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ITepiAndn

Sy napodoa dtmhopatixnd| epyaocia, avolloupe Yvwotols, guhaiilele (in-
centive compatible) xou un, unyoviouolc dnuonpactdv yio dragruioec oto
dradixTuo, divovtag éupaon oto Nevixeuvuévo Mrnyoavioud Aehtepne Twrc (Gen-
eralized Second-Price Mechanism). Apyixd, delyvouye pe avtinopadelypora
OTL XAMOIEC amb TIG OLOTNTES TOU Loy VoLV Yial TIC AVUVECELS AMOANYPEVES -
pO6vou (envy-free assignments) ot napouctdlovtar oto ‘Position Auctions’
tou Hal R. Varian [1], 8ev txavonowotvtar and cOvoha toopponiidy Nash.

Y1 ouvéyeta, Bploxoupe avuinopadelypata yio To x0plo Yedpnuo oto
‘Repeated Budgeted Second Price Ad Auction’ twv A. Arnon xoat Y. Mansour
2], To omolo agopd v Unoupln wopporniag Nash. Emniéov, napouctdloupe
pla cuviixn xdtw and v onola undpyel woppornio Nash yia dUo mpdxtopeg
(agents) pe dtapopeTinée, ouvtnEnTIXéS TPooopés (conservative bids).

Téhog, avagepdpaote ato poviéro nou Ya mapouctacstel oto ‘On the
Stability of Generalized Second Price Auctions with Budgets” twv J. Diaz,
I. Twtne, E. Kvpolone, E. Mopxdxne xou M. Serna [4]. Muyxexpipéva,
e€etdlovue 1N oyéon avapeoa oe toopponicg Nash xo oe avadéoeic amoh-
Aorypévec-@iovou otny mepinTwor Omou xdle TaixTng €YEl EVAL GUYXEXPUUEVO
nocé nou unopel va Lodéder (budget constraint), xat napovotdlouvye avopopixd
To x0PLAl AMOTEAEGUATA TNE DOUAELAS UTHG.
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Chapter 1

Introduction

“Advertisers constantly invent
cures to which there is no
disease.”

-Unknown

An auction! is a traditional method of buying and selling goods or ser-
vices by offering them up for a bid. The auctioneer ranks the participants
according to their bid and the product is being sold to the person who bids
the highest.

Auctions have a long history, having been recorded as early as 500 B.C.
when Herodotus reported the use of an auction. For most of history, they
have been a relatively uncommon way to negotiate the exchange of goods
and commodities, in contrast with haggling and sale by set-price. Before
the 17th century, auctions were quite infrequent and were usually used to
sell women for marriage, slaves, spoils of war or even to liquidate property
and estate goods (atrium auctionarium). One of the most bizarre auctions
recorded in ancient times, took place in the year 193 A.D. when the entire
Roman Empire was put up for auction after being sacked. Also in China,
there is evidence that Buddhist monks were using auctions in order to fund
the creation of temples. It is unknown whether these auctions were ascending
or not, but according to the word origin, someone could deduce that they
were ascending.

The earliest modern era records of auctions appeared in the Oxford En-
glish Dictionary in 1595. Following that, in the late 17th century, the London
Gazette reported auctioning for selling art at coffeehouses and taverns while
in the early 18th century, the first auction houses were created. The oldest
in the world is Stockholm Auction House in Sweden, established in 1674.
Nowadays, the world’s largest auction house is Christie’s, established around

'The word “auction” is derived from the Latin auges which means ‘I increase’ or ‘I
augment’.
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INTRODUCTION Chapter 1.

1766, followed by Sotheby’s, which held its first auction in 1744. Report-
edly, back to 1887 in Netherlands, a grower named Jongerling, discovered a
strong demand for his produce. Instead of selling his products to a specific
dealer, he decided to allow buyers to compete with each other by using an
auction. Similarly, during the same year, a fisherman in Germany decided to
use auctions every time he was arriving in port, in order to rapidly liquidate
his catch. Having been recognised as an efficient business tool that meets
the needs of the public, over the 20th century, auctions had a tremendous
success in marketing real estate and personal property.

