The parameter b € N is called the blocklength of the
scheme S and since it can be considered as the pixel expansion, we would
like it to be as small as possible. In addition, b needs to be in the form of

m? (m € N) if we want to preserve the aspect ratio of the original image.

When transparencies i1, i, . . ., 7, from a matrix A are stacked together,

the resulting pixel also consists of b subpixels. Each one of them is the
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outcome of the boolean “or” of the k£ corresponding subpixels in 21, %9, . . ., i

rows, as shown in Figure 1.3:

+— b subpixels —»

k

-
=

ansparencies (shares)

The “or” of k rows

Figure 1.3: The boolean “or” of r transparencies

Let U be the boolean vector of length b that represents the “or” of k
transparencies of a pixel. As already mentioned, whether the human eye
interprets it as black or white depends on the number of black subpixels that
it consists of, namely, of its Hamming weight (the one coordinates of vector
U), denoted w(¥). If z(7) denotes the number of white subpixels, hence, the
zero coordinates of vector ¥, note that b = z(0) + w(7).

From the description above it is obvious that in this technique a white
pixel does not consist of white subpixels only, and the same holds for a black
pixel, too: some white subpixels may also be included. Hence, since a pixel is
not purely white or black, the contrast between them is of great significance.

In [2], a threshold d (1 < d < b) and relative difference a > 0 are used
to distinguish between the colours: a pixel is perceived by the visual system
of the users as black if w(v) > d and as white if w(U) < d — a - b. Since the
relative difference a is a way of expressing contrast, it must be as large as

possible.
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In [3], two non-negative numbers, h and [, are used to make the distinction
between black and white. A pixel is perceived by the human eye as white if
at least h subpixels are white, i.e., z(¥) > h. Similarly, a pixel is interpreted
as black if at most [ of its subpixels are white, i.e., z(J) <.

Two equivalent definitions of a visual secret sharing scheme follow, from

[2] and [3] respectively:

Definition 1.3.2: A k out of n visual secret sharing scheme S = (Cy,Ch)
used to encrypt a black and white picture consists of two collections of n x
b Boolean matrices Cy and C;. Collection Cy corresponds to white colour
whereas collection C; to black. The matrices that are contained in each
collection Cy and C; are the different versions of representing a white or a black
pixel respectively. More specifically, the n rows of each matrix correspond
to the n transparencies to be shared and the b elements of each row define
the colour of the corresponding subpixels. The scheme must comply with the

following three conditions:

According to [2]:
1. For any matrix A in the collection Cy, the “or” ¢y of any k out of its n

rows must satisfy

w(ty) <d—a-b (1.1)

2. For any matrix A in the collection C;, the “or” ¥; of any k out of its n
rows must satisfy

w(vy) >d (1.2)

According to [3]:
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1. For any matrix A in Cy collection, the “or” vy of any k out of its n rows

must satisfy

2(Tp) > h (1.3)

2. For any matrix A in C; collection, the “or” ¥; of any k out of its n rows

must satisfy

z(ty) <1 (1.4)

The parameters h and [, where h,l € N, must comply the following
condition: 0 < [ < h < b: the condition [ = 0 may hold, since there is a
possibility that no white subpixel exists in a black pixel. The condition [ < h
must hold since the contrast of the scheme is defined on this difference. Last
but not least, h < b holds because if h = b the security of the scheme would
be compromised.

The third requirement is the same in both papers:
3. The two collections C{ and C] attained by limiting all the n x b matrices of
Co and C; respectively to s < k rows, 11,19, ...,1s, are identical, namely, the

matrices that they contain are the same and appear in the same frequencies.

The first two conditions in [2] and [3] are two sides of the same coin:
Naor and Shamir make the distinction between a white and a black pixel
by counting the black subpixels whereas Verheul and Van Tilborg count the
white ones. What is important about the two first conditions is the contrast
between the stacked transparencies that comes from a white and a black
pixel as well as the loss of contrast. In [2], the contrast is implicitly defined
ash—1= (b—w(th))— (b—w(th)) = b—w(Ty) —b+w(th) = w(th) —w(v) =

d—(d—a-b)=d—d+a-b=a-b, where w(th) (w(v;) respectively) denotes
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the Hamming weight of the "or” ¢ of any k out of n rows of a matrix from

Co collection (C; collection respectively) of the scheme S, i.e.,
contrastsy =h—l=a-b (1.5)

The loss of contrast is defined as

h—1 -b
contrastlossgy = —— = GT =a (1.6)

b

where SN stands for Shamir Naor in equations 1.5 and 1.6.

As stated in [3], these definitions of contrast and loss of contrast are not
really suitable. The following example shows in an intuitive way why: let
us consider two buildings A and B at night. In the first case there are 100
lightened windows in A and 99 in B. In the second case, there is only one
lightened window in A and none in B. In both cases the contrast if measured
using formula (1.5) equals one. However, it is clear that the contrast in the
first case is much less than in the second one. One can also check references
in literature (see [4], p. 272 and [5], p.34). As a result, it is preferable to use
the formulae stated in [3]:

h—1

contrast = — 1.7
VVT =5 (1.7)
is proposed as measure of contrast, and the loss of contrast as
trastl h=t (1.8)
contrastloss =— :
YT b (h+ 1)

where VVT stands for Verheul and Van Tilborg in equations 1.7 and 1.8.
We want contrast to be as large as possible and the loss of contrast as

small as possible.
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According to the last condition the scheme is completely safe: even an
unauthorized opponent with infinite computational power cannot make any
deduction about the colour of a pixel when less than k transparencies are
stacked.

Hence, the first two conditions define the contrast of the scheme and the
third one its security.

The important parameters of a k£ out of n visual secret sharing scheme

are the following:

e the blocklength of the scheme, denoted b.
e the minimum number of white subpixels in a white pixel, denoted h.
e the maximum number of white subpixels in a black pixel, denoted (.

e the number of matrices each collection Cy and C; contain, denoted r.

We summarize these parameters as [b; h, [;7].

1.4 Some Classifications

Definition 1.4.1: Let S = (Co, C1) be a k out of n visual secret sharing
scheme and U denote the “or” of any s < k transparencies from a matrix
either from Cy or C;. If there is a function f such that f(s) = w(¥) for
every matrix, i.e., the Hamming weight of ¥ depends only on the number
of transparencies that are used and not from the collection that the matrix

belongs, then S is called uniform.

As one can see, it is preferable to use schemes of high contrast and small

blocklength (parameter b). As already mentioned, the two parameters that
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define the contrast of a scheme are h and [. Since h and [ are both positive
numbers and A > [, contrast is maximal when [ = 0, i.e. there are no white
h=l _ h=0

subpixels in a black pixel: 375 = 375 = % = 1.

Definition 1.4.2: The schemes of type [b; h,l = 0] are called mazimal con-

trast schemes.

Most of the schemes that are described in the following Sections are con-
structed using the following method: Let Ay and A; be two n x b boolean
matrices. Additionally, let h, [ be two non-negative integers such that h > [.

Then the following conditions must hold:

1. Let Uy denote the “or” of any k out of n rows of Aj.

Then, z(ty) > h must be satisfied.

2. Let ¢; denote the “or” of any k out of n rows of A;.

Then, z(7;) < must be satisfied.

3. Let s < k and iy < iy < ... < iz be any subset of {1,2,...,n}. The
matrices Ay and A; when restricted to rows iq,1o,...,7, contain the

columns, only in a different order. Mathematically, let Ay = [a;;] and

let o:{1,...,n} = {1,...,n}. Then, A; = 0(Ao) = [air;]-

Definition 1.4.3: We call a k out of n scheme S = (Co,Cy) generated by Ay
and A; if the matrices contained in the collections Cy and C; are obtained
by all the permutations of the columns of Aq and A; respectively. Such a

scheme has parameters [b; h, [; b!].
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Definition 1.4.4: Let S = (Cy,Cy1) be a k out of n visual secret sharing
scheme generated by matrices Ag and A;. We limit Ay and A; to any s
rows (s < k), namely, i1 < is < ... <igand j; < jo < ...<jsin {1l,...,n}
respectively. If these two submatrices of Ay and A; contain the same columns,
but in a different order, we call Ay and A; systematic. What is more, the
scheme that is generated by them is called a strong k out of n visual secret

sharing scheme.
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Chapter 2

Visual Secret Sharing Schemes

for fixed k£ and n

2.1 A 2 out of 2 Visual Secret Sharing Scheme

The very first scheme that was presented by Naor and Shamir in [2] is a 2
out of 2 visual secret sharing scheme. Although it can be solved by dividing
a pixel into two subpixels, the aspect ratio of the image will be distorted.
As a result, each pixel is divided into four subpixels to form a 2 x 2 square.
In Figure 2.1 from [2] are depicted the different squares that can be used for
the scheme.

As one can see, there are three different types of transparencies, horizon-
tal, vertical and diagonal, each consisting of two squares which are comple-
mentary. In order to share a white pixel, two identical squares are chosen,
whereas, to share a black one, two complementary squares are used.

The transition from the visual pattern of a pixel (a square consisting of

2 x 2 subpixels) to a row in a matrix is the following, where “ul” denotes the
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horizontal transparencies

vertical trasnparencies

diagonal transparencies

Figure 2.1: The different squares that are used for a 2 out of 2 scheme

upper left subpixel, “ur” the upper right, “/l” the lower left, and “lr” the

lower right subpixel:

ul

ur

11

Ir

~ [ul ur Il lr

As a result, collection Cy consists of the following set of matrices:

1100[(0011

Co =

1100{(0011

Collection C; consists of the following set of matrices:

1100{(0011
0011|1100

1010[(0101
1010{(0101

1010[(0101
0101|1010

0110|1001
0110|1001

0110|1001
1001|1(0110

Any single transparency (corresponding to a single row from an array of

collection Cy or collection C;) consists of two black and two white subpixels

arranged in all possible ways, and looks medium gray. Since the number of

black (white respectively) subpixels is 2 in all the transparencies, the scheme

is uniform.
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As a result, the contrast of the scheme is contrastsy =h—1=2—-0=2

and the relative difference between a black and a white pixel (i.e. the loss of

contrast) is contrastlossgy =a =21 =2 =1
Respectively, contrastyyr = Z—jrﬁ = 3;—8 = % = 1 and contrastlossyyr =
b.?hjil) = 4.?;?0) = %1. The scheme is of type [b;h,l = 0;r] = [4;2,0;6] and

thus is a maximal contrast scheme. So, when the two transparencies are
stacked together, the visual outcome is either medium gray, which in this

case represents white, or completely black, which represents black.

2.2 A 3 out of 3 Visual Secret Sharing Scheme

A 3 out of 3 visual secret sharing scheme can be generated by the 3 x 4

boolean matrices Ay and A; as follows:

Co = {all the matrices obtained by permuting the columns of Ag = [0 1 0 1

C; = {all the matrices obtained by permuting the columnsof A; = |1 0 1 0

As one may notice, the rows of Ay and A; are the six different squares used
in the 2 out of 2 visual scheme described in Section 2.1. More specifically,
each one of them consists of one horizontal, one vertical, and one diagonal
type of transparencies. As for the security of the scheme: Any single row

contains two black and two white subpixels in any order and any two trans-
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parencies consist of one common and two individual black subpixels, in any
order, too. What is more, the “or” of any two rows consists of one white
and three black subpixels. Hence, it is impossible to distinguish between a
matrix from Cy and a matrix from C; when less than three transparencies are
inspected. Additionally, the scheme is uniform. However, if we stack three
transparencies from a matrix in Cy one subpixel will be white and the rest
three will be black, whereas when a matrix from C; is chosen, it is completely
black.

As a result, the contrast of the scheme is contrastey =h—-1=1—-0=1

and the loss of contrast contrastlossgy = =t =

=

b
h—l 1

Respectively, contrastyyr = 375 = 1+_8 = 1 and the loss of contrast

contrastlossyyr = b.?hj:l) = 4%1:?0) = i The scheme is of type [b;h,l =

0;r] = [4;1,0;24] and thus is a maximal contrast scheme. So, when three
transparencies (shares) are stacked together, the result is either 3/4 gray

(which represents white) or completely black (which represents black).

2.3 A 4 out of 4 Visual Secret Sharing Scheme

A 4 out of 4 visual secret sharing scheme can be generated by the permutation

of the columns of the following two 4 x 9 boolean matrices Ay and A;:

011111000 011011010
010110011 010111001
001110101 010110110
000111110 100111010

The visual form of the 3 x 3 squares that represent a single pixel are
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shown in Figure 2.2 from [2]:

aale *1 7]

transparencies of a white pixel

f ). ]

transparencies a black pixel

Figure 2.2: The 3 x 3 squares that represent a single pixel in a 4 out of 4

scheme

As one can see, each square contains 5 black subpixels, any stacked pair of
transparencies contains 7 black ones, and any three of them 8 black subpixels.
However, when four of them are stacked together, if the matrix belongs to Cy
collection there exist one white and 8 black subpixels, whereas if it belongs
to C; all of the subpixels are black. It would be possible to use 8 instead of
9 subpixels, but then the aspect ratio would be distorted.

As a result, the contrast of the scheme is contrastsy =h—-1=1—-0=1

and the loss of contrast contrastlossgy = % = %.
. _ h=l _ 1-0 _ _
Respectively, contrastyyr = A = 130 = 1 and contrastlossyyr =
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b‘?hjfl) = 9%1_4?0) = %. The scheme is of type [b;h,l = 0;7] = [9;1,0;9!] and

thus is a maximal contrast scheme. So, when all four shares are stacked
together, the result is either deep gray (i.e., 8/9 black subpixels), which

represents white, or completely black, which represents black.

2.4 A 2 out of 6 Visual Secret Sharing Scheme

In this Section we describe a 2 out of 6 visual secret sharing scheme. The

scheme is generated by two 6 x 4 boolean matrices, Ay and Aj.

11

Co = {all the matrices obtained by permuting the columns of Ay =

o o o o o O
o o o o o O

C, = {all the matrices obtained by permuting the columns of A; =

In both Ay and Ay, each row consists of two black and two white subpixels
in any order. Hence, no conclusion can be made about the colour of the pixel

and the scheme is secure.
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As a result, the contrast of the scheme is contrastgy =h—-1=2—-1=1

and the loss of contrast contrastlosssy = a = % =

N

h=l — 221 — 1 and contrastlossyyr =

Respectively, contrastyyr = 157 = 5597 = 3

b'zlh_ll) = 4'?2111) = % The scheme is of type [b; h,l;r] = [4;2,1;24]. When
two transparencies are stacked together, the result is either medium gray
(i.e., half subpixels white and half black), which represents white, or (almost)

completely black (at least 3 subpixels back), which represents black (some

cover all four).
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Chapter 3

Visual Secret Sharing Schemes

for fixed k

3.1 A 2 out of n Scheme and its Dual

In this Section a general 2 out of n visual secret sharing scheme is presented

with blocklength b = n using the following collections of n x n matrices:

100 ... O

100 ... O
Co = {all the matrices obtained by permuting the columns of Ay =

100 ... O

100 ... O

010 ... 0
C; = {all the matrices obtained by permuting the columns of A; =

000 ... 1
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As one can see, each row of a matrix in both collections consists of one
black and n — 1 white subpixels. As a result, the scheme complies with the
security condition in Definition 1.3.2. When any two transparencies from
a matrix in Cy are stacked together the “or”-ed vector still consists of one
black and n — 1 white subpixels. However, in C;, there exist two black
and n — 2 white subpixels, which looks relatively darker. By stacking more
transparencies the difference between a black and a white pixel becomes more
obvious. What is more, the scheme is uniform with parameters [b; h, ;7] =

[n;n —1,n —2;nll.

As a result, the contrast of the scheme is contrastsy =h—1=(n—1)—
(n —2) =1 and the loss of contrast contrastlosssy = a =4 = 1.
h—1 (n—1)—(n—2)

_ _ 1 _
" = D2 = 33 and contrastlossyyr =

Respectively, contrastyyr =

bé‘h_ Jfl) = n'(2i_3). However, for large n the contrast of the scheme is nearly

Zero.

By switching 0 and 1 (i.e., by getting the complements of the matrices)
a new 2 out of n visual secret sharing scheme is constructed with maximal

contrast 1. In that case the two collections Cy and C; are:

011 ... 1

011 ... 1
Co = {all the matrices obtained by permuting the columns of Ay = }

011 ... 1
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011 ... 1
101 ... 1
C; = {all the matrices obtained by permuting the columns of A; =

111 ... 0O

As one can see | = 0, so the scheme is a maximal contrast secret sharing
scheme with parameters [b; h, [;r] = [n; 1, 0;n!].

As a result, the contrast of the scheme is contrastsy =h—-1=1—-0=1

and the loss of contrast contrastlosssy = a = % = %
Respectively, contrastyyr = Z—jrﬁ = }jr—g = 1 (maximal contrast scheme)
and contrastloss = At _ 1
VVT = p(h¥l) — n°

3.2 A second 2 out of n Visual Secret Sharing

Scheme

The 2 out of 6 visual secret sharing scheme described in Section 2.4 can be

used as a basis to construct a uniform 2 out of n scheme S = (Cy,C;). We

m

) > n. Next, we choose a
m/2

choose a non-negative integer m such that (

“ground set” (any set will do) of size m and consider all of its subsets of size

m

m/2) > n because in

m/2. As will become obvious later on, m must satisfy (
this way we ensure that there exist at least n different subsets, i.e., at least n
different transparencies to be used to construct the scheme. Matrix A; then
is constructed as follows: the ith row in A; corresponds to the ith subset,

ie., Aili,j] = 1 iff the jth element is in the ith subset. Aj is the n x m

matrix where each row is 1™/20"/2. Collections Cy and C; are obtained from
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all column permutations of Ag and A; respectively.

The blocklength of the scheme is m and any single transparency contains
an arbitrary collection of m/2 black and m/2 white subpixels. Hence, the
scheme is uniform and perfectly secure. Any two stacked transparencies from
Co contain m /2 black subpixels whereas any two from C, contain at least 3 +1

black subpixels, since the corresponding subsets cannot be the same. The

m

parameters of the scheme are [b; h,[;7] = [m; 3, 5 — 1;m!].

As a result, the contrast of the scheme is contrastsy = h — 1 = w(v;) —

w(vy) = F 41— = 1 and the loss of contrast contrastlosssy = a = % =
1
o
Respectively, contrastyyr = Z—;é = mil contrastlossyyr = % =
1
m(m—1)"

Example 3.2.1: An example follows for n = 5:

We choose m = 4, because (m%) = (3) = 6 > 5. In this case the ground set

will be J = {ji1, j2, js, ja} and all the subsets of size % = 2 are:
S1=1j, g2}, Se={j,ds}, Sz ={j1,j},

S4 - {j?)j?)}a 55 = {j27j4}’ 56 = {j37.j4}7

Matrix Ag is the same as in the 2 out of 6 scheme described above. We
choose S, 55,53,54 and Sg subsets for the n = 5 transparencies and we

construct matrix A;. As a result, matrices Ay and A; are the following:
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1100 (110 0]
1100 1010
Ag=11100] A=|1001
1100 0110
1100 0011

As a result, the contrast of this scheme is contrastsy = h—1 =1 and the

loss of contrast contrastlosssy = a = 1=t = 1 Respectively, contrastyyr =
s b 2 P Y 174%

h=l _ 1
h+l — 3

eters of the scheme are [b; h, ;7] = [4;2,1;24].

= L The param-

and the loss of contrast contrastlossyvr = ﬁ i3

3.3 A 3 out of n Visual Secret Sharing Scheme

The 3 out of 3 visual secret sharing scheme described in Section 2.2 can
be used as a basis to construct a uniform 3 out of n scheme S = (Cy,Cy).
Consider an n x (n—2) matrix B whose elements are all ones (i.e., corresponds
to all black subpixels) and the n x n identity matrix I whose elements are
all zeros except for the diagonal whose values are ones. We denote BI the
n x (2n — 2) matrix which is the concatenation of the matrices B and I.
Additionally, let ¢(BI) be the boolean complement of BI. Then, we define

Co = {all the matrices obtained by permuting the columns of Ay = ¢(BI)}

C, = {all the matrices obtained by permuting the columns of A; = BI}

Each transparency from any matrix consists of n — 1 black and n — 1
white subpixels. What is more, any two of them stacked on top of each other
have two individual and n — 2 common black subpixels. Hence, the scheme

complies with the security condition in Definition 1.2.1.
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The “or” vector of any three transparencies from any matrix in Cy contains
n black subpixels, whereas in C; collection contains n+1 black subpixels. As a
result, the scheme is a uniform visual secret sharing scheme with parameters

[b; h,l;r] = [2n — 2;m — 2,n — 3;nl].

As a result, the contrast of the scheme is contrastsy = h — 1 = w(v;) —

h-l
b

w(Uy) = n+1—n =1 and the loss of contrast is contrastlosssy = a =

1
2n—2"

h—l __ 1

_ 1 _
" = ) = TS and contrastlossyyr =

Respectively, contrastyyr =

?‘l 1 For large n the contrast of the scheme is nearly zero.

b(htl) — (2n—2)(2n—5)"

Example 3.3.1: An example for n = 5 follows:

The n x (n—2) = 5 x 3 dimensional matrix B and the n x n = 5 x 5 identity

matrix I are:

111 1000

0

111 01000
B=1111 I'=100100
111 00010

111 00001

The concatenated matrix BI then, and its Boolean complement ¢(BI) will

be:

11110000 00001111
11101000 00010111
BI={11100100| ¢BIH)={00011011

11100010 00011101

11100001 00011110
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The blocklength of the scheme is b = 2n —2 = 2.5 —2 = 8. The contrast

of the scheme is contrastys = h — 1 = 3 — 2 = 1 and the loss of contrast

— g —="ht _ 1 _ 1 _ 1
contrastlosssy = a = "5 = 5o = 535 = 7
Respectively, contrast = hlb — 322 — 1 and contrastloss =
) vvT ] 573 5 vvT

?‘l = %_2 = %. The parameters of the scheme are [b; h, [; 7] = [8; 3, 2; 5!].
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Chapter 4

k out of k£ Visual Secret Sharing

Schemes

4.1 A k out of £ scheme - Construction 1

This k out of k visual secret sharing scheme S = (Cy,C;) was presented in
[2] by Naor, Shamir: In order to construct the scheme we will use vectors
of length k over the Galois field GF'(2), namely the Vector Space V' (k,2).
In particular, two sets of vectors are needed, denoted JY,J3, ..., JY and
Ji, 3, ... JE Every k—1 vectors of the J7, J3, ..., JP are linearly indepen-
dent whereas all k of them are not. An example of such a set is constructed
as follows: J? = 07110 for 1 <i < k and J? = 1¥710. On the other hand,
the vectors Ji,J3,...,J} are all linearly independent over GF(2). As an
example, we could use the following vectors: J! = 0°-110*% for 1 <i < k.
To construct matrix Ay the following steps must be taken: we construct

a k x k matrix By whose rows are the k vectors J?, J9, ... J¢. Additionally,



36

let F be a k x 2% matrix whose columns consist of all the 2* vectors in
V(k,2). Then, the multiplication By - F results in a new k x 2¥ boolean
matrix Ag. Following the same procedure we construct matrix Ay, but vectors

Ji,Jy, ..., J} are used as the rows of matrix Bj respectively.

Lemma 4.1.1: a. If By, t € {0,1} consists of k—1 linearly independent vec-
tors, then Ay, when limited to k —1 rows contains exactly 2 all-zero columns.
b. If the k vectors that By consists of are linearly independent, then each

vector in V (k,2) occurs exactly once as a column of By - F' = Aj.

Proof. a. Let us denote null(B;) the dimension of the null-space of B, and
rank(By) the dimension of B;. Then, it holds that rank(B;) + null(B;) = k.
But rank(B;) = k — 1, hence, null(B;) = k — (k— 1) = 1. As a result,
matrix A; that is constructed by B; and all the vectors in V' (k, 2) will contain
2k=(k=1) = 2 all-zero columns.

b. Let us suppose that this is not the case, i.e., there exist r; and 75 €
V(k,2) that appear as columns in F', where 7] # 75, such that By} = 73
(equation I) and Byry = 73 (equation II), 75 € V(k,2). But B consists of
linearly independent vectors, hence, it is invertible, i.e., B; ' exists. Then,
from equations I and II it follows that ¥, = B;'73 and 7 = B; ', ie.,
1 = T, which is a contradiction to the initial hypothesis. Hence, all the
columns of By - ' = A; consist of 2¥ different vectors, i.e., each vector in

V(k,2) occurs exactly once as a column in A;. O

Theorem 4.1.2: The scheme described above is a k out of k visual secret

sharing scheme with b = 2%, a = 1/2% and r = 2*. Its parameters are
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[b; h, l;r] = [2F;2,1; 2%1)].

Proof. Both Ay and A; are k x 2* matrices, hence, the blocklength of the
scheme is b = 2F.

About the contrast of the scheme: As one can see, matrix Ay contains
two all-zero columns: one corresponds to the all-zero vector and the other
one to vector 071 in F, hence, h = 2. However, from Lemma 4.1.1.b we get
that matrix A; contains only one all-zero column, the one that corresponds
to the all-zero vector in F', since all the k vectors are linearly independent,
hence, [ = 1. The same holds for all the matrices that are obtained from the
column permutations of Ay and A; respectively.

Hence, the contrast of the scheme is contrastsqy =h—1=2—1=1 and

2 —1)/2k = 1/2*,

—~

contrastlosssy =a= (h—1)/b=

Respectively, contrastyyr = Z—;é = ﬁ = % and contrastlossyyr =

h—l 1

b-(htl) — 32F°

In order to show security, let us consider the following;:

Note that the vectors corresponding to any k£ — 1 rows in both By and B,
are linearly independent over GF'(2). By Lemma 4.1.1.a we get that when
Ap and A; are limited to any k —1 rows they both have two all-zero columns.
Since this is the case for any k — 1 rows, it will hold for less than & — 1 rows,
too. As a result, there cannot be a distinction between Ay and A; when
they are limited to less than k£ rows. The same will hold for all the column
permutations of them and as a result, the scheme complies with the security
condition of Definition 1.3.2.

Since the blocklength of the scheme is 2%, it follows that the cardinality
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of both collections Cy and C; is r = 2*!. O

Example 4.1.3: Consider k£ = 4, so the two lists of vectors will be:

JY = 1000, J9 = 0100, J9 = 0010, and JY = 1110

Ji = 1000, J3 = 0100, J3 = 0010, and J} = 0001

As one can see, any k — 1 vectors of list J? are linearly independent while all
k are not. Additionally, all k vectors of list J! are linearly independent.
The vector space V (4,2) consists of the following 2 = 21 = 16 vectors:
0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100,
1101, 1110, and 1111.

To create Ay we index its columns by the 16 vectors of V' (4,2) and calculate
the inner product of each one of them with the vectors consisting list J?.

The result is the following:

000

]
[aw]
[aw]
(@]
(@]
—_
—_
—_
—
—_
—
—
—_

000

]
—_
—
—_
—_

o O
o O
—_
—_
[en}
[an}
—_
—_

00110011

00111100110000T11

Similarly for A;:

000

(@]
(@)
(@)
(@)
(@)
—_
—_
—_
—
—
—_
—_
—_

000

o
—_
—_
—_
—_

0
A1:
0

0
001100110
010101010101 1

(@]
—_
o

In this scheme the contrast is contrastgy = h — 1 =2 —1 = 1 and the

1
2F

8-

loss of contrast contrastlosssy = a =



A k out of £ scheme - Construction II 39

Accordingly, contrastyyr = Z—jrﬁ = F11 = % and contrastlossyyr =
% = ﬁ = 3.125. The parameters of the scheme are [b; h, ;7] = [16;2, 1; 16!].

4.2 A k out of £ scheme - Construction 11

This k out of k visual secret sharing scheme S = (Cy,C;) generated by ma-
trices Ag and A; was also presented in [2] by Naor, Shamir: In order to
construct it a ground set of k elements W = {ej, e, ..., e} will be used as a
basis. Let us denote {my, T, ..., mor—1} the list of all the 2¥~! subsets of W
of even cardinality and {0y, 09, ..., 091} the list of all the subsets of W of
odd cardinality.

Both Ay and A; will be k x 2¥~! dimensional matrices. The elements of
Ay will be defined by the formula: Ag[ij] = 1 iff e; € 7;, where 1 < i < k
and 1 < j < 21 In exactly the same way, the elements of A; are defined
by: Aifij]=1iffe; €04, 1 <i<k,and 1 <j <2k 1

By permuting the columns of matrices Ay and A; in all possible ways we

get the collections Cy and C; of the scheme respectively.

Theorem 4.2.1: The scheme described above is a k out of k visual secret
sharing scheme with b =21 a = 1/281 and r = 281 Its parameters are

[b; h, ;7] = [2871;1,0; 25" Y. What is more, it is a mazimal contrast scheme.

Proof. For each set W of k elements there exist 2% different subsets, 2+~1
of even and 27! of odd cardinality. Hence, both Ay and A; consist of 2F~!

columns, i.e., the blocklength of the scheme is b = 2871,
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About the contrast of the scheme: There exists exactly one empty subset
of W and it is contained in the list {my, 7o, ..., mor-1} of the even cardinality
subsets. Hence, in matrix Ay there exists an all-zero column, whereas in A;
there is none. As a result, h =1 and [ = 0.

About the security of the scheme: The row of both Ay and A; is defined
by the element while the column by the subset. Since each element is in
exactly half of the subsets, the number of zeros and ones is the same in each
row, in both Ay and A;. Hence, a single row cannot reveal any secret about
the colour of the pixel.

Additionally, when restricted to any & — 1 rows, matrix Ay has one all-
zero column, and A; has one all-zero column, too. The latter corresponds to
a subset that has only one element, the one which does not index any of the
k — 1 chosen rows, but it indexes the k-th.Using the same technique for less
than k£ — 1 rows, the same result follows.

As a result, the contrast of the scheme is contrastsy =h—-1=1—-0=1
and the loss of contrast contrastsy = a = 2=t = 2;%1

— = 1 and contrastlossyyr =

Accordingly, contrastyyr = Z—jrﬁ = L__g

b.?hjfl) = 2,@,}1&0) = 2,},1. Since | = 0, the scheme is of type [b;h,l =

0] = [2¥71;1,0] and thus is a maximal contrast scheme. So, when two shares
are stacked together, the result is either deep gray (which represents white)

or completely black (which represents black). ]

Example 4.2.2: Let k = 4 and the ground set W be: W = {ey, ey, €3, €4}.

Then the subsets of even cardinality are the 28! = 241 = 23 = 8 following:

®7 {61762}7 {61763}7 {61764}7 {62763}7 {62764}? {63764}7 {61762763764}
Accordingly, the subsets of odd cardinality are the 2¥=! = 2471 = 23 = §
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following;:

fer}, {ea}, {es}, {ea}, {e1, €2, €3}, {e1, €2, ea}, {e1, €5, €4}, {€2, €5, €4}

To construct Ay we index the rows of the matrix by the elements of the
ground set W, i.e. ey, eq,e3 and e4 and the columns by the subsets of even

cardinality of W. Then we have:

01110001
01001101
00101011

00010111

The construction of A; is similar with the exception that the columns of

the matrix are indexed by the odd cardinality subsets of W. Thus, we have:

10001110

01001101
Ay

00101011

00010111

As a result, the contrast of this scheme is contrastsqy =h—1=1-0=1

and the loss of contrast contrastlossgy = a = % = 2k—1_1 = 2% = %.
. _ h—l _ __h—l
Accordingly, contrastyyr = = 1 and contrastlossyyr = SO

2% = %. The parameters of the scheme are [b; h, ;7] = [8;1,0;8l].

4.3 An upper bound on a for k£ out of k£ schemes

Theorem 4.3.1: Let S = (Co,C1) be any k out of k scheme visual secret

sharing scheme. Then a < 2k1,1 and b > 2F-1,
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Proof. In order to prove that a < 2;@—171 the following combinatorial fact will be
used (see [6], [7]). Let us consider a ground set G and two lists of subsets of it,
denoted X1, X, ..., Xy and Y7, Y5, ..., Yy If for every subset U C {1,...,k}
of size less than k (i.e. < k — 1) it holds that | Niey Xi| = | Nier Yil, then
| U, X;| < 52 - |G| + | UL, Yi|. Namely, if all the intersections of less than
k of the sets X; and Y;, 1 < i < k, contain the same number of elements,
then the difference in their union cannot be too large.

Let us consider a k out of k visual secret sharing scheme S = (Cy, C;). The
ground set that will be used contains b-r elements which are indexed by (z,y),
where 1 < oz < rand 1 <y < b. The two lists of subsets X, Xs,..., Xy
and Y7, Y5, ..., Y} are constructed in the following way: element (x,y) of G
is in X; iff A%[i,y] = 1. Symmetrically, it is in Y; iff AL[i,y] = 1. The idea is
that, for each row i we count all the ones in all matrices of collection Cy (C;
respectively) and add the corresponding elements in X; (Y; respectively).

The security condition of all visual secret sharing schemes implies that
for any U C {1,...,k} of size s < k it holds that | N;ep X;| = | Nicr Yi| since
there can be no distinction between matrices from Cy and C; when limited
to less than k rows. Then from the combinatorial fact described in the first
paragraph we get that

| UL, Y| < 21%1 b+ U, X

Namely, the difference of the Hamming weight of the “or” of any k rows
of a matrix in Cy and one in C; is at most Zk—l,l - b, which implies that w(d;) —

b=l _ w(v1)—

w(ty) < e -b. Since a = &4 = %, from the previous formula if we

divide by b we get: a < .
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The contrast condition of the scheme implies that the difference between

the Hamming weight of the ”"or” of the k rows of a matrix in Cy and the

)

Hamming weight of the "or” of the k rows of a matrix in C; must be at least

— - b, namely,

1. Hence, from the same formula we conclude that: 1 < 5

b > 2k-1 ]
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Chapter 5

General £ out of n Visual

Secret Sharing Schemes

5.1 A k out of n Scheme - Construction I

The following k£ out of n scheme was presented in [2] by Naor, Shamir. In
particular, a given k out of k£ scheme is used in the construction of a k£ out
of n scheme:

We consider a uniform k out of k scheme S = (Cy,C;) with parameters b,
a, and r. Each collection Cy and C; consists of r k x b matrices T¢, T4, ..., T4,
d € {0,1}.