But why are auctions so preferable and when are they appropriate? Con-
verting property, possessions or inventory to cash fast is a major benefit of
the auction method of marketing. In addition, the majority of sellers prefer
auction method to sell goods due to following benefits. First, competitive
bidding brings higher prices while auction’s terms, conditions, day and time
will be seller’s decision. Second, carrying costs, which are usually high, are
limited and the products are sold at current market value. Furthermore,
auctions are event oriented and high impact marketing tools that draw at-
tention to the seller’s property, thus providing maximum exposure and vis-
ibility to the market. Regarding buyers, they are the ones who actually
determine final prices and market values of the purchased items. They walk
away knowing that they bought an item only one bid higher than someone
else was willing to pay. Therefore, everyone is satisfied. In the final analysis,
the auction method is generally used in situations where sellers do not have
a good estimate of the buyers’ true values and where buyers do not know
the values of the other participants.

In recent years, the development of the Internet has led to a significant
rise in the use of auctions. Online auctions broke down and removed phys-
ical limitations of traditional auctions such as geography, presence, time,
space and small target audience. As a result, auctioneers can solicit bids
via the Internet from a wide range of buyers in a much wider range of com-
modities than was previously feasible. This environment became ideal for
selling sponsored search advertising space. By now, online ads via auction
mechanisms are responsible for billions of dollars in annual revenue for many
Internet companies and this major source of income explains why they are
a booming industry. Online ads are essential to monetize valuable internet
services, offered free to the general public, like search engines, blogs, and
social networking sites. As a result, Ad Auctions have effectively created a
giant virtual marketplace where people can gather to buy, sell, trade and
check out the goods of the day. The auction site that leads the online auc-
tion industry is eBay and according to “Nielsen Ratings”?, it is among the
top ten most-trafficked sites on the Internet.

2Nielsen Ratings is the primary source of audience measurement information. The
system was developed by Nielsen Company.
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Figure 1.1: An example of sponsored search results

In this massive virtual marketplace, the benefits of online auctions are
great for everyone who takes part in the auction (advertiser, user, search
engine). It is an ideal place to capitalize on readily available, widespread
exposure, selling products almost immediately with no overhead costs, no
website of your own and no initial investments (sellers pay between 2 and
5 percent of their final sale price to the auction site). Moreover, online ad-
vertisers are able to observe the results of their campaign within days or
even hours. The rapid increase of advertisers in such auctions creates new
channels for new products offering buyers an extremely desirable search
experience and favorable purchasing conditions. Last, Ad Auctions are ex-
tremely beneficial for search engines. Whenever a user performs a search
with commercial interest e.g. on Google, a position auction takes place and
then, the winning ads appear next to the search results that Google outputs.
For every such auction, Google and other search engines like Yahoo! and
Bing, earn several cents and these amounts add up to billions of dollars every
year. For these reasons, the last decade, there is an urgency to study and
deeper analyze the game theoretical side of Ad Auctions. Weighting all the
information above, it could be said that any slight theoretical improvement
of their mechanisms would be a step of significant importance in real-life
applications.

Before continuing to the thesis outline, we should first describe in detail
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1.1. THESIS OUTLINE Chapter 1.

the actual idea and process of sponsored search. When a user enters a query
(search) into a search engine, he gets back a page with results. This page
contains the most relevant to the query links, named organic results, and
the paid advertisements. The ads are clearly distinguishable and search
engines like Google, Yahoo! and Bing allow ads to be displayed on the top
or on the side of the organic results. Typically, search engines allow up to
three ad links on the top, named mainline slots, and up to eight alongside,
named sidebar slots. Figure 1.1 depicts an example. The main advantage of
such ads, is that they are relevant to the keyword (query) that the Internet
user enters and for this reason, it is more likely for a transaction to occur.
When the user clicks on a certain ad link, he is sent to the advertiser’s web
page and the advertiser pays the search engine for sending the potential
buyer to his web site. Except for the previous and most popular charging
model, the “pay-per-click” (PPC) payment, there are also two more charging
schemes for the selected ads. The “Pay-Per-Impression” (PPI) model, where
each advertiser is charged every time his ad is displayed and the “Pay-Per-
Transaction” (PPT) model, where each advertiser is charged only when a
transaction occurs.