We recall that a scheme is uniform when the number of zeros of the “or”
of any ¢ < k rows, in any matrix 7%, 1 <i < r and d € {0,1} depends only
on the number ¢q. Consequently, a function f(q) can be used to describe it for
both collections and as a result there is no way to decide if it is about a white

or a black pixel. All the visual secret sharing schemes that are described so
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far have this property.
In order to transform a k& out of k scheme to a k& out of n scheme a

collection H of ¢ (hash) functions must be used with the following properties:
1. For every h € H it holds: h: {1,...,n} — {1,... k}

2. £ Y = [{h(i1), h(i2), ..., h(ix)}], ¢ € {1,...,n}, is a random variable
and f, is the probability that ProblY = ¢|, then f3, is the same for

every h € H.

Let us name S’ = (Cy,Cy) the new k out of n scheme.

Each collection C} and C; consists of ¢ different n x b - ¢ matrices. Each
matrix is indexed by a vector ¢, where t = (t1,ts,...,t), 1 <t; <r. The ele-
ments of the matrices are calculated by the formula A{[i, (4, h)] = T} [h(i), 5],
de{0,1},0<i<n—-1,1<j<b and 1 < h < (. Additionally, ¢, de-
notes the hA-th entry in vector ¢, and T, t‘i [h(7), j] the corresponding element
of matrix T} in Cy collection. As one can see, the blocklength of the scheme

isb-/.

Lemma 5.1.1: By using a k out of k wvisual secret sharing scheme with
parameters b, a, and r, one can construct a k out of n visual secret sharing
scheme S’ with parameters b =b-{, a’ = a- Py, and v’ = rt, where ¢ denotes

the number of the hash functions in the H family.

Proof. From the construction above, it is obvious that each matrix A¢ has

blocksize ¢ times the blocksize of the matrices T, 1 < i < r, namely, b - /.
We have already mentioned that 8, denotes the probability that Prob]Y =

q], where Y = |{h(i1), h(is),...,h(ir)}| is a random variable, i € {1,... ,n}.
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By definition, 3, is the same for every h € H. From the security of S it is
ensured that if ¢ < k then the number of black subpixels (i.e., the Hamming
weight of the “or”-ed ¢ rows) is equal to f(g) for all matrices in both Cy and
C;y collections. Hence, only when A is limited to any k values is 1 — 1, i.e.,
yields k different values, there is a distinction between a white and a black

pixel. If we denote by [; the probability that this event takes place, then,

Koo (Kb _ e
Pr=3x 2 ki2rk  N2rk

Considering all the above mentioned, the Hamming weight of an ”or” of

k rows of a white pixel (a matrix from C{ collection) is at most

w(©h) < (B - (d — ab) + ZB @),

and the weight of a black pixel (a matrix from Cj collection) is at least

w(ii) > (- d+ 5 5, )

The above mentioned relation holds for w(vy) because when k out of n
shares are chosen, one of the following will happen: (a) they will be mapped
to k different values, with probability (i, and then, there will be at most
b — ad black subpixels in a white pixel. In this case it will be clear that it
is a white pixel. (b) they will be mapped to ¢ < k values, with probability
B4, and as stated in the definition of uniformity, the number of the black
subpixels in this case is described by a function f(q), i.e., it depends only
on the number of rows ¢. Hence, there are ¢ different events that may take
place with 3, probability each. In such a case there is no way to tell if the

shares describe a white or a black pixel.

The same applies to w(v7): when k out of n shares are chosen, one of the
following will happen: (a) they will be mapped to k different values, with

probability (g, and as a result there will be at least d black subpixels in a



48

black pixel. It will be clear that it is a black pixel. (b) they will be mapped
to ¢ < k values, with probability /,, and again the number of the black
subpixels is described by a function f(g). Similarly, there are ¢ different
events that may take place with [, probability each. It is again impossible
to decide the colour of the pixel.
If we do the calculations, w(v}) — w(vy) > £+ Bk - a - b.

Then, the contrast of the scheme is contrastsy = h—1 = w(0}) —w(vy) =

¢ B - a-band the relative difference (i.e., loss of contrast of the scheme) is

contrastlossgy = a' = wl(U);wow) = Z'B;'Za'b =a- f.

As for the security of the scheme, as mentioned in the beginning of the
Proof, each matrix A¢ consists of ¢ matrices from the corresponding Cy col-
lection. Hence, the security of the k out of £ scheme implies the security of

the new k out of n scheme. O]

5.1.1 Construction of H

In order to create this family of hash functions the following must be taken
under consideration:

Definition 5.1.1.1: A family H of hash functions H = {h : U — [m]} is k-
wise independent if for every h € H, and for all distinct values x1, xo, -+ , 2} €
U and any k (not necessarily distinct) values yq,vs, ..., yx € [m], it holds:

Alternatively we could say:

1. For any random h € H and for a fixed z € U, any value in [m] is

equally likely to represent h(x), namely, h(x) is uniformly distributed
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in [m].

2. If h is chosen randomly from H, then for any fixed distinct values
x1,...,Tx € U the outcomes h(zy),...,h(zy) € [m| are independent
random variables, i.e., they have the same probability distribution

which cannot be influenced by the occurrence of the other values.

Such constructions are described in [8], [9], and [10].

For a general k out of n scheme, we want to construct H in such a way that
for every h € H if we choose k different values x1, s, ...,z from {1,... n}
then h(xq),h(xs3),...,h(xy) are completely independent and as a result the
probability 3, is the same for all of them.

A simple construction of such a family H follows:

We take k£ to be a prime and find a number p such that k¥ > n. Then,
there exist (kP)* different polynomials q(x) of degree k — 1 over GF(kP). We
take for every h € H, h(z) = w(q(x)) and construct the H collection, where
w: GF(kP) — GF (k). Since |H| = (kP)* and kP > n, |H| > n*.

Combining Lemma 5.1.1 with the above described construction the fol-

lowing Theorem holds:

Theorem 5.1.1.2: A wvisual secret sharing scheme with parameters b/ =
nk 2810 = 2(2e) %/ 2rk, and v’ = (281" can be constructed for any

n and any k.

Proof. This k out of n construction is based on a k out of k£ visual secret

sharing scheme. Let us assume that the latter is the second k out of k scheme

described earlier in Section 4.2, with b = 257! a = 25, and r = 2F11.
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From Lemma 5.1.1 we get that &’ = b-¢, ' = a - S, and 7 = r* are the

parameters for the new k out of n scheme. Since ¢ = n* and f;, = %, we

get b = ok—1 .nk7 a = le_l . e;:k _ 2-(22@7)r:7 and r — <2k—1!)nk‘ =

In the case of a 2 out of n visual scheme, a construction of a pairwise
independent family of hash functions which is presented in [9] can be used.
In this case, the construction is described as follows: Let us assume that we
want to create a family of hash functions H such that for each h € H it holds
that: h: A— B, where A={0,...,n—1}, B={0,...,k— 1}, and n > k.
We choose the smallest prime p such that p > n and the family of hash
functions is constructed using the formula h(z) = ((cx + w) mod p) mod k,

where ¢, w € Z, and ¢ # 0. Hence, |[H| = p(p — 1) ~ n?.

Example 5.1.1.2: An example will enlighten the details of the construction
of the scheme:

We will create a 2 out of 3 visual secret sharing scheme starting from a 2
out of 2 scheme, whose collections Cy and C; are created by the permutations

of the following two matrices:

0011 0011
TQZ T1:
0011 1100

The above 2 out of 2 visual secret sharing scheme is uniform. Fach
collection, Cy and Cy, consists of r = 4! = 24 matrices, so, the parameters of
the scheme are [b; h, ;7] = [4;2,0; 24].

Since k = 2, in order to create H we will use the construction from [9],
which was described above. Then, collection H will consist of the following

6 hash functions, i.e., £ = 6:
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hi(n) = (n mod 3) mod 2
ha(n) = ((n + 1) mod 3) mod 2
hs(n) = ((n + 2) mod 3) mod 2
ha(n) = (2n mod 3) mod 2
hs(n) = ((2n + 1) mod 3) mod 2
he(n) = ((2n +2) mod 3) mod 2

As one can see, all of them fulfill the requirements stated before:

e For all of them we have: h; : {1..3} — {1..2} and

o If Y = |{h(i1), h(iz), h(i3)}], ¢ € {1,...,3}, is a random variable and
B, is the probability that ProblY = ¢, then 3, is the same for every
heH.

The vectors that will index the matrices of the collections C) and Cj are
[1,1,1,1,1,1] up to [24, 24,24, 24,24, 24], i.e., each collection consists of 24°
matrices.

In the new 2 out of 3 scheme each matrix A¢ has 3 rows, since n = 3,

[t1,t2,t3]
and ¢-b=06-4 = 24 columns.
Its elements are calculated by the formula A{[i, (4, h)] = T [h(i), j]. Ap-

plying this formula, A([)l,l,l,l,l,l] and A[ll,l,l,l,l,l] matrices of the new scheme

will be the following:

(00 0

o O
o O
o O
o O
o O
o O
o O
o O
o O
— =
— =
— =
—_ =
—_ =
—_ =
—_ =
—_ =
—_ =
—_ =
—_ =
— =

A?1,1,1,1,1,1] 000
1000

o
o
o
o
o
o
o
o
o
—_
—_
—_
—_
—_
—_
—_
—_
—_
—_
—_
—

010

o O
(N
= O
= O
N
o O
o O
-
=
o =
=
e
— =
I )
=
=
= o
e
— =
— o
o =

A[11111171]: 100

It Rk it ]

0011000011001 10011110011
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Each single line either from matrix A?l,l,l,l,l,l} or matrix A[ll,l,l,l,l,l} con-
sists of 12 zeros and 12 ones. Hence, there there is no way to decide if the
matrix belongs to either ) or C; judging from only one transparency. The
boolean “or” of any 2 rows of matrix A([)l,l,l,l,l,l] consist of 4 zeros while in
Al 1111 consist of 12 zeros.

As a result, the contrast of the scheme is contrastsy = h—1=12—4 =28

_ . h=l _ 8 _ 1
and the loss of contrast contrastlosssy =a = "= = 5; = 3
Accordingly, contrastyyr = Z—;ﬁ = % = % and contrastlossyyr =

h—l 8 __ 1

b(h+l) — 1624 — 48"

Collections C} and C; consist of all the 245 matrices.

As a result, the parameters of the new scheme S’ are: [V;h/,l';r'] =

[24;12, 4; 24°].

5.2 A k out of n Scheme - Construction 11

5.2.1 Relaxing the conditions on H

As the size of collection H is very big, it is about n* as mentioned in the
previous section, it would be preferable to reduce it since it affects the block-
length and the size of the collections Cy and C; of the scheme. In order to
accomplish this, we could modify condition 2 from Section 5.1 of H as fol-
lows: the probability b, that k different values from {1,...,n} to {1,... &k}
are mapped to ¢ different values is the same for a randomly chosen function
h € H to within +e. Namely,
Vq 3B, such that Va1, 240, . .. Ty, where iy, 9, ...,7, € {1,...,n},

| Prob[|[{h(z1),...,h(zk)}| = q] — B4 <€, for a randomly chosen h € H.
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In such a case it is possible to construct H in such a way that its size can
be significantly smaller. If we apply such a family in the construction of the
previous section we observe the following:

The Hamming weight of an "or” of k£ rows of a white pixel is at most:

W) < (B ) (d = ab) + 3 (6, + ) ()
and the weight of a black pixel is ;; least:

(i) = (=) -d+ 2 (=) - £1a)

As a result, the difference between a black and a white pixel is therefore at

least:
w(vy) —w(vy) = E(Bkab+eab—26d—26]§ (q)) > E(ﬁkab—Zed—Qelg (q))
q=1 q=1

But f(q) < d — ab, hence, kf f(q) < (k—1)(d— ab), and as a result,
w(vy) —w(vy) > L(Brab —qgelkd — 2¢b)
Hence, it follows that the relative difference of the new scheme will be

a' > Bra — 2¢(1 + kd/b).

Since fewer than k transparencies never result in k different values, the

security of the scheme is ensured.

5.2.2 Construction of relaxed H:

In order to reduce the size of H we will use the concept of small-bias sample
spaces. A small-bias sample space (also defined as d-biased sample space, -
biased generator, or small-bias probability space) is a probability distribution
that is very similar to the uniform distribution, to within a factor § ( in the
bibliography it can be found as e-biased but since € is used in another way

-see previous section- it is denoted by §). One can consult [8], [11], and [12]
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for constructions of such sample spaces.

Let xy,...,x, be n random variables that take values from {0, 1} and let

D denote their joint probability distribution.

Definition 5.2.2.2: We define

Probo | (S =0) mod 2| - Proby | (S =1) mod 2 ‘

i€s ies
to be the bias of a subset S C {1,...,n} for some distribution D. Then,

biasp(S) =

the above mentioned variables zq,...,x, are d-biased if for every subset
S C{1,...,n} it holds that biasp(S) < 0. What is more, we define them as

k-wise 0-biased if for every subset S such that |S| < k, biasp(S) < 6.

We will construct a collection H of smaller size, namely, a collection
that grows logarithmically with the number of tranparencies n, according to
[11]: we choose k to be a power of 2 and we will use a klogk-wise J-bias
probability space R on nlog k random variables. Each function h corresponds
to an element of R. Then, as stated in [11], the size of such a probability
space is 200F18k) Jogn, ie., |H| = 2018k Jogn,

We now define the collection H: The nlogk random variables of the
sample space are denoted by V;;, 1 <7 <n, 1 < j <logk, and take values
in {0,1}. The choice of the function h determines the values of all random
variables Y;;. Each function h is defined as h(x) = Y;1Yao ... Yoi0gk. Since

each Y,; is equal to 0 or 1, for a fixed @, Y;1Ys2 ... Yz10gk can be viewed as a

number between 0 and k£ — 1. Namely, each h maps values from {1,...,n} to
{0,...,k —1}. This is the case because z takes values from {1,...,n} and
Yi1Yao ... Yalogk is treated as a number which takes values from {0, ..., k—1}.

As it was stated previously in Definition 5.1.1.1, a family H of hash
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functions H = {h : U — [m]} is k-wise independent if for every h € H, and
for all distinct xq, 29, -+, 25 € U and any k (not necessarily distinct) values
Y1, Y2, - - - Yg € [m], it holds:

Prih(z) =y & h(z) =y & ... & h(xg) = yp] = m™".

Additionally, it can be shown:
Vq 3, such that Va1, s, . .. Ty, where iy, i9,...,4 € {1,...,n},

Prob[|[{h(z1),...,h(zx)}| = q] = B, for a randomly chosen h € H.

In our case where m = k, according to [2] it can be proved that for a
k-wise d-bias family of hash functions and for all zy,zy,..., 2 € {1,...,n}
and for all y1,y2,...,yx € {0,...,k — 1} we have:

e =0 k¥ < Problh(z1) =y, h(z2) = ya, ... hzk) = yu] < % + 6 - K~

We will prove that condition 2 stated in Section 5.2.1 holds, i.e.:
The probability f, that k different values from {1,...,n} to {1,...,k}
are mapped to ¢ different values is the same for a randomly chosen function

h € H to within ze. Namely,

Proposition 5.2.2.6: Vq 33, such that Va;1, x40, . .. x4, Where 4,49, ... ,7; €
{1,...,n}, |Prob[|{h(z1),...,h(zr)}| = q] — B,4] < ¢, for a randomly chosen
heH.

Proof. Let us denote by h a k-wise independent hash function. Then as
already mentioned, for every yi,...,yx € {1,...,k} it holds:
Prh(z1) =y1, ..., h(ze) = yi] = 7% Equation (I)

Additionally, let h denote a d-bias k-wise independent hash function.
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Then, for every y;,...,yr € {1,...,k} it holds:
Pr|h(z1) = w1, ..., h(zy) = yk] < 0k Equation (II)
Let us denote:

h(z1) = y1,...,h(xk) = yr as hy._x and

h(xl) =Y., il(fk) = Y as Bl...k-

As a result, Equation (I) now is Pr[hi x| = %

Kk

Respectively, Equation (II) is Pr [ﬁlk} < ik +6-kF
Then, Pr [|{f~z(x1), o h(z)} = q} =

Z Pr [|{yl7 Yk = qml...k] -Pr [711...1@] Equation (III)

.....