1.1 Thesis Outline

In chapter 2, we describe the following known auction mechanisms: First-
Price Auction, Second-Price Auction and VCG mechanism. Afterwards, we
present the Generalised Second-Price Ad Auction and the VCG mechanism
implemented to that setting. For each mechanism, we show its truthfulness
or non-truthfulness giving proofs or examples, respectively.

In chapter 3, we present the Ad Auction model used by Google and
Yahoo, that was introduced in [1]. We focus to the equilibrium analysis of
position auction. More precisely, in [1], a new set of equilibria is introduced,
the symmetric or envy-free equilibria, which is a subset? of pure Nash equi-
libria. Moreover, the envy-free equilibria sets have some properties given
in [1]. At this point, we found counterexamples proving that some of these
properties are not satisfied under pure Nash equilibria sets.

In chapter 4, I introduce the main field of my thesis which refers to Ad
Auction models under budget constraints focusing on the work of [2]. Ini-
tially, the model is described in details giving examples of how it works for
two players and then, we present the preliminaries and properties of pure
Nash equilibrium existence, according to [2]. Secondly, we construct a coun-
terexample 1 for its main theorem. This counterexample is a result under
my collaboration with my colleauge George Mpirmpas. The main theorem
is proved using an induction method. The base of the induction is a claim
which refers to the PNE existence for two players. Our counterexample 1

3This property is not satisfied under budget constraints

14



Chapter 1. 1.1. THESIS OUTLINE

concerns this claim. However, the problem we observed is also extended to
the other induction steps, the general case of any number of agents. More-
over, I present a second counterexample 2 for the second part of theorem
3.1 in [3] and prove a new theorem which is a similar version to the previ-
ous. Last, I present a second theorem about a special case of PNE existence
for two players and non-identical, conservative bids. The condition of this
theorem is simple and does not involve the critical bids.

In chapter 5, we present the work of an on-going paper [4] of J. Diaz, Y.
Giotis, L. M. Kirousis, E. Markakis and M. Serna which concerns second-
price auctions for the allocation of advertisement space under budget con-
traints. The definition of envy-free assignment slightly differs from that one
in chapter 3, since there also exists a budget constraint for each player. We
examine the relation between envy-free assignments and pure Nash equilib-
ria, and present some of the main results of this work.

15
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Chapter 2

Auction Mechanisms

“Plato is dear to me, but dearer
still is truth.”

-Aristotle

Mechanism design is a subfield of economic theory which is interested in
designing economic mechanisms in the terms of social choice. The latter can
be expressed as an aggregation of preferences towards a single joint decision.
A function that maps various individual preferences to a single decision is
called social choice function.

In the context of auctions, we can say that a social choice function maps
the players’ preferences into a single outcome which will be the identity of
the winner and it depends on the auction rules. The goal in auctions is to
optimise an objective, such as money and social welfare (to give the item
to the player who desires it more than any other player, e.g. to the highest
bidder). Social welfare is given by the aggregation of all players’ values for
a certain allocation outcome. Formally, there are the following:

- Set of players I = {1,...,n}.
- Set of alternative outcomes A.

- For every player i, a set of possible values (strategies), V; = {v; : A —
R}, where v;(a) expresses how much player ¢ values an outcome a € A.
In fact, it expresses how much he values the item he gets in an outcome
«. The preference profile over the set A for a player i is given by V;,
since it contains his values for all the feasible outcomes. The Social
Welfare (SW) for an a € A is given by >, vi(«).

In the context of social choice, as mentioned above, every player has
his own preferences that reports them into a mechanism. The mechanism
outputs a single joint decision which is to be implemented.