L if {yr, ..okt = ¢

0 otherwise

By substituting in Equation (III) the previous formula and Equation (II) we

get:

[{h(x1), ... h(zi)} = q| < Z ..... v (g F O KY)
Z ,,,,, o (Prihi ] +0- k:’“)

Yk
Z ..... oo Prihig] +0 Er . Z I =
.......... Yk
Z PTHyl, s Ukl = qlhig] - Pr[h1 PR RN AREED DI A
Y1se-ey Yk Ylseey Yk
Pr{|h(z1), ... h(zg)| = q] + 0 - k- Z Iy =

..... Yk

By+06- k- z ,,,,, =B +0- k% ie.,
Pr I{ﬁ(:cl),---, h(wp)} = q| < By +0- kK

Combining the above result with the following formula that must hold:
Vq 3B, such that Ya;1, zi9, . . . T, where iq,49,..., 0% € {1,...,n},

|Prob[|{h(z1),...,h(zx)} = q] — B,| <€, for a randomly chosen h € H,

we get: € = & - k?*. If we choose § to equal @ ) =ior We get: € = (2’“:;k = 2%,

which is small. O
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Since |H| = 20 18%) Jog n in the scheme we constructed, the blocklength
of the scheme b grows only logarithmically with the number of shares (trans-

parencies) n.

Theorem 5.2.2.7: A k out of n visual secret sharing scheme with parameters
b = logn-20klosk) o — 2=Qk) gpd ' = (2k=11)27F 5 losn o pe constructed

for any k and any n.

Proof. This k out of n construction is based on any k out of k£ visual secret
sharing scheme. Let us assume that the latter is the second k out of k£ scheme
2k—1

——. From Lemma

,and a = 5

described earlier in Section 4.2, with b =

5.1.1 and Subsection 5.2.1 we get that o' =b-¢ and a’ = a- B — 2¢(1 + kd/b)
are the parameters for the new & out of n scheme. Since £ = logn - 20 logk)
Br = %, and € < 2& from Proposition 5.2.2.6, we get v = 2¥1 . logn -

20(kloghk) — 1ogp . 20(k1ogk) “and o/ = 2% Similarly, since r = 25~!! and

1 = rf, by substitution it results that / = (2¢—11)2°* " logn. O

5.3 A k out of n Scheme - Construction III

5.3.1 Some Preliminaries

Before describing the following constructions of visual secret schemes, let us
state some terminology, definitions, and theorems that will prove useful later

on.

Definition 5.3.1.1: A wvector space V (k,q) over the Galois Field GF(q)

is the set of all possible k-dimensional vectors over GF(q). As a result,
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\V(k,q)| = "

Definition 5.3.1.2: Algebraically speaking, a projective space over GF(q)
denoted PG(k,q) consists of all the non-zero subspaces of V(k + 1,¢q). In
a geometric point of view, a projective space over a vector space V' includes

sets of points, lines, planes, and hyperplanes.

A hyperplane in a k + 1-dimensional vector space is a subset of k£ dimen-
sions which is “flat”, i.e., it is described by a degree-one algebraic equation.
Sometimes it is called codimension 1 subspace. The term dimension refers
to the number of vectors the basis of the subspace consists of. If V is fi-
nite dimensional then points and hyperplanes are in a 1-1 correspondence
as will become clear later on. This is the reason why a hyperplane can be

represented by a (k + 1)-tuple, too, just like a point.

When the vector space V' is defined over the Galois Field GF(q), i.e.,
V(k + 1,q), then the projective space denoted as PG(k,q) consists of finite

sets of the above mentioned elements.

Homogeneous coordinates are a system of coordinates used in Projective
Geometry. All the elements of a Projective Geometry can be given homo-
geneous coordinates and these will be used in the following Sections. Us-
ing homogeneous coordinates, if (zg, x1,...,2) is a point in PG(k, q), then
(Ao, Ax1, ..., A-xy) is the same point, where \ is any non-zero element (also
called scalar) of GF(q), and z; € GF(q). Since there exist ¢*™' — 1 non-zero
(k + 1)-tuples, and each point appears ¢ — 1 times (there are ¢ — 1 non-zero

scalars in GF(q)), the number of points is (¢**1 —1)/(¢—1) = 14+q+...+¢".

One important concept in Projective Geometry is that of Duality: as far
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as the elements of a Projective Geometry are concerned, there is a certain
“symmetry” in definitions and theorems: a point is dual with a hyperplane.
As an example, let us assume the projective plane, which is 2-dimensional,
where the lines are the hyperplanes: points and lines are dual and can be
interchanged in any valid statement to yield another. In 3-dimensional Pro-
jective Geometry a point is dual with a plane. In this case, the planes are

the hyperplanes of the 3-space.

The property of containment holds when the inner product of the corre-
sponding point and hyperplane, i.e., their homogeneous coordinates, is zero.
As an example, in a plane, a point is on a line, or symmetrically, a line passes
through a point, if and only if their inner product is zero. In general, we say
a point p = (xg,...,x)) is on a hyperplane L = (yo,...,yx) if and only if

To Yo+ x1-y1+...+x -y =0.

Since in PG(k,q) the terms hyperplane and point can be interchanged,
there are (¢"*1 —1)/(¢—1) = 1+q+...+¢" hyperplanes, too. Additionally,
there are (¢ — 1)/(¢ — 1) points in any hyperplane and respectively, each

point is contained in (¢* — 1)/(q — 1) hyperplanes.

Definition 5.3.1.4: In V(k,q) vector space, an n-arc is a set of n vectors
(n > k + 1) with the property that any k& of them are linearly independent.

An arc is called complete when n takes the maximum possible value.

An Alternative Definition for arc 5.3.1.5: In Projective Geometry
PG(k,q) an n-arc is a set of n points with n > k+1 such that no k41 points
lie on a hyperplane, i.e., at most k points lie on a hyperplane. Symmetrically,

it is a set of n hyperplanes no k + 1 of which pass through a single point.
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In an intuitive way, they form “curved” figures. Loosely speaking, they are
sets of points that are not straight -like lines are- in a plane, or “flat” in
a three-dimensional space. An n-arc is called complete if it is not properly

contained in a larger arc and is denoted by r(k, q).

The size of a complete arc has been a major open problem for a long time
in Finite Geometry. Some results of research work on this topic are shown

in the following table:

k q |r(kq)
3 | odd | g+1

3,45 #£3 | qg+1
3,45 3 | k+3

)
)
,q) 3 even | q—+ 2
)
)
)

4 >2 | qg+1

For more results and a more detailed inspection of the problem one can

refer to [13].

A (k+1)-arc in V(k,q) if kK > ¢ can be constructed in the following way:
Let us assume that a basis for V(k,q) consists of the following k vectors:
di,ds, . ..,dg, where @; = (wi,wiz2, ..., wi), wij € GF(q). These k vectors
are linearly independent. We construct a new vector, a1, such that a1 =
zk:ldi = (Zk:lxil, Zk:l:vig, . zk:lxlk) Then, the set {@y,ds, ..., dx,dx1} con-
ls;sts of k : 1 Veclt_ors any k 2o_f them are linearly independent, i.e., we created

a (k+ 1)-arc.

In order to create a (¢ + 1)-arc in V(k,q) if k < ¢, we use the following

method: we take the vectors (0,...,0,1) and (1,w},...,wF™) with w; in
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GF(q), 1 < i < q, as columns in a matrix. Without the first column,
this is just a Vandermonde matrix. As is well known, the columns of a
Vandermonde matrix consist of ¢ linearly independent vectors. By adding

vector (0,...,0,1), we have found a (q + 1)-arc.

The following visual secret sharing scheme is described in [3]. Some new

concepts must be defined, as well:

Definition 5.3.1.6: In a vector space V(k,q) a functional F(z) is de-
fined by the formula F(¥) = (f, ) = fixy + foxg + -+ + frxg, where f=

(f1, f2,---, fx) is the corresponding to F' vector in V(k,q), and & € V(k, q).

Let us consider k functionals, denoted F;, 1 <1 < k. If ﬁ, their corre-
sponding vectors in V' (k, ¢), are linearly independent, then, the functionals F;
are also linearly independent. Since the k-dimensional vector space V(k, q)
consists of ¢* vectors, let us denote a numbering of all the vectors in V (k, q),

—

say Uy, ug, . .. ,uqk.

Definition 5.3.1.7: Let n > k. The n x ¢* representation matriz S of n

functionals Fj(u}), for all the vectors in V(k, ¢), is defined by

Siy=F(U;), 1<i<n, and 1<j<q" (5.1)

In order to construct a representation matrix we do the following: we
construct an n X k matrix B whose rows are the n functionals and another
matrix F, with dimension &k x ¢*, whose columns consist of all the ¢* vectors
in V(k,q). Then, the multiplication of B and F results in a new n x ¢*

matrix named S, which is the representation matrix of these functionals.
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Lemma 5.3.1.8: (a) Let n (n > k) functionals in V(k,q), and m (m < k)
of them be linearly independent, hence, the dimension of their linear span on
V(k,q) is m. Then, their corresponding representation matriz S will contain

k=m qll-zero columns.

exactly q
(b) If k =m, and any k out of n functionals are linearly independent, when
their representation matriz S is limited to any k rows, then, each vector in

V(k,q) occurs exactly once as a column in S.

Proof. a. Let us construct an n x k matrix B whose rows are the n func-
tionals, where each m (m < k) are linearly independent vectors in V(k, q).
Additionally, let us denote null(B) the dimension of the null-space of B
(i.e., the dimension of the set of all vectors 7 in V (k,q) for which BF = 0)
and rank(B) the dimension of B. Then, according to the Rank - Nullity
Theorem it holds that rank(B) + null(B) = k. But rank(B) = m, hence,
null(B) = k—m. As aresult, the representation matrix S that is constructed
by B and all the vectors in V (k, q) will contain ¢*~™ all-zero columns.

b. Let us construct the two matrices B and F' as described earlier which
are used for the construction of the representation matrix S and limit matrix
B to any k rows, named B’. We will show by contradiction that each vector
in V(k, q) occurs exactly once as a column in S.

Let us suppose that this is not the case, i.e., there exist 7 and 75 € V(k, q)
that appear as columns in F', where 7 # 75, such that B'r} = 73 (equation
I) and B'ry = 75 (equation II), 75 € V(k,q). But B’ consists of linearly

~1 exists. Then, from

independent vectors, hence, it is invertible, i.e., (B’)
equations I and IT it follows that 7y = (B')"'73 and 7, = (B')7'73, ie.,

71 = 75, which is a contradiction to the initial hypothesis. Hence, all the
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columns of S when limited to any k& rows consist of ¢* different vectors, i.e.,

each vector in V(k, q) occurs exactly once as a column in S. O

5.3.2 A k out of n scheme construction:

In order to create a strong k out of n visual secret sharing scheme (see

Definition 1.4.4) we do the following:

1. We choose k, ¢ such that r(k—1,q) > n and r(k,q) > n for V(k—1,q)

and V' (k, q) respectively.

2. Let V(k,q) consist of the vectors iy, s, ..., Ux. We discard the all-

q
zero vector as well as all the vectors that are scalar multiples of each
other. Geometrically speaking, in that way the remaining vectors are
all the distinct (¢* — 1)/(¢ — 1) hyperplanes in PG(k — 1,q). Let

U1, Ua, . .+, Ugk_1)(q—1) b€ that reduced set of vectors.

3. We choose n functionals on V'(k,q), i.e., Iy, Fy, ..., F,, such that any
k of them are linearly independent. This is the reason why we chose

r(k,q) > n.

4. We name S the n x ¢* representation matrix of the functionals F}

1 < i < n on all the ¢* vectors of V(k,q) iy, o, ..., 4k By A; we

q
denote the n x (¢" —1)/(q — 1) representation matrix of the reduced

set of vectors Uy, Uy, ..., Ugk_1)/(g-1)-

5. We replace all the non-zero values in A; by 1. The matrices that are

obtained by permuting the columns of A; form the collection C;. Since
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Ay is an n x (¢® —1)/(q — 1)-dimension matrix, |C;| = (¢* —1)/(q — 1)

. Accordingly, we choose n functionals G},G%,..., G, on V(k — 1,q)

with the property that any (k — 1) of them are linearly independent.
We increase the number of their dimension by 1, by adding the zero
value and get functionals Gi,Gs,...,G, ie., Gi(z1,...,25-1,0) =
Gi(z1,...,x5—1), 1 <i <n. Thedimension of V(k—1,q) is k—1, hence,
any k — 1 of the functionals G;, ¢ < i < n are linearly independent,

whereas any k of them are linearly dependent.

. We name T the n x ¢* representation matrix of the functionals Gj,

1 < i < n on all the ¢* vectors of V(k,q) @, s, ..., U4k By Ay we

q

denote the n x (¢* — 1)/(¢ — 1) representation matrix of the reduced

set of vectors Ul, 172, ce aU(qk—l)/(q—l)'

. We replace all the non-zero values in Ay by 1. The matrices that are

obtained by permuting the columns of A, form the collection Cy. Since

Ag is an n x (¢* —1)/(q — 1)-dimension matrix, [Co| = (¢* —1)/(q—1)!.

Theorem 5.3.2.1: The above scheme is a maximal contrast k out of n

visual secret scheme with parameters b = (¢* —1)/(¢ — 1), h =1, 1 = 0,

r=|Col =|Ci| = (¢* —1)/(qg — 1)!, and contrast a = 1.

Proof. In order to get S we constructed the representation matrix of func-

tionals F;, 1 < i < n, which have the property that each £ of them are linearly

independent. Because of that, according to Lemma 5.3.1.8, each vector in

V' (k, q) occurs exactly once as a column of the representation matrix, when

limited to any k£ rows. The same applies to the all-zero vector, as well, which
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is the result of the dot product of the functionals and the all-zero vector in
V' (k,q). However, in order to obtain A; from S we remove the all-zero vector,
hence, A; does not have an all-zero column when limited to any k£ rows. As

a result, [ = 0.

As already mentioned, the functionals G;, 1 < ¢ < n, used for the con-
struction of T" have the property that each £ — 1 of them are linearly inde-
pendent but any k& of them is not. Hence, the dimension of the linear span
of any k functionals of them is kK — 1. By Lemma 5.3.1.8, the representation
matrix 7" of these functionals when limited to any k rows will contain exactly

¢ = D)

= q all-zero columns.

In order to create a column of matrix Ag, we calculate the inner product of
a vector in V' (k, ¢) to all the functionals Gy, G, . .., G,. Therefore, an all-zero
column in matrix A is obtained as follows: since the last coordinate of the
functionals is zero, the vectors that their inner product with the functionals
is zero are of the form (0,...,0,z), where x € GF(q). But in order to obtain
Ap we remove all scalar multiples, all but one of these vectors, i.e., we remove

q— 1 vectors, including the all-zero one. As a result, there is only one column

that is all zeros in matrix Ay when limited to any k rows, i.e., h = 1.

As a result, the contrast of the scheme is contrastsy = a = h —1 =

1 —0 =1 and the loss of contrast contrastlossgy = % = q‘{c__ll
Respectively, contrastyyr = Z—jrﬁ = 1 and contrastlossyyr = % =

q—1

gk-1-

About the security of the scheme:

The (¢* —1)/(q — 1) vectors indexing the columns of Ay and A; can be

considered as the hyperplanes of PG(k— 1, ¢q) and the n functionals indexing
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their rows respectively as n points in PG(k—1, ¢). As mentioned before, each
point is contained in (¢*~! —1)/(q — 1) hyperplanes, i.e., their corresponding
inner products will produce exactly (¢*~1 —1)/(¢— 1) zeros. As a result, the
number of zeros in each row of both Ay and A; is a fixed number.
According to Definition 5.3.1.5, functionals F;, 1 < ¢ < n, form an n-
arc, i.e., a set A of n points in PG(k — 1,q) with the property that every
hyperplane is incident with at most k£ — 1 points. Hence, if we restrict A; to
any k — 1 rows there will be exactly one all-zero column. This holds because
the hyperplanes are distinctly represented, i.e., they are represented only
once and each £ — 1 points are incident with only one hyperplane.
Algebraically speaking now, if we limit Ay in any £ — 1 rows, since the
dimension of the span of the functionals is £ — 1, each vector will appear in
the columns of Ay exactly once, hence, there is exactly one all-zero column
in it, too. Since for all (k — 1) x (¢* — 1)/(¢ — 1) submatrices of Ay and A,
the above facts hold, there is no way that someone can conclude that any
k — 1 shares come from a white or a black pixel. The same holds for shares

that correspond to less than k£ — 1 rows. O

As we will later see in Theorem 7.1.11, the blocklength of the scheme is

almost optimal.

Example 5.3.2.2: Let us create a 3 out of 4 visual secret sharing scheme
according to the above described construction: we choose ¢ = 5, k£ = 3 and
n = 4. As a result, the vector space will be V' (k,q) = V(3,5), and in such a
case, since k < ¢ and ¢q odd, r(k,q) = ¢+ 1 = 6. Hence, we can find n = 4

vectors in V/(3,5) such that any 3 of them are linearly independent. These
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vectors will be the functionals F; (1 < i < 4) of the construction. We will

use Fy = [001], Fy = [010], F3 = [100], and F; = [111].