17



2.1. FIRST-PRICE (SEALED-BID) AUCTION (FPA) Chapter 2.

Definition 2.0.1. /8/. A mechanism (f,p) is a social choice function f :
Vi x Vo x -+ xV, = A and a vector of payment functions p = (p1,...,pn),
where p; : V1 X Vo -+ x V,, = R is the amount that player i pays.

Due to the need of measuring the level of every player’s satisfaction,
the term wutility was introduced and defined by w;(vi,...,v,) = vi(a) —
pi(vi,...,vp), where a = f(vi,...,v,) € A. The value functions’ arguments
are outcomes while the payment functions’ arguments are valuations. Also,
a player ¢ may lie, meaning that he reports a different amount v; from his
value v;. The reported values are called bids. Even if he lies (b; # v;), his
utility (satisfaction) is going to be computed by the same function:

!/ / ’

wi(v—,v;) = vi(a ) —pi(v_i,v;), where o = flo_s,v;).

Definition 2.0.2. [8]. A mechanism is called incentive compatible (or
truthful or strategy-proof) if for every player participating in the auction,
Yu; € Vi and Y, € V;, his utility when he lies (bidding v;, v; # v;),is at
most his utility when he bids his value v;. That is, vi(a') — pi(v;,v,i) <
vi(a) — pi(vi,v_;), where a = f(v;,v_;) and a = f(U;,’U_Z‘).

Intuitively, the above definition expresses the preference of a player to
bid his value (truthfully bidding), since this option gives him a (weakly)
higher utility than any other, different from his value, bidding option.

Definition 2.0.3. A mechanism can be strategically manipulated by a
player © if, for an outcome «, his utility becomes greater if he bids untruth-
fully than his utility if he bids his value.

It turns out that a mechanism is incentive-compatible when it cannot be
strategically manipulated.

2.1 First-Price (sealed-bid) Auction (FPA)

A First Price sealed-bid Auction is a type of auction in which bidders si-
multaneously submit sealed bids competing for a single item. The one who
will submit the highest amount is awarded the object being sold and pays
equal to the bid amount.

However, under such rules, the bidder will prefer to submit a different
amount instead of his true value because, when a player with value v; wins
an item and pays v;, gets a total profit-utility of zero. Due to this fact,
submitting a lower bid than his value v;, it is possible to win the item
obtaining a positive utility, u; = v; — v; > 0. Therefore, this form of
auction is not incentive-compatible and a bidder bids an amount equal to
(1— M) -v; which means, the more players participate, the more close to
his value a player bids. The payment rule of this mechanism was gradually

18



Chapter 2. 2.2. SECOND-PRICE AUCTION (SPA)

recognised to be unstable because it led to cycling bidding patterns and low
revenue [9].

From the game-theoretic point of view, the results and strategies of First
Price sealed-bid Auctions are equivalent to those of the Dutch! auction.

2.2 Second-Price Auction (SPA)

A Second Price Auction refers to a single item and it is also known as Vick-
rey’s Second Price Auction, as it was first described by Professor William
Vickrey in 1961. It is a truthful and socially efficient mechanism which
means that it maximizes social welfare. The bidder who submits the high-
est price is awarded the object being sold, but instead of his bid amount,
he pays the second highest bid. In this way, the winner can never affect
the price that he is going to pay and the mechanism cannot be strategically
manipulated. Consequently, bidders have no incentive to misreport their
true values, thus we have an incentive-compatible mechanism.

In practice, second-price auctions are either sealed-bid?, in which bid-
ders submit their bids simultaneously, or English auctions, in which bidders
continue to raise their bids until only one bidder remains, the winner.

2.3 Vickrey-Clarke-Groves mechanism (VCG)

Based on Vickrey’s auction, Edward H. Clarke and Theodore Groves de-
vised a new mechanism in order to treat public goods problems. It was first
introduced by Clarke in 1971 [13] and later by Groves in 1973 [14]. This
mechanism is a generalisation of Vickrey’s Auction which concerns multi-
ple items and works not only for homogenous but also, for heterogenous
items. VCG assigns the items with an efficient socially way while still en-
sures bidders that reporting their true valuation is a dominant strategy. The
dominant strategy property provides reliability to the efficiency prediction,
because every participant knows that the result does not depend on their
potential assumptions about the others’ values and strategies. In addition,
VCG mechanism is the only one who obtains all the previous properties.