In V(3,5) vector space there are ¢* = 5% = 125 vectors. By discarding
the all-zero vector and the vectors that are a scalar multiple of each other we
get (¢F —1)/(¢—1) = (5= 1)/(5 — 1) = 31 vectors, which are the points of
PG(k—1,q) = PG(2,5). These are: (001), (010), (011), (012), (013), (014),
(100), (101), (102), (103), (104), (110), (111), (112), (113), (114), (120),
(121), (122), (123), (124), (130), (131), (132), (133), (134), (140), (141),
(142), (143), and (144).

As for the vector space V(k — 1,q) = V(2,5), the same holds for r(k —
1,q9) =r(2,5), i.e., since k —1 < ¢g—1and g odd, r(k —1,9) =g+ 1 = 6.
Hence, we can find n = 4 vectors in V(2,5) such that each 2 of them are
linearly independent. These vectors will be the functionals G; (1 < i < 4) of
the construction. We will use G, = [01], G}, = [11], G4 = [21], and G, = [31].
We extend them by one coordinate and we get G; = [010], Gy = [110],
G3 = [210], and G4 = [310]. Each three of these new functionals are linearly

dependent, while each two of them are linearly independent.

In order to construct matrix A; we index its rows by the F; functionals and
its columns by the 31 vectors that were not discarded in the previous step, i.e.,
the points of PG(2,5). Hence, A; has dimension n x (¢*—1)/(q—1) = 4 x 31,
Each element of A;[i,j], 1 <i <4 and 1 < j < 31 is the inner product of

the corresponding vector-row and the corresponding vector-column:
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1012340123401234012340123401234

4 0111110000011111222223333344444
1

coooo0o01111111111111111111111111

1123401234023401340124012301234

By substituting all non-zero elements by 1 we get:

1011110111101111011110111101111
o111110000011111111111111111111

=
I

cooooo0oo01111111111111111111111111

1111101111011101110111011101111

The n x (¢ —1)/(¢ — 1) = 4 x 31 binary matrices generated by the

permutation of A; form the collection C;. As one can see, |C1] = (¢F —

1)/(g—1)! =31

The same procedure is followed to get collection Cy: In order to construct
matrix Ay we index its rows by the G; functionals and its columns by the 31
vectors that were not discarded, i.e., the points of PG(2,5). Hence, Ay has
dimension n x (¢* —1)/(¢ — 1) = 4 x 31. Each element of Ag[i,j], 1 <i<4
and 1 < 7 < 31 is the inner product of the corresponding vector-row and the

corresponding vector-column.

01111100000111112222233333444414
0111111111122222333334444400000
0111112222233333444440000011111

0111113333344444000001111122222

By substituting all non-zero elements by 1 we get:
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o0111110000011111111111111111111
0111111111111111111111111100000
0111111111111111111110000011111

0111111111111111000001111111111

The n x (¢ — 1)/(¢ — 1) = 4 x 31 binary matrices generated by the

permutation of Ay form the collection Cy. As one can see, |Co| = (¢* —

1)/(qg — 1)! = 311.

As a result, the contrast of the scheme is contrastsy = a = h — 1 =

1 and the loss of contrast contrastlosssy = q(i__ll = 3—11 Respectively,
contrast = "=l — 1 and contrastloss = Al — L
VVT = 33 VVT = b(htl) 31"

The above scheme has parameters b = 31, h = 1, [ = 0, a = 1, and

r = 31!. It is a maximal contrast visual secret sharing scheme.

If n — 1 is a prime power, hence can be used as a Galois field basis, one
can take ¢ = n — 1. In such a case, the blocklength of this k£ out of n scheme

equals ((n — 1)* —=1)/(n — 2).

The above scheme can be used to construct a maximal (i.e., [ = 0) k
out of k visual secret sharing scheme, too. In this case one can take g = 2,
since r(k,q) = k + 1 if k > ¢. In this case, by substituting ¢ by 2 we get:
b=("-1/(g—1)=02"-1/2-1) =2"-1,a =" = 5= and
r = bl = (28 — 1)I. The parameters of the first & out of k construction
presented in Section 4.1, were b = 2% a = 2%, and r = 2*1. Hence, the

parameters in this construction are slightly improved compared to the ones

of the k£ out of k scheme described in Section 4.1.
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Example 5.3.2.3: We will construct a 3 out of 3 visual secret sharing scheme

for k =n = 3 and ¢ = 2 following the above instructions:

Let Fy = [001], F;, = [010], and F3 = [100] whose corresponding vectors
are linearly independent in V(k,q) = V(3,2). Let G[01], G, = [10], and
GY% = [11], any two of them are linearly independent vectors in V(k —1,q) =
V(2,2). We increase their coordinates by one and get G; = [010], G5 = [100],
and G3 = [110].

The V/(3,2) vector space consists of the following 2% = 8 vectors: (000),
(001), (010), (011), (100), (101), (110), and (111). Since there are no scalar
multiples we remove only the all-zero vector (000). The rest (¢*—1)/(¢g—1) =
(22—1)/(2—1) = T vectors will be used to construct Ay and A;. Since there no
other elements except 0 and 1 in GF'(2) there in no need for any substitution,

hence:

0110011 1010101
A=10001111| A4=]0110011
0111100 0001111

As one can see, its blocklength is b = ‘1:_—_11 =7, h=1,1=0,r= q;__lll =

7. Hence, the parameters of the scheme are [b; h,l;r] = [7;1,0;7!] and it is

a maximal contrast scheme.

As a result, its contrast is contrastsy = a = h — [ = 1 and the loss of

contrast contrastlosssy = 1 = 1. Respectively, contrastyyr = Z—J_rﬁ =1

—_

and contrastlossyyr = b(Z—llz) =z
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5.4 A k out of n Scheme - Construction IV

5.4.1 A k out of n scheme construction:

In order to create a strong k out of n visual secret sharing scheme (see

Definition 1.4.4) we do the following:

1. We choose k, ¢ such that r(k,q) > n + 1.

2. Similarly to Construction II, we choose n + 1 functionals on V' (k, q),
ie, G, Fy, Fs, ..., F,, such that any k of them are linearly independent.

This is the reason why we chose r(k,q) > n + 1.

3. Let d;, 1 < j < ¢*! be the vectors on V(k,q) such that G(d;) = 0.
We construct the n x ¢"~! representation matrix Ay by using these

vectors and the following formula:

Sy =Fy(i;), 1<i<n, 1<j<g"! (5.2)

4. We replace all the non-zero values in Ay by 1. The matrices that are
obtained by permuting the columns of Ag form the collection Cy. Since

Ap is an n x ¢"* !-dimensional matrix, |Cy| = ¢* 1.

5. Accordingly, let T;, 1 < j < ¢*~! be the vectors on V(k,q) such that
G(U;) = 1. We construct the n x ¢"~! representation matrix A; by

using these u; vectors and the following formula:

1<j<g™! (5.3)
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6. We replace all the non-zero values in A; by 1. The matrices that are
obtained by permuting the columns of A; form the collection C;. Since

Ay is an n x ¢""l-dimensional matrix, |C;| = ¢*~!.

Theorem 5.4.2.1: The above scheme is a maximal contrast k£ out of

n visual secret sharing scheme with parameters b = ¢"', h = 1, | = 0,

a=h—1=1,and |G| = |C;]| = ¢" .

Proof. Let us consider a vector & = (x1,29,...,2x) in V(k,q), and let us
suppose that we want to calculate the inner product of it with all the ¢*
vectors in V(k,q), denoted ¥ = (y1,v2,---,Ux), ¥i € GF(q). For every q
vectors in a row, i.e., vectors (y1,%a,---,Yk-1,0) to (y1,y2, ..., Yp—1,q — 1)
this function is injective, hence, each number {0,...,q — 1} appears exactly
once. Since there are ¢*~1 such “cycles” of ¢ vectors in V(k, q), each number
in GF(q) appears ¢"~! times as the result of the inner product of Z with all
the ¢* vectors in V(k,q). This means that matrices Ay and A; are n x ¢*~!
dimensional, hence, b = ¢*~!.

From Lemma 5.3.1.8 we get that each vector appears exactly once as a
column when the dot product of k linearly independent functionals with all
the vectors of V(k,q) is calculated. In the construction of Ay, its columns
are indexed by the vectors 7 in V(k,q) that G(Z) = 0 whereas in A;, the
vectors that index the columns of it are those in V(k,q) that G(z) = 1.
There cannot be a vector Z such that G(Z) = 0 and G(Z) = 1. Hence, since
the all-zero vector indexes one column in Ag, an all-zero column appears in

Ag, and there is no all-zero column in A, i.e., h =1 and [ = 0.

As a result, the contrast of the scheme is contrastgy = h—1 =1 and the
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loss of contrast contrastlossgy = hT_l = qkl,l. Respectively, contrastyyr =
h—l __ _ _h—l __ 1
= 1 and contrastlossyyr = Shil) = T

For the security of the scheme: The vectors that index the rows of Ay are
k linearly independent, and as a result they are k — 1 linearly independent,
too. What is more, as already mentioned, Ay and A; consist of ¢*~! columns.
Hence, when Aj is limited to k—1 rows, from Lemma 5.3.1.8 we get that each
vector in V(k — 1,q) is calculated exactly once as a column of the matrix.
The same holds for A;, too. Hence, the two matrices, Ay and A;, when
restricted to any k — 1 rows, they both consist of the same columns. Since
this fact holds for any k — 1 rows, it follows that Ag and A; consist of the

same columns, but in a different order.

Since Ay and A; are nx¢*~*-dimensional matrices, |Cy| = |C1| = ¢*~1. O

As we will later see in Theorem 7.1.11, the blocklength of the scheme is

almost optimal.

Example 5.4.2.2: We will construct a 3 out of 4 scheme and we choose
k=3,n=4,and ¢ = 4 = 22 As a result, the vector space will be V(k, q) =
V(3,4), and in such a case, since k < g and g even, r(k,q) = ¢+2 = 4+2 = 6.
Hence, we can find n +1 =4+ 1 = 5 vectors in V(3,4) such that any 3 of
them are linearly independent. These vectors will be the functionals G, Fj,
1 <i < 4 of the construction. We will use G = (001), F} = (010), F» = (100),
F3 = (11a), and F; = (baa). Galois Field GF(4) = GF(2?) consists of the
following elements {0, 1, a,b = a®} and the addition and multiplication tables

respectively are depicted below:
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+10[1]al|b * |0 1]lalb
0{0|1]al|bd 0l0[0|0]O0
11(0]D]a 101 |a|b
a|alb]0|1 all0jal|bd|1
b{bla|l]0 b|O0]b|1]a

The ¢" ! = 4371 = 42 = 16 vectors 7 in V/(3,4) such that G(%) = 0
are the following: (000),(010), (0a0), (060), (100), (110), (1a0), (160), (00),
(a10), (aa0), (ab0), (b00), (b10), (ba0), and (bb0).

The ¢" ! = 4371 = 42 = 16 vectors 7 in V/(3,4) such that G(%) = 1
are the following: (001),(011), (0al), (0b1), (101), (111), (1al), (161), (a01),
(all), (aal), (abl), (b01), (b11), (bal), and (bb1).

In order to construct matrix Ay we index its rows by the F;, 1 < i < 4,
functionals and its columns by the 16 vectors Z in V(3,4) with the property
that G(¥) = 0. Hence, Ay has dimensions n x ¢"~! = 4 x 16. Each element
of Agli,j], 1 <1 <4,1< 7 <16 is the inner product of the corresponding

vector-row and the corresponding vector-column:

1 a b 01 ab 01 abdb 01 aybd
111 a a aa b b b

(=)

1 a b1 0 b aab 01 b al

o o o O
o
o
o
—
> O

a b1 b1 0albaOalol

By substituting all non-zero elements by 1 we get:
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1110111011101T171
000111111111 111
111101111011110

o o o o

111110111 1010T171

The n x ¢*~' = 4 x 16 binary matrices generated by the permutation of

Ay form the collection Cy. As one can see, |C| = ¢"!! = 16!.

The same procedure is followed to get collection C;: In order to construct
matrix A; we index its rows by the F;, 1 < i < 4 functionals, and its columns
by the 16 vectors Z in V/(3,4) with the property that G(Z) = 1. Hence, A;
has dimensions n x ¢*! = 4 x 16. Each element of A;[i,j], 1 < i < 4,
1 < 5 < 16 is the inner product of the corresponding vector-row and the

corresponding vector-column:

01l ab 01 abdb 01 abdb 01a6bd

4 00001111 aaaabdbbdbbd
1:
a b 01 balO0O01adlO0Db a
a 01 b1 b a 0Ob 10 a0 addl

By substituting all non-zero elements by 1 we get:

060111011101 110111

00001111111 11111
Ay

110111100111 10T171
101111101 10101T171

The n x ¢*~' = 4 x 16 binary matrices generated by the permutation of

Ay form the collection Cy. As one can see, |C| = ¢" 1! = 16!.
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As a result, the contrast of the scheme is contrastgy = h—1 =1 and the

loss of contrast contrastlosssy = a = % = 1—16. Respectively, contrastyyr =
h—l __ — _hl _ 1
g =1 and contrastlossyyr = il 16

The above scheme has parameters b = 16, h = 1, [ = 0, a = %6, and

r = 16!. It is a maximal contrast visual secret sharing scheme.

Remarks 5.4.2.3: If K = n and ¢ = 2 the scheme that is constructed
has the same parameters as the k£ out of k£ visual secret sharing scheme in
Construction II, described in [2]. What is more, if n is a prime power, we
can choose ¢ = n. In such a case, the blocklength of the scheme will equal

¢! = nkFl



Chapter 6

Summary of the Schemes

presented so far:

A table with the parameters of all the visual secret sharing schemes for

specific values of n and k that were presented in [2] follows:

k n b h l r a Described
in

2 2 4 2 0 6 | 1/2 2.1

3 3 4 1 0 4! | 1/4 2.2

4 4 9 1 0 9 | 1/9 2.3

2 6 4 2 1 6 | 1/4 2.4

A table with the parameters of all the visual secret sharing schemes for

specific values of &k described in [2] and [3] is the following:
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6 Summary of the Schemes presented so far:

k|n b h r a | Described Remarks
in
2| n n n—1|n-2 n 1/n 3.1
2| n n 1 n 1/n 3.1
2| n m 7 T =1 m! 1/m 3.2 m s.t (m”;z) >n
3in|2n—2 n |n—-1|2n-2)|55 3.3

A table with the parameters of all the k£ out of k visual secret sharing schemes

presented in [2] and [3] follows:

k|ln b h |l r a | Described Remarks
in
Elk| 20 |2 1] 20 | & | 41
k|2t 1]0 28] 2 4.2
k| k28011 ]0 25| o 5.3 special case of a k out of n scheme

A table with the parameters of the four k out of n visual secret sharing

schemes that were described in [2] and [3] follows:

k|ln b h |l r a Described
in
k| n nk2h1 | * (2kt)e" 2(2e)%/Vork | 5.1
kln logn . 20(k logk) | * | * (2]671!)20(1“10@“) logn 27Q(k:) 5.2
k— k— —
k|n . 10 | 4=l 5.3
kln ¢ 1 1]0 all = 5.4

* Since in both constructions different families of hash functions can be

used, it is not possible to calculate the number of the white subpixels in the

schemes




Chapter 7

Bounds on k£ out of n Visual

Secret Sharing Schemes

7.1 Some General Concepts

In this Section several properties of k£ out of n visual secret sharing schemes
will be introduced. In order to prove them, we will use the method of in-
duction, i.e., the break of a k out of n scheme into two &k — 1 out of n — 1
schemes. Before the theorems that define bounds about the blocklength are

presented, some definitions much be given:

Definition 7.1.1: Let A be an n x b matrix and ¢ one of its rows, any
one will do. Then the I-restriction (respectively O-restriction) matrix of
A considering a row 7 of it, is a new matrix A; (respectively Ao) which is
obtained by removing the i-th row and by limiting the rest of the matrix
to the columns where row i has value 1 (respectively 0). As a result, Ay

(respectively Ag) is a submatrix of A consisting of n — 1 rows, whereas its
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number of columns depends on the weight of row 7. It is obvious that the
sum of the number of columns in both /Nll and flo equals b.

Let us now consider a k out of n visual secret sharing scheme S = (Cy, C:)
with parameters [b; h,[]. In all matrices in both Cy and Cy, each i-th row,
i€{1,2,...,n}, can be considered as a binary vector . Then, the concepts
of O-restriction and 1-restriction can be extended to each collection Cy and Cy:
they can be defined as the subsets containing the corresponding submatrices.
What is more, if we denote by the number of zeros in U, and b; the number
of ones respectively, then it follows that b = by + b;.

In order to decompose S the following procedure is followed:

1. Let a k out of n scheme S = (Cy,C;) with parameters [b; h,(].

2. We fix a vector U that appears as an i-th row in a matrix of Cy and

hence of C;.

3. Let us consider all the matrices in Cy (respectively C;) that their i-th

row has the same weight as ©. We denote this subset C, (respectively

Cy).
4. We denote Dy (respectively D;) the O-restriction of Cy (respectively C,).

5. Symmetrically, we denote Ejy (respectively Fj) the 1-restriction of C:

(respectively Cp). Note that in this case we have swapped 0 with 1.

Lemma 7.1.2: The above construction is a k — 1 out of n — 1 visual secret

sharing scheme denoted Sy = (Dy, D1) with parameters [bo; h,1].

Proof. By construction, the submatrices Dy and D; have by columns and

n — 1 rows, namely, the blocklength of the scheme is by.
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Since the newly formed matrix is a O-restriction, it does not matter if the
t-th row is included or not in the k rows that are chosen each time; the “or”
of any k — 1 rows is not affected and there will be h zeros in Dy and [ zeros
in Dy.

About the security of the scheme: By the definition of S it holds that for
each matrix in Cy, when limited to less than k£ rows, there exists one exactly
the same in C;, with the same frequency. Let us denote Ay and A; these
matrices.

Case 1: The i-th row is included in the £ —1 or less rows: when we remove
it from both Ay and A;, the new matrices are also indistinguishable when
limited to k& — 2 (or less) rows.

Case 2: The i-th row is not included in the & — 1 or less rows: then, Ay
and A; are also indistinguishable when limited to & — 2 or less rows.

Hence, S; = (Do, Dy) is a k — 1 out of n — 1 visual secret sharing scheme

with parameters [by; h, []. O

Definition 7.1.3: Let us consider a k out of n visual secret sharing scheme
S = (Cy,Cy) with parameters [b; b, [] and its restrictions Cy and Cy. Let @ be
the “or” of any k — 1 rows (except the i-th row) of any matrix in either Co
or C~1. We denote 2,4, the maximal number of z(#), i.e., the largest number
of zeros obtained by the “or” of any k — 1 rows of any matrix in either Cy or

C1. Respectively, let z,;, denote the minimal number of z(%). If the scheme

is uniform, then it holds that z,,4. = Zmin.

Lemma 7.1.4: Let us consider a k out of n visual secret sharing scheme

S = (Co,Cy) with parameters [b;h,l], which is generated by Ay and Ay. If
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Zmaz — Zmin < h—1, then the scheme Sy = (Ey, E1) as defined above is a a k—1
out of n—1 visual secret sharing scheme with parameters [by; Zmin—1, Zmaz—h].
Additionally, if the original scheme S is uniform, i.e., 4z = Zmin, then the

scheme (Ey, F) is also uniform.

Proof. By construction, the submatrices in £y and EF; have b; columns and
n — 1 rows, namely, the blocklength of the scheme is b;.

As already stated, Ej is the 1-restriction of the set C,. Let Ey be a
member of &. If we follow this procedure step by step, we can denote A,
the n — 1 x b matrix that is obtained if we remove the i-th row from A;, a
matrix in C;. Then, we get Ey by restricting A; to the columns that in the
i-th row of A; are ones. As one can see, A; is an (n — 1) x b submatrix of
nx b A; and in turn, Fy is an (n — 1) X by submatrix of Al

Let us denote z the number of zeros in the “or” of any k — 1 rows in A;.
Some of them correspond to zero coordinates in the i-th row, denoted =z,
and some to one coordinates respectively, denoted z;. Hence, z = 2y + 2.

As one can see, zg is the number of zeros in the “or” of any k rows in Aj.
What is more, z; is the number of zeros in the “or” of any £ — 1 rows in E,.

By definition z,,;,, < z, hence z,;, < 2o + z1. Additionally, from the
definition of the visual secret sharing scheme, for any matrix in C; it holds
that zp < [. Hence, zn < [+ 21, i.e., Zmin — [ < z1. This means that the
number of zeros of the “or” of any k — 1 rows of Ey is at least znm — L, ie.,
it complies with condition 1 of a visual secret sharing scheme (Result 1).

Respectively, let E; be the 1-restriction of the set C;. Let E; be a member
of &. We denote Ay the n — 1 x b matrix that is obtained if we remove the

i-th row from Ay. Then, we get E; by restricting Ay to the columns that in
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the -th row of Ag were ones. As one can see, Ay is an n — 1 X b submatrix

of n x b Ag and in turn, E; is an n — 1 x b; submatrix of A,.

We denote z the number of zeros in the “or” of any k — 1 rows in A,.
Some of them correspond to zero coordinates in the i-th row, denoted z,

and some to one coordinates respectively, denoted z;. Hence, z = 2y + 2;.

As one can see, zg is the number of zeros in the “or” of any k rows in Ajg.

What is more, z; is the number of zeros in the “or” of any k£ — 1 rows in FEj.

By definition z < 2,42, hence zp + 21 < Zpee. Additionally, from the
definition of the visual secret sharing scheme, for any matrix in Cy it holds
that h < zy. Hence, h + 21 < Zpaz, 1.€., 21 < Zmae — h. This means that the
number of zeros of the “or” of any k — 1 rows of F, is at most zpes — h, ie.,
it complies with condition 2 of a visual secret sharing scheme (Result 2).

Taking into account Results 1 and 2, and if 2,40 — Zmin < h — [, then,
Sy = (&, £1) satisty the first two conditions of a visual secret sharing scheme.

About the security of the scheme: By the definition of S it holds that for
each matrix in Cy, when limited to less than k& rows, there exists one in Cy,
with the same frequency. Let us denote Ay and A; these matrices.

Case 1: The i-th row is included in the £ —1 or less rows: when we remove
it from both Ay and A;, the new matrices are also indistinguishable when
limited to k — 2 (or less) rows.

Case 2: The i-th row is not included in the & — 1 or less rows: then, Ay
and A; are also indistinguishable when limited to k — 2 or less rows.

Hence, Sy = (&, &1) is a k — 1 out of n — 1 visual secret sharing scheme
with parameters [b1; Zmin — l, Zmaz — D)

Let us suppose that S = (Co,C;) is uniform, i.e., the Hamming weight
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of any s < k transparencies depends only on the number of transparencies
that are used and not from the collection that the matrix belongs to. So, let
s < k and C be a (s+ 1) x b matrix, submatrix of collection Cy. Let C denote
a s X b l-restriction submatrix of C' and E a s X b; submatrix of C. Let 2
denote the number of zeros of the "or of the s rows of C. In the C' matrix,
some of these z zeros correspond to zero coordinates in the i-th row, denoted
20, and some to one coordinates respectively, denoted z;. Hence, z = z5 + 2;.
As one can see, zy is the number of zeros in the “or” of any s rows in C.
What is more, z; is the number of zeros in the “or” of any s rows in E. But
z and zo depend only on s since S is uniform. As a result, z; depends only

on s and Sy = (&, &) is uniform, too. O

An example follows:

Example 7.1.5: Let a 3 out of 5 scheme S = (Cy,C;) with parameters

[8;3,2] that is generated by the following Ay and A; matrices respectively:

00001111 11110000
00010111 11101000
Ao=10001 1011 A4={1 1100100
00011101 11100010
00011110 11100001

The O-restriction of the above matrices will be constructed by considering
the second row, i.e., © = 2. Then, the sets Dy and D; are obtained by the

permutation of the columns of the following submatrices:
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0 0 01 1 0 0 0
- 00 01 - 01 00
Dy = D, =

0 0 01 0 010

0 0 01 00 01

A 2 out of 4 visual secret sharing scheme S; = (Dy, D;) is constructed
with parameters [4; 3, 2].
Similarly, the sets & and &; are obtained by the permutation of the

columns of the following submatrices:

1 110 0111
- 1110 - 1011
EOZ E1:

1110 1 101

1110 1110

A 2 out of 4 visual secret sharing scheme Sy = (&, £1) is constructed with

parameters [4; 1, 0].

Theorem 7.1.6: For any k out of n visual secret sharing scheme with pa-

rameters [b; h, 1] it holds that b > (h — 1)2F1.

Proof. This Theorem will be proved for a k out of k£ uniform scheme, since one
can take any k out of the n rows of a k out of n scheme in order to construct
a k out of k one. Hence, a k out of k visual secret sharing scheme S = (Cy, Cy)
will be used, which has parameters [b; h,[;r]. We will use induction in k in
order to prove the Theorem:

For k = 1 it holds that b > (h — [)2*!, since b > (h —[).

Let us assume that the statement holds for any £ — 1 out of £ — 1 visual

secret sharing scheme, i.e., b > (h — 1)2%=D=1 or b > (h — [)2F2,
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Let us assume a k out of k scheme with parameters [b; h,[| that is gen-
erated by two boolean matrices Ag and A;. According to Lemmas 7.1.2 and
7.1.4, if we take the O-restriction and 1-restriction of these two matrices, for
example on the first row of them, two k—1 out of k—1 schemes are generated
with parameters [by; h, ] and [by; z — [, z — h|, respectively.

From the induction step we get that by > (h—1)2*"2 and by > (2 —1— (2 —
h))28=2 or by > (h —1)2*72. From the construction of the two k — 1 out of
k — 1 visual secret sharing schemes it holds that b = by + b;. Using the above
relations we get that b > (h — 1)2*"2 + (h — 1)2%2, hence, b > (h — [)2*1,

In order to prove the Theorem for any k& out of k scheme S, and not only
for schemes that are generated by two matrices, the following technique is
used:

From the collections Cy and C; of S we construct two boolean n x (b - r)
matrices Aj and A} which are the concatenation of all the matrices in these
collections respectively. Then, a new scheme S’ is generated by them, with
parameters [r-b;7-h, r-{] and the Theorem holds since 7-b > r-(h—1)-2*"1

which implies that b > (h —1) - 271, O

Theorem 7.1.7: 1. Let S = (Cy,Cy1) be a uniform k out of n scheme with
parameters [b; h,l]. If we denote b(k,n) the minimal blocklength of S, then
b(k,n) >2-b(k—1,n—1).

2. Additionally, if g is the smallest integer such that (Lg£/72J) >n—k+2,
then b(k,n) > g - 2¥72.

3. If k # n then b(k,n) > 3-2~F2,

Proof. From Lemmas 7.1.2 and 7.1.4 we already know that a k out of n
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visual secret sharing scheme S with parameters [b; h,[] can be decomposed
into two k — 1 out of n — 1 visual secret sharing schemes with parameters
[bo; h,l] and [by;z—1,z—h]. If b(k—1,n—1) = min{bg, b1}, i.e., the minimal
blocklength of the two k — 1 out of n — 1 schemes that are produced by S.
Since b = by + by, then b(k,n) > 2-b(k —1,n —1).

In order to prove the second statement, the method of induction will be

used. For k = 2 the statement is:

If g is minimal with respect to (| 9,,) = n, then b(2,n) > g.

g

la/2]

Hence, we consider a 2 out of n visual secret sharing scheme S = (Cy,Cy).
Its blocklength will be denoted by b. The security of the scheme implies
that for any row in a matrix Ay in collection Cy there exists a matrix A;
in collection C; containing the same row. Additionally, by the definition
of the scheme, for any matrix Ay (respectively A;) in Cy (respectively C;)
collection, the “or” denoted by vy (respectively ;) of any k out of its n rows
must satisfy z(Ty) > h (respectively z(77) < [). Two identical rows produce

the maximum value of z(7;), i € {0,1}. Since the contrast of the scheme

h—=1

7o there cannot be two identical

is defined by the equation contrast =
rows in any matrix of the C; collection, or else there would be no distinction
between a white and a black pixel (recall that this is a 2 of out of 2 visual
secret sharing scheme). Let us denote by x the number of ones in each row
(transparency) of a matrix in A;. Then it must hold (g) > n. We can safely
assume that x can take any value from 1 to b — 1 depending on the scheme.
Since <Lb?2 j) > (2) for every 1 < x < b, implies that the number g will be

the minimal one to satisfy the relation (Lg% J) > n, hence, g is less or equal

to b, and for k = 2 the statement holds.
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Let us assume that the statement holds for £ — 1, n — 1, i.e., if ¢ is the
smallest integer such that (\_Q%J) >(n—1)—(k—1)+2, then b(k—1,n—1) >
g - 287172 namely, if ¢ is the smallest integer such that (Lg‘/’QJ) >n—k+2,
then b(k —1,n — 1) > g - 2F73.

For a k out of n scheme, using statement 1, we get: if g is the smallest
integer such that (LQ?QJ) > n—k+2, then b(k,n) > 2-b(k—1,n—1). From the
inductive step it holds that if g is minimal with respect to (Lg% J) >n—k+2,
then b(k — 1,n — 1) > g - 2*73. By combining the two relations we get that
if ¢ is minimal with respect to <L932J) >n —k+2, then b(k,n) > g- 22

About the third statement: If k # n, then n — k 4+ 2 equals at least 3,
hence, (ng/]2 J) > 3. The minimal g for the latter inequality to hold is 3, hence,

b(k,n) > 3-2~2. O

We repeat the following definition before stating the next Theorem:

Definition 7.1.8: Let a k out of n visual secret sharing scheme generated
by matrices Ag and A;. We limit Ay and A; to any s rows (s < k), namely,
ih <iy < ...<igand j; < jo < ... < jsin {1,...,n} respectively. If these
two submatrices of Ay and A; contain the same columns in a different order,
we call Ag and Ay systematic. What is more, the scheme that is generated

by them is called a strong k out of n visual secret sharing scheme.

Theorem 7.1.9: If a k out of n visual secret sharing scheme S = (Co,Cy)
with parameters [b; h,l] is uniform, then any pair of matrices Ay and A,
i Co and Cy respectively are systematic. What is more, the scheme that is

constructed by the permutation of the columns of Ay and Ay is a strong k out
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of n visual secret sharing scheme with the same parameters as S.

Proof. In order to prove the Theorem, induction in k& will be used.

For k = 2: Since the scheme is uniform, by definition the number of ones
in the “or” of any s < k rows depends only on the number s. Hence, for
s = 1, the number of ones is the same in all the rows of any matrix in either
collection Cy or C;. This means, that if we choose any two matrices, e.g.,
Ap from Cy and A; from Cy, they contain the same elements when limited to
only one row (any single row), only in a different order. Hence, in this case
the pair Ag and A, is systematic.

As an inductive step, let us assume that the Theorem holds for any uni-
form k — 1 out of n — 1 scheme.

Next, we will prove the Theorem for any uniform k& out of n visual secret
sharing scheme. Let S = (Cp,C;) be a uniform k out of n scheme, and let
Ay be a matrix in the collection Cy and A; a matrix in the collection C;
respectively.

At first, let us consider that Ay and A; have a common row, denoted 1.
From Lemmas 7.1.2 and 7.1.4 we get that S can be decomposed with respect
to row ¢ into two k — 1 out of n — 1 visual secret sharing schemes. As a
result, Ay will be decomposed into two matrices, Dy and F;, and A; into
D, and Ej, respectively. By the inductive step we get that Dy and D; are
systematic. The same holds for Ey and E;. Since Aj (respectively A;) can
be reconstructed from Dy and FE; (respectively Dy and Ey), by adding the
common 7 row, the Ag and A; pair is also systematic.

If Ay and A; do not have a common row, we will proceed as follows:

two subsets of matrices can be used, one from Cy and one from C;. Let
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Ao, Ao, ..., Ags be the subset of Cy and A;1, A1o,..., A1 the one from
C; respectively. The matrix Ag; to be Ay and matrix A;; to be A;. The
security of the scheme implies that for any row in a matrix Ag in collection
Co there exists a matrix A; in collection C; containing the same line. Taking
this under consideration, the matrices that the collections consist of have the
following property: the A;; matrix, j € {1,...,t}, has at least one common
row with Ay, and Ag 41.. In this way, a chain of matrices with common
rows is created starting from Ay and ending with A;. Figure 7.1 depicts the

described method.

Ap=Ay, Aoz Aga Apt

Aia Aiz Ais Ai=A1

Figure 7.1: A chain of matrices with common rows

Since each pair of matrices Ag; and Ay ;, ¢ € {1,...,t} have at least
one row in common, the statement holds for each pair of them, i.e., the
corresponding pair of matrices is systematic. This property is transitive,
hence, the original pair Ay and A; is systematic.

As a result, if a k out of n scheme S = (Cy,C;) is uniform, then, any two
matrices from collection Cy and C; are systematic. As a result, the scheme
that they generate is a strong k£ out of n scheme with the same parameters

as S. O
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The next Theorem gives a bound on the blocklength of maximal contrast

visual secret sharing schemes, i.e., schemes with parameters [b; h, 0].

Theorem 7.1.10: Consider a mazimal contrast k out of n visual secret
sharing scheme S = (Co,Cy) with parameters [b;h,0]. Then, it holds that
b=>h- (kﬁl)

Proof. From the definition of the scheme we know that when limited to k
(or less) rows any matrix in Cy consists of at least h all-zero columns. Hence,
from the security of the scheme we get that when restricted to k — 1 rows, all
matrices from both Cy and C; collections will have at least h all-zero columns.

What is more, since [ = 0 it follows that in any matrix in C; there are
no more than k — 1 zeros in any of their columns. Considering all the above
mentioned, the blocklength b of the scheme must be at least h times the

number of combinations of (k—1)-subsets of {1,...,n},i.e., b > h-(.",). O

Remark 7.1.11: If we fix k, for large n, (kﬁl) is approximately equal to
n*~1/(k —1)!. As a result, the maximal contrast schemes described in Con-
structions III and IV (Sections 5.3.2 and 5.4.2 respectively) are quite optimal
as far as the blocklength of the scheme is concerned.