Formal setting of VCG

Consider a set of n players I = {1,...,n} and A a set of alternative out-
comes. Let v;(a) be player’s i value for any outcome o € A. Then, each
bidder submits a bid (reported value) b;(«). In the next part of this section,

In the Dutch auction, the auctioneer begins the process denoting a high asking price
which is lowered until a bidder is able to accept the current price, or a reserve price is
reached.

2Sealed-bid type: Bidders simultaneously submit written bids without knowing the
bids of the other people participating in the auction

19



2.3. VICKREY-CLARKE-GROVES MECHANISM (VCG) Chapter 2.

we show that it is optimal for everyone to bid his value, b; = v;. The mech-
anism runs a computation and chooses the outcome that maximizes social

welfare (SW):

f(blv s abn) € argmaXgeA Z bi(a)v

el

and charge prices p; given by:

pi(v1,...,0p) = Maxgea ij(ﬂ) - ij(a), where oo = f(by,...,by),
J#i J#i

and this amount can be indicated as the impact, that his presence causes on
the other participants, or else, his social cost. That is the difference between
what they would get if bidder ¢ did not participate in the auction and what
they get when he is present. Moreover, the first term of the charge form:
maxge A Zj# b;j(B) is known as Clark pivot rule. It has some very good
properties such as

individual rationality: for every player i, v; — p; > 0. All participants are
getting a non-negative utility. No one is forced to bid.

no positive tranfers: p; > 0. The mechanism does not pay anything to the
bidders.

It also represents the maximum social welfare when player 7 is absent and has
no strategic importance for him, since this amount will be the same regard-
less on what he says. Thus, from player i’s point of view, maxge 4 Z#i bi(B)
is a constant. Also, notice that his payment depends only on the other par-
ticipant’s reported values and not on what player ¢ has reported. His final
utility equals to u;(vi,...,v,) = vi(@) — pi(vi, ..., V).

» Ezample.

To illustrate how VCG mechanism works, lets describe here an example.
Assume that we have two players, i = 1,2 and two items, A and B. Each
player submit three bids, one bid b;(A) for item A, one bid b;(B) for item
B and one bid b;(AB) for both items. Suppose now that by (AB) > by(AB)
and b1(A) + ba(B) = b1(B) + ba(A).

If b1(AB) > b1(A) + ba(B), then the efficient mechanism will assign
both items to player 1. His payment will be the amount that player
2 would get if 1 were absent minus what player 2 gets when player 1
participates. That is, py = ba(AB) — 0 = bao(AB).

If b1(AB) < b1(A) + ba2(B), then the efficient allocation would be the
following. Player 1 wins item A paying p; = by(AB) — ba(B) while
player 2 wins item B paying ps = b1(AB) — b1(A). <

20



Chapter 2. 2.4. COMPARING VCG WITH SECOND PRICE AUCTION

Optimality of truthfulness using VCG

Proof. Assume we have a set I = {1,...,n} of players and a set M of items.
Let player’s i value of an outcome « be denoted by v;(«). Suppose that
player 1 bids truthfully (b;(ar) = vi(a)) and VCG chooses the outcome
that maximises SW. This outcome gives to player 1 the item t € M. In
this case of truthfully bidding, the utility of player 1 becomes

M—{t}

UL _truth = V1 an - (Zb a/\ Z b Oé,i> (21)

i#l i#l

On the other case, suppose that player 1 bids untruthfully and the mecha-
nism chooses another outcome p in which he gets item s € M. Thus, his
utility becomes

M—{s}

UL _untruth = <Zb a}\ Z b a,u > (22)
i#1 1#1
By abstracting these two utilities, we have
M—{t} M—{s}
UL _truth — Wl _untruth = (1)1(0%) + Z bz(an)> - <'U1(au) + Z bz(au)>
i#1 i#1

(2.3)

The first term at (2.3) represents the maximum total social value when b;
wins item ¢ and the second term represents the maximum total social value,
when b; wins item s. However, outcome «, maximises social welfare over
all alternatives in A, which means that the first term is weakly greater:

UL _truth — Ul_untruth = 0.
That means, player’s 1 utility when bidding truthfully is at least equal with

his utility when he misreports his value. O

2.4 Comparing VCG with Second Price Auction

In this section, we show that the VCG mechanism regarding a single item
for sale and the Second Price Auction are equivalent.