Constructions IIT and IV of k out of n visual secret sharing schemes (Sec-
tions 5.3.2 and 5.4.2, respectively) are both based on Projective Geometry,
which is characterized, as mentioned, by the Principle of Duality. What is
more, we have already created in Section 3.1 the dual of a 2 out of n visual
secret sharing scheme. However, the dual of a k out of n scheme is not always
a visual secret sharing scheme itself. As an example, let us consider two 2

out of 2 visual secret sharing schemes S' = (C},Cl) and 5% = (C2,C?), both
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with parameters [4;2,1;4!], which are generated by the following matrices

respectively:

. 0 011 . 0011
0~ Alz

0011 0101
and

0 011 0011
Ak = A2 =

0 0 01 10 01

The union of S; and Sy denoted S = (Cy,Cy) is a valid 2 out of 2 visual
secret sharing scheme with parameters [4;2,1;2 - 4!]. Let us consider now
the dual scheme of it, S* = (C§,C;). This is not a valid visual secret sharing
scheme: the dual of AZ which is in the C§ collection and the dual of A which
is in the Ci collection are the following:

1 100 1 100

€ C; Ay
1110 1 010

ey

Y

As one can see, the “or” of the 2 rows in both matrices yield one zero
and three ones, i.e., they are exactly the same, hence, there is no difference

between a black and a white pixel.

However, when the scheme is uniform this is not the case as Theorem

7.1.9 states. In order to prove it, the following Lemma is needed:

Lemma 7.1.12: Let us consider a uniform k out of n visual secret sharing
scheme S = (Cy,Cy) with parameters [b; h,l]. We denote by A a k x b subma-
trixz of any matriz in Cy or C1. Additionally, let us denote uy, iy two vectors

in V(k,2) that appear as columns in A. If w is the number of coordinates
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that iy, uy differ, and e(u;), i € {1,2} is the number of times u; appears as
a column in A, then the expression e(dy) + (—1)'"¥e(dy) is independent of

A.

Proof. We will use induction in w.

For w = 1, i.e., the two vectors differ in only one coordinate (an example
is shown in Figure 7.2): without loss of generality let us consider that
and 1y differ in their first coordinate. If we remove the first row from A,
we get a k — 1 x b matrix A’. In this case, e(i;) + e(ty) is the number of
times the £ — 1 common coordinates that are left appear as columns in A’.
Since the scheme is uniform, from Theorem 7.1.8 we know that all of its
matrices are systematic, and hence, e(i;) + e(iy) depends only on k& —1, i.e.,
is independent of A.

For w = 2: Without loss of generality, let @, and w5 differ in the first two
coordinates - an example is depicted in the following figure. Additionally, let
us denote by 3 another vector in V' (k, 2), which differs in the first coordinate
with #; and in the second coordinate with uy. Since w3 differs by only one
coordinate with ; and s respectively, from step 1 we get that e(i;) + e(i3)
and e(ty) + e(t3) are independent of A. The same holds for their difference,
e(iy) + e(i3) — e(tz) — e(u3), i.e., e(ty) — e(uz) is independent of A.

Inductive step: Let us consider that the formula is true for w = 2i 4+ 1
and for w = 2 + 2.

Then, for w = 21 + 3 we get: as done for w = 1 and w = 2 we assume
that @, and @y differ in the first three coordinates. Let us consider another
vector, i3 in V' (k, 2) that differs in the first two coordinates with «; and in one

coordinate (the third one) with . From the two first steps of the induction



94

1 1 1 1 1
1 1 1 1 1
w=1 w=2

Figure 7.2: Visual representation for w = 1 and w = 2

we get that e(i;) —e(u3) is independent of A and e(iy)+e(u3) is independent
of A, too. As a result, their sum, e(u;) —e(d3) + e(uz) +e(us) = e(dy) + e(uz)
is independent of A. Hence, for w = 2i + 3 the formula holds.

For w = 2¢ + 4 we get: as done in all previous cases we assume that
and 1, differ in the first four coordinates. Let us consider another vector,
uz in V(k,2) that differs in the first two coordinates with @; and in two
coordinates (the third and forth one) with ;. From the induction step we
get that e(;) — e(w3) is independent of A and e(i3) — e(us) is independent of
A, too. As a result, their sum, e(u;) — e(u3) + e(us) — e(ty) = e(y) — e(uz)
is independent of A. Hence, for w = 2i + 4 the formula holds.

As a result, the expression e(u;) + (—1)“e(ts) is independent of A. [

Theorem 7.1.14: Consider a k out of n uniform visual secret sharing
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scheme S = (Co,Cy1). Let F (respectively G) denote the set of all the ma-
trices in Cy (respectively Cy ) in which we have replaced the ones by zeros and
vice versa.

a. For k even, the scheme (F,G) is a uniform k out of n visual secret
sharing scheme with parameters [b; z + h, z +1].

b. For k odd, the scheme (G,F) is a uniform k out of n visual secret

sharing scheme with parameters [b;z — 1, z — h).

Proof. a. For k even: Let Ay denote a matrix in Cy and A; a matrix in C;.
Additionally, let Aj and A} be their limitations to any k rows. By u; we
denote the “all-one” vector and by wy the “all-zero” vector in V(k,2) which
may appear as columns in Aj and Aj. Since k is even, from Lemma 7.1.10
we get that z = e(u;) — e(uy) is independent of Aj and Aj.

Since the number of zeros in the “or” of the rows in Aj is at least h, the
same holds for the number of all-zero vectors in it, i.e., the number of all-zero
vectors in Aj is at least h, i.e., e(da) > h. Hence, the number of all-ones
columns in Aj is at least z + h.

Symmetrically, since the “or” of the rows in A} is at most [, the same
holds for the number of all-zero vectors in it, i.e., the number of all-zero
vectors in A} is at most [, i.e., e(dz) < [. Hence, the number of all-ones
columns in A} is at most z + .

We interchange the one coordinates with zero and vice versa in all matri-
ces of Cp and C; and get the sets F and G respectively. Then, all the matrices
in F when limited to k rows have at least z + h all-zero columns, hence, the
“or” of any k rows results is at least z 4+ h zeros. Similarly, all the matrices

in G when limited to k£ rows have at most z + [ all-zero columns, hence, the
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“or of any k rows results is at most z 4+ [ zeros. Since z +h > z + [ and
considering all the above mentioned, it follows that (F,G) is a k out of n
uniform visual secret sharing scheme with parameters [b; z + h, z + [].

b. For k odd: Let Ay denote a matrix in Cy and A; a matrix in C;.
Additionally, let A and A} be their limitations to any k rows. By u; we
denote the “all-one” vector and by wy the “all-zero” vector in V(k,2) which
appear as columns in Af and A]. Since k is odd, from Lemma 7.1.10 we get
that z = e(u;) + e(s) is independent of Aj and A.

Since the number of zeros in the “or” of the rows in Aj is at least h,
the same holds for the number of “all-zero” vectors in it, i.e., the number of
“all-zero” vectors in Aj is at least h, i.e., e(uy) > h. Hence, the number of
“all-one” columns in Aj is at most z — h.

Symmetrically, since the “or” of the rows in A} is at most [, the same
holds for the number of “all-zero” vectors in it, i.e., the number of “all-zero”
vectors in A} is at most [, i.e., e(uy) < [. Hence, the number of “all-one”
columns in A] is at least z — [.

We interchange the one coordinates with zero and vice versa in all matri-
ces of Cy and C; and get the sets F and G respectively. Then, all the matrices
in F when limited to any k rows have at most z — h all-zero columns, hence,
the “or” of any k rows results is at most z—h zeros. Similarly, all the matrices
in G when limited to any k£ rows have at least z —[ “all-zero” columns, and as
a result, the “or of any k rows results is at least z —[ zeros. Since z—1[ > z—h
and considering all the above mentioned, it follows that (G, F) is a k out of

n uniform visual secret sharing scheme with parameters [b; z — [, 2z — hl.



Chapter 8

Extensions

The basic model of considering only black and white messages (written texts
or images) can be further extended to continuous tone images, coloured im-
ages, etc. What is more, efficient techniques can be used to conceal the
very fact of the use of Visual Cryptography. Some of these techniques are

explained in the following Sections.

8.1 Continuous Tone Visual Encryption Prob-

lem

In the case of a continuous tone image where pixels have gray scaling ranging
from 0 to 255, one first technique can be followed: For each pixel with g level
of gray, a 16 x 16(= 256) array can be used which will consist of g black and
256 — g white subpixels. Each one of them, in turn, can be encrypted using
one of the techniques mentioned in the previous chapters.

However, a more efficient solution can be used. It is a 2 out of 2 scheme.
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This time each original pixel is not divided into subpixels, but it is represented
by a circle which is half black and half white. It is the relative angle between
the circles in the two transparencies that determines the colour of each pixel.
It ranges from medium gray which represents white (when the two circles have
zero relative angle) to completely black, representing black (their relative
angle is 180°). Figure 8.1 from [2] depicts an example of the sharing of a

medium gray coloured pixel:

first second stacked
transparency transparency transparencies

Figure 8.1: Sharing a medium gray coloured pixel

Additionally, a random absolute angle is used for each circle in both
transparencies while preserving the specified relative angle between them.
As a result, each transparency will look gray and can reveal no information
about the original hidden message. The only effect of the encryption is that

when the message is revealed, it will look darker than the original one.

8.2 Extended Visual Cryptography

An interesting version of the original problem is the following: the two trans-

parencies that are required to reveal the hidden message are not random
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looking patterns but ordinary - black and white - images with a visual mean-
ing. In this way, it is difficult for someone to even imagine that putting these
two images on top of one another a hidden message is disclosed. What is
more, it is easier for the dealer to recognize each transparency. This problem
is solved by the use of Extended Visual Cryptography, an example of which

one can see in Figure 8.2 taken from [30].

o]

ecrete Iimage

1

Tmage for share 1

2 oo
O (Share 1, Share 2)

O (Share 1, Share 3
Image for shave 2 O (Share 2, Share 3

O (Share 1, Share 2, Shave 3
3 Stacking resmlts

Tmage for share 3

Slhare 1

Figure 8.2: A 2 out of 3 scheme of extended visual cryptography

A 2 out of 2 extended visual scheme is described: Each pixel is divided into
4 subpixels, hence, we consider 2 x 4 matrices. Since the two transparencies
to be combined are common images like a cat or a boat, the colour of their
pixels must be taken under consideration, too.

As a result, in order to represent a white pixel, one of the top row combi-
nations of Figure 8.3 (taken from [2]) must be used, depending on the colour
of the pixels of the two image-transparencies. In order to represent a black

pixel, a choice from the bottom row combinations must be used. For exam-
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TO SHARE A WHITE PIXEL

mll mh

two white white and black two black
transparencies transparencies transparencies

TO SHARE A BLACK PIXEL

““Fuul""] «H" § »

two white white and black two black
transparencies transparencies transparencies

Figure 8.3: To share a black or a white pixel

ple, if the colour of the final pixel is white and the corresponding pixels are
white, too, then the upper left combination of subpixels is used.

The matrices that represent a white pixel are the permutations of the fol-

lowing:
0011 0011 1011
1010 1011 1011
two white shares white and black shares two black shares

Similarly, the matrices that represent a black pixel are the permutations of

the following:

1100 0011 0111
0011 1110 1110

two white shares white and black shares two black shares
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As one can see, in the two transparencies a white pixel is represented by
two black and two white subpixels, whereas a black pixel is represented by
three black and one white subpixel. In the resulting image, a white pixel is
represented by one white and three black subpixels, i.e., h = 1, and a black
one by four black subpixels, i.e., [ = 0. What is more, it is obvious that
not any of the two transparencies alone uncover any information about the
hidden message. Hence, this is a maximal contrast scheme with parameters

b h, 1] = [4;1,0].

8.3 Coloured k out of n Secret Sharing Schemes

8.3.1 Introduction

Let us consider a coloured image where ¢ colours are used, and we will denote
them ko, k1, ..., k._1. In an analogous way, a gray tone image with ¢ levels of
grayness can be considered as a coloured image where gg, g1, - . ., g.—1 denote
the different tones of gray that are used in it. An example of such a scheme

is shown in Figure 8.4 taken from [31].

In the general model, in each transparency, every pixel is divided into
b subpixels. The reason why we divide a pixel in subpixels is to define its
colour via a collection of basic colour components (red, green, blue). Each
one of them can take any one of the ¢ colours. This time it is the subpixels
that are depicted as circles of small radius. Each one of them is divided
into ¢ equal slices 0,1,...,¢ — 1. When the subpixel is of colour ¢;, then
the corresponding slice is coloured ¢; and the remaining area of the circle is

black. As a result, when the shares are placed on top of each other in a way
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= e

(a) Secret image

(c) Share 2 ' (d) Recovered secret

Figure 8.4: Example of a coloured visual secret sharing scheme from [31]

that the corresponding subpixels align, if all of them are of the same colour

¢; then the resulting colour is ¢;. In any other case it is black.

Figure 8.5 (taken from [3]) shows the subpixels of such a scheme using

k = 3 colours.

In the mathematical model of this technique, the following must be men-

tioned: First of all, the number ¢ of the colours consisting the image must
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CNIO

Figure 8.5: Example of the pixels that can be used for a 3-colour scheme

(taken from [3])

be a prime or a prime power, and hence, the colours kg, k1, ..., k._1 are rep-
resented by elements of a Galois field. As one can deduce from the figure
above, if all of them are of the same colour k;, then k; will be the colour
of the resulted subpixel. By e we denote the result of differently coloured

subpixels placed on top of each other. More specifically, ® does not refer to

any of the kg, k1, ..., k._1 colours, even if black is one of them. What is more,
if a vector’s @ coordinates are in {kq, k1,...,k._1} U {e}, then we denote by
zi(u), (i = 0,1,...,¢— 1) the number of its coordinates that are equal to
colour k;.

Definition 8.3.1.1: A k out of n c-coloured visual secret sharing scheme
S = (Co,Cy,...,Ce1) used to encrypt a coloured image is a set of collections
of n x b matrices whose elements are in a Galois field GF(q), ¢ < q. Each
collection corresponds to one of the colours that are used in the image. The
matrices that are contained in a collection C;, 0 < i < ¢— 1, are the different
versions of representing a subpixel of colour ¢;. More specifically, the n rows
of each matrix correspond to the n transparencies that are distributed to the
participants of the scheme and the b elements of each row define the colour of

its subpixels. The scheme must comply with the following three conditions:
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1. For any matrix in a collection C;, 0 < ¢ < ¢ — 1, the “or” of any k out of
its n rows must satisfy z;(u) > h.

2. For any matrix in a collection C;, 0 < i < ¢ — 1, the “or” of any k out of
its n rows must satisfy z;(u) <, for every j # i.

3. The collections C, 0 < j < ¢ — 1, obtained by limiting all the n x b
matrices in the corresponding C; to s < k rows, i1 < ip < ... < 45, are
identical, namely, the matrices that they contain are the same and appear in
the same frequencies.

As already mentioned in the definition of a black and white visual secret
sharing scheme, the parameters h and [ (h,[ € N) must comply the following
condition: 0 <[ < h < b: the condition [ = 0 may hold, since there is a
possibility that no white subpixel exists in a black pixel. The condition [ < h
must hold since the contrast of the scheme is defined on this difference. Last
but not least, h < b holds because if h = b the security of the scheme would
be compromised.

The parameters of such a c-coloured visual secret sharing scheme S =
(Co,C1,...,Ceq) wWill be [c;b; h,l;7], where ¢ is the number of the colours,
b the blocklength of the scheme, i.e., the number of subpixels a pixel is
divided into, and r the cardinality of the collections. It holds that h > [ and
ICol = |Ci|=...=|Ccq] =1

In order to construct a c-coloured visual secret sharing scheme the fol-

lowing are necessary:

Definition 8.3.1.2: An n-arc of functionals G, Fy, Fs, ..., F,_1onV(k,q) is
called coinciding with respect to G if for every k-subset K of {1,2,...,n—1}

it holds that
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(ﬂ F;lu)) NG (1) # 0. (8.1)

ieK
We denote s(k,q) the maximum n for which a coinciding n-arc of func-

tionals with respect to G exists in V(k, q).

Lemma 8.3.1.3: Let s(k,q) denote the mazimum coinciding n-arc of
functionals in V(k,q). Then, for any Galois field GF(q) and k-dimensional

space V(k,q) the following statements hold:

1. s(k,q) > q.

2. If k— 1 and g — 1 are not relatively prime, then s(k,q) > q+ 1.
3. s(k,q) > k.

4. If g > 2 or k is odd (and q =2), then s(k,q) > k+ 1.

Proof. 1. Let us consider as functionals G, Fy, ..., F,_; the vectors in V' (k, q)
of the form (1,w},...,wF ™), where w; € GF(q), 1 <i < ¢ —1 and all the
vectors from the permutations of the w/ elements. It can be easily verified

that the relation (ﬂ le(1)> N G7Y(1) # 0 holds, since there exists at
least one vector in l‘eflzkz,q), the vector [1,0,...,0], that fulfills it. Hence,
s(k,q) = |GF(g)| = ¢.

2. Let us add vector (0,0,...,1) to the above described g-arc s(k, ¢) and
obtain a ¢ 4+ 1 set of functionals. If £ — 1 and ¢ — 1 are not relatively prime,
then the mapping w — w*~! is not surjective, and hence, there exists at least
one element € GF(q) such that w*! # z for every w € GF(q). Since
this holds, the inner product of the functionals in s(k,q) with the vector

(—=,0,0,...,1) is non-zero. In order to make this inner product equal 1,

we do the following: we calculate the values y;, 1 < ¢ < ¢ which are the
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results of each one of the functionals to the vector (—x,0,0,...,1). Next,
we divide the members of s(k,q) by their corresponding non-zero value y;,
i.e., we multiply by —y;. As a result, the outcome of all the functionals to
vector (—x,0,0,...,1) equals 1 and we have constructed a coinciding arc of
functionals of size ¢ + 1. Hence, s(k,q) > ¢+ 1.

3. Let us consider the set s(k,q) to consist of all the unit vectors of
V(k,q), i.e., (1,0,...,0), (0,1,0,...,0), etc. The inner product of each one
of them with the vector (1,1,...,1) equals 1, hence, we have created a k-arc
of coinciding functionals, i.e., s(k, q) > k.

4. If ¢ > 2, or if ¢ = 2 and k is odd, we can find a non-zero element ¢ in
GF(q) such that the equation A = k — 1+t # 0. Then, the inner product of
the vector A™1(1,...,1,) to vector (1,...,1) equals \" (k—1+¢) = A1\ =
1. We add vector A™(1,...,1,t) to the k-arc above, and get a k + 1-arc of
coinciding functionals. Hence, s(k,q) > k+1if ¢ > 2 or ¢ = 2 and k is
odd. O

8.3.2 A k out of n c-colour scheme construction

In order to construct a k out of n c-colour visual secret sharing scheme

S = (Co,Cy,...,Ce1) we do the following steps:

1. Let us choose a Galois field GF'(q) such that ¢ > ¢ and s(k,q) > n+ 1.

Then, we select any c-subset {ko, k1, ..., k.—1} of elements in GF(q).

2. We create an n + 1 = (¢ + 1)-arc of coinciding functionals in V'(k, q)

using Lemma 8.3.1.3.

3. For each k;, 0 < i < ¢—1, we form the representation matrices A; of the
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functionals Fj, 1 < j < n using only the vectors @ in V'(k, ¢) such that
G(u) = k; as follows: we construct an n x k matrix B whose rows are
the n functionals and another matrix F, with dimension k x ¢*~', whose
columns consist of all the ¢*~! vectors in V (k, q) such that G(@0) = k;.
Then, the multiplication of B and F results in a new n x ¢*~! matrix
named A;, which is the representation matrix of these functionals. It

holds
(ﬂ F;l(k») NGk £ 0 (8.2)

€K

for any k subset K of {1,...,n} and i € {0,...,c— 1}.

4. The collections C;, 0 < 7 < ¢ — 1 of S consist of all the matrices
generated by permuting the columns of the corresponding A; matrices

created in the previous step.

Theorem 8.3.2.1: The above scheme is a mazximal contrast c-colour k out
of n visual secret sharing scheme with parameters b = ¢*=', h =1, 1 = 0,

and r = ¢,

Proof. Without loss of generality let us consider ¢ = ¢q. As already mentioned
in Section 5.4.1, the result of a functional in V' (k, q) with all the ¢* different
vectors in V (k, q) equals ¢*~! times the ¢ different elements of GF(q). Hence,
the blocklength of the scheme is b = ¢*~!.

From equation 8.2 we conclude that in each of these matrices, when lim-
ited to any k rows, there exists at least one “all-k;” column. Since the vectors
that correspond to the functionals are linearly independent, from Lemma

5.3.1.8 we get that each k-length vector appears exactly once. Hence, h = 1.
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It is obvious that each representation matrix is created considering dif-
ferent vectors in GF(q), since, there is no @ € GF(q) such that its image via
G(@) takes two different values, say k;, k;, 0 <4,j < k—1, at the same time.
Let us create a matrix A which is the concatenation of all the representation

k—1

matrices A;, 0 < ¢ < ¢ — 1. Since each A; consists of ¢ columns, A will

I = ¢* columns. What is more, as mentioned in 5.3.1, the set

consist of ¢- ¢~
that is constructed by the vectors (0,0,...,1) and (1,w},...,wF ™), where
w; € GF(q), 0 <i < q—1, constitutes a (¢+ 1)-arc, i.e., an (n+ 1)-arc. This
implies that the n functionals that are used to create A are k-wise linearly
independent and as a result, from Lemma 5.3.1.8 when A is limited to any
k rows we get that each vector in V (k, q) occurs exactly once as a column in
A. Hence, the all-k; columns appear exactly once, each in its corresponding
matrix A;. For example, since the all-zero vector appears as a column in
matrix Ay, no such vector appears as a column in the rest of the A; matrices.
As a result, for the scheme it holds that [ = 0.

For the security of the scheme: As already mentioned, the vectors that
index the rows of A; are k linearly independent, and as a result they are k—1
linearly independent, too. What is more, as already mentioned, each matrix
A, consists of ¢*~! columns. Hence, when they are limited to k& — 1 rows, from
Lemma 5.3.1.8 we get that each vector in V(k —1,q), [V(k —1,q)| = ¢" !,
is calculated exactly once as a column of the matrix. As a result, all the
matrices A;, 0 <17 < g — 1, when restricted to any k£ — 1 rows consist of the

same columns, namely, they are indistinguishable. O]

Remark 8.3.2.2: If ¢ is a prime power and ¢ = ¢, then the following types

of schemes can be constructed taking Lemma 8.3.1.3 under consideration:
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1. A k out of k c-colour visual secret sharing scheme for all k.

2. A k out of ¢ —1 c-colour visual secret sharing scheme for & < ¢. As one

can see, in this case n = ¢ — 1.

3. A k out of ¢ c-colour visual secret sharing scheme when k£ —1 and ¢— 1

are relatively prime.

The following construction depicts the above-described model, case 3 in par-
ticular:

Example 8.3.2.3: We will construct a 3 out of 5 5-colour visual secret
sharing scheme. Let us choose ¢ = ¢ = 5 and as a result GF(5) will be used.
Additionally, we choose V' (k,q) = V(3,5). Since k—1 =2 and ¢ — 1 =4 are
not relatively prime, we can create a 6-arc of coinciding functionals, according
to Lemma 8.3.1.3 - 2nd part: We take the vectors created by the formula
(1,w,...,wk 1), for every w € GF(5). These are the vectors (1,0,0), (1,1, 1),
(1,2,4), (1,3,4), and (1,4, 1). To these 5 vectors we add vector (0,0,1). As
one can see, element w +— w*™! # 2 for every w € GF(q). Hence, the value
of the inner product of (—2,0,1) = (3,0, 1) with any of the 6 vectors is non-
zero. In order for this result to equal one, we divide each vector by this result.
Then the 6-arc of coinciding functionals will be: F} = (2,0,0), Fy = (4,4, 4),
F3=(3,1,2), F, =(3,4,2), F5 = (4,1,4), and G = (0,0,1). As one can see,
the inner product of all these 6 vectors with the vector (3,0, 1) equal 1.

We now create the 5 representation matrices:

Functional G = (0,0,1) equals 0 for the following vectors in V(3,5):
(0,0,0), (0,1,0), (0,2,0), (0,3,0), (0,4,0), (1,0,0), (1,1,0) (1,2,0), (1, 3,0),
(1,4,0), (2,0,0), (2,1,0), (2,2,0), (2,3,0), (2,4,0), (3,0,0), (3,1,0), (3,2,0),
(3,3,0) (3,4,0), (4,0,0), (4,1,0), (4,2,0), (4,3,0), and (4,4,0).



110

Hence, the representation matrix for the zero value is the following:

0000022222444441111133333-
0432143210321042104310432
A=10123434012123404012323401
0432132104104324321021043

01234401233401223401123420

Functional G = (0,0,1) equals 1 for the following vectors in V(3,5):
(0,0,1), (0,1,1), (0,2,1), (0,3,1), (0,4,1), (1,0,1), (1,1,1) (1,2,1), (1,3,1),
(1,4,1), (2,0,1), (2,1,1), (2,2, 1), (2,3,1), (2,4,1), (3,0,1), (3,1, 1), (3,2, 1),
(3,3,1) (3,4,1), (4,0,1), (4,1,1), (4,2,1), (4,3,1), and (4,4, 1).

Hence, the representation matrix for value one is the following:

0000022222444441111133333-
4321032104210431043204321
A1=12340101234340121234040123
2104304321321041043243210

4012334012234011234001234

Functional G = (0,0,1) equals 2 for the following vectors in V(3,5):
(0,0,2), (0,1,2), (0,2,2), (0,3,2), (0,4,2), (1,0,2), (1,1,2) (1,2,2), (1,3,2),
(1,4,2), (2,0,2), (2,1,2), (2,2,2), (2,3,2), (2,4,2), (3,0,2), (3,1,2), (3,2, 2),
(3,3,2) (3,4,2), (4,0,2), (4,1,2), (4,2,2), (4,3,2), and (4,4,2).

Hence, the representation matrix for value two is the following:
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0000022222444441111133333
3210421043104320432143210

2
I

4012323401012343401212340
4321021043043213210410432

3401223401123400123440123

Functional G = (0,0,1) equals 3 for the following vectors in V(3,5):
(0,0,3), (0,1,3), (0,2,3), (0,3,3), (0,4,3), (1,0,3), (1,1,3) (1,2,3), (1,3,3),
(1,4,3), (2,0,3), (2,1,3), (2,2,3), (2.3,3), (2,4,3), (3,0,3), (3,1,3), (3,2,3),
(3,3,3) (3,4,3), (4,0,3), (4,1,3), (4,2,3), (4,3,3), and (4,4, 3).

Hence, the representation matrix for value three is the following:

-0000022222444441111133333-
2104310432043214321032104
A3=1123404012323401012343401 2
1043243210210430432132104

234011234001234401233401 2

Functional G = (0,0,1) equals 4 for the following vectors in V(3,5):
(0,0,4), (0,1,4), (0,2,4), (0,3,4), (0,4,4), (1,0,4), (1,1,4) (1,2,4), (1,3,4),
(1,4,4), (2,0,4), (2,1,4), (2,2,4), (2,3,4), (2,4,4), (3,0,4), (3,1,4), (3,2,4),
(3,3,4) (3,4,4), (4,0,4), (4,1,4), (4,2,4), (4,3,4), and (4,4,4).

Hence, the representation matrix for value four is the following:
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0000022222444441111133333_
1043204321432103210421043
Ay=13401212340401232340101234
3210410432432102104304321

12340012344012334012234¢01

As one can see, in each one of the matrices A;, 0 < ¢ < 4, there is a
column whose elements are all equal to number i. The parameters of the

scheme are [¢; b; b, ;7] = [5;25; 1, 0; 25!].



Chapter 9

Applications of Visual

Cryptography

Although Visual Cryptography has some advantages compared to other cryp-
tographic schemes, practical applications based on it took a while to evolve.
Two were the main reasons: the visual noise added at the printing process,
and the difficulty in the correct alignment of the transparencies. Some so-
lutions to the latter were developed, such as a frequency domain alignment
scheme [18].

Another problem of Visual Cryptography is that because of the expansion
of the original image, the schemes are not effective when the hidden message
is longer than a single word or a small phrase. The same holds for images to
be shared with high resolution.

One field where Visual Cryptography can be used is e-voting: Since every-
thing is handled by a computer program and there is no physical substance of
a vote, there must be some way for all voters to verify that their voting deci-

sion is counted correctly. However, a receipt that clearly declares the identity
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of the voter along with their voting choices may cause coercion or vote selling
problems. Some solutions using Visual Cryptography are proposed.

For example, Chaum in [19] presents a secret-ballot receipt system. In this
case, after a voter has made their choices, a two-layer (two transparencies)
receipt is created using a 2 out of 2 visual secret sharing scheme and then
is printed. When these two layers are put on top of each other, the choices
of the voter are shown. However, when separated, an unreadable pattern of
random black and white subpixels is only visible in the place of the vote. One
layer is kept by the voter while the other is destroyed by a poll worker before
the voter. A serial number that is printed on the layer the voter keeps enables
him to verify that his voting decisions was correctly counted by the system.
In figure 9.1 from [19] one can see the initial representation of the letter
“e”, the two layers (transparencies) produced using the visual secret sharing
scheme and their representation when they are stacked together in Chaum’s
secret ballot receipt system. What is more, electronic voting schemes have
been proposed that combine visual cryptography and digital processing [18].
In [34], Visual Cryptography is used in a remote Internet voting scheme as

assistance to transform the construction into a verification protocol.

Initial letter "e" Top layer Bottom layer Stacked layers

Figure 9.1: Chaum’s secret-ballot receipt

Another field where Visual Cryptography can be applied is Biometric Au-
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thentication. As an example, ID cards using fingerprints as an authentication
medium can be constructed as follows: a fingerprint image of an eligible per-
son is divided into two shares. One is placed on their ID card while the other
is stored in a centralized database. During the authentication phase, the
two images are superimposed and from the resulting fingerprint the minutiae
(small details) of the finger are extracted. Next, a fresh image of the finger-
print is obtained with the help of any fingerprint scanner and the minutiae of
the latter are compared with the minutiae of the secret fingerprint image. If
they match, the authentication succeeds. An example of such a construction
is presented in Figure 9.2 from [23]. Since Visual Cryptography Schemes are
perfectly secure, ID card spoofing can be avoided. What is more, the side

effects of a potential database compromise are eliminated.

Figure 9.2: (a) Original image, (b) First share, (¢) Second share, (d) Super-

imposed shares
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Many other constructions and improvements have been presented, re-
garding authentication using visual cryptography schemes. Examples can
be found in [24], [25], [26] and [27]. Additionally, methods for creating im-
age copyright protection and watermarking using Visual Cryptography are
presented in [32] and [33]. An important use of Extended Visual Cryptogra-
phy could be the transfer over the Internet of military maps or commercial
secrets.

Several enhancements involving security have been presented, too: in
[28] for example, the use of Digital Watermarking is introduced in visual
secret sharing schemes. Other approaches involve encoding without pixel
expansion, as described in [29]. Additionally, the concept of sharing multiple
secrets is described in [35] and [36]. The general technique that is used is that
the first secret message is revealed by stacking the transparencies, while the
second one by first rotating one of them. Research is also done regarding the
combination of Coloured and Extended Visual Cryptography (an example in
[37]), where two meaningful ordinary coloured images are used to encrypt a
secret coloured image.

An application of a coloured visual secret sharing scheme can be the share
of special short messages whose symbols are colours and not alphanumerical
characters, for example passwords or combinations to safes. Exactly like all
the other techniques described in previous sections, no calculations of any
form are necessary since the decryption is very simple and is accomplished

by the human visual system.



Chapter 10

Conclusion

From 1994, where the first paper was presented by Shamir and Naor, Visual
Cryptography has never stopped being a field of research with steadily grow-
ing interest. Its basic model is still being enhanced in different ways: many
innovative ideas and extensions are proposed. The special properties that
make Visual Cryptography an interesting field of study are its perfect safety,
effectiveness, and simplicity. These properties are fulfilled because its con-
structions are based on special mathematical models. As digital technology
becomes more and more part of our lives, Visual Cryptography may play a

significant role in the future.
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Notation List

S = (Co,C1) | A visual secret sharing scheme consisting of two collections of
matrices, Cy and C;
Co: A collection of matrices each one of which represent the shares of a
white pixel
Cy: A collection of matrices each one of which represent the shares of a
black pixel
Ay A matrix from which collection Cy is constructed via permutation
of its columns
Ay A matrix from which collection C; is constructed via permutation
of its columns
b The blocklength of the scheme, i.e., the number of subpixels a pixel
is divided
w(70) The Hamming weight, i.e., the number of non-zero coordinates of a
vector U
2(7) The number of zero coordinates of a vector U
The minimum number of white subpixels in a white pixel.
h Alternatively, the minimum number of zeros required in the

blocklength of a matrix to represent a white pixel
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The maximum number of white subpixels in a black pixel.
l Alternatively,the maximum number of zeros allowed in the

blocklength of a matrix to represent a black pixel

a The relative difference between a black and a white pixel.

Defined in [2] as a = (h —[)/b. Must be as large as possible

T The cardinality of Cy and C; (r = |Co| = |C1])

GF (k) | The Galois Field of order k, where k is a prime or a prime

power

A vector space over the Galois Field GF(q), i.e., the set of all

V(k,q) | possible k-dimensional vectors over GF'(q). As a result,

\V(k,q)| =q*

PG(k,q) | A projective space over GF(q) which consists of all the non-

zero subspaces of V(k + 1,¢q) with respect to inclusion

r(k,q) | The maximum n for which an n-arc exists in V(k, q)

s(k,q) | The maximum n for which a coinciding n-arc

of functionals exists in V(k, q)
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