Consider two players I = 1, 2 with values v1, v and bids b1, b2 competing
for an item t. Without loss of generality, assume that by > by. The players
are ranked according to their bids and then, VCG mechanism, maximising
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social welfare, chooses outcome « that gives the item to player 1. According
to (2.3), his payment will be:

p1 = mabej(ﬁ) - ij(oz).
#1 i#1
If player 1 were not participating in the auction, player 2 would get the
item. Consequently, in the outcome that player 2 gets the item, we have:
max Z#I b;j(B) = by. If player 1 is present, he will be the one who gets the
item, and there is no item left for player 2 to buy, so }_,; bj(a) =0. As a
result,

p1=0by—0=by

which is player 1’s payment if Second Price Auction, 2.2, was used (p; =
bit1)-

According to VCG setting, payment of player 2 will be:

p2=max ) _b;(B) =D bj(a)
#2 #2
However, in this case, if player 2 was absent, there would be no impact
on the allocation outcome, since by > bs, and player 1 would get the item
regardless of player’s 2 presence. So max ) ;5 b;(8) = by and 3,5 bj(a) =
b1. As a result,

p2=>b1—b; =0

since he gets no item. Similarly, in Second Price Auction, the players who
get no item pay p; = 0.

We observe that the ranking and pricing rules are the same, so the two
mechanisms are equal.

2.5 Mechanisms for Ad Auctions

A mechanism for the Internet advertising settings has the following form.
Consider a set of advertisers (players) I = {1,...,n} who compete for a set
S ={1,...,s} of advertising spaces in a web page, named slots. Typically,
we have that n > s and every advertiser has his own private value v; for
every slot. Since v; is private, every player submits a bid b; (reported value)
and we write b = (b1,...,b,) for the bid vector. The bids can be viewed
as the maximum amount that an advertiser is willing to pay per click. The
mechanism allocates the slots to the players through a function 7 : [s] — [n].
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Each slot s is associated with a CTR, 65, which denotes the probabilty of
an ad on slot s being clicked by a user. The ads on the slots which are
on the top of the web page have a larger probability of being clicked, so:
61 > 0y--- > 6;3. At this point we have to define a ranking rule for the
players, a rule that will compute a score for each player, in order for them to
be ranked in a decreasing order, according to that score. The most frequent
ranking rules are the following, however, in this thesis we will use only the
first one. According to [5], we have:

the rank-by-bid, in which every player submits a bid and the auctioneer
ranks and renames the players according to their bids. The advertiser
who bids the highest price gets the slot on the top, the second highest
bidder gets the slot at the second highest position, etc., and

the rank-by-revenue, in which every player submits a bid b;, however, every
bid is associated with a quality score ¢;. This score denotes how much
related is the ad of advertiser 7 to the keywords that the Internet user
has entered for search. In other words, ¢; expresses the probabilitty
that the Internet user will click on advertiser’s ¢ ad. Obtaining slot s,
the probability of advertiser ¢ to receive a click is ¢;-05s. The advertisers
are ranked according to the amount g; - b;, and the first highest bidder
wins the highest slot, etc.

In order for a mechanism to be completed, a payment rule must be also
defined. Consider an advertiser ¢ who, after the end of an auction, obtains
a slot for his ad. This rule will declare the amount p; he must pay when
he receives a click by a user. We write p = (p1,...,p,) for the price vector.
Thus, an auction mechanism can be defined as the joint of a ranking and a
payment rule.

In the context of Ad Auctions, the final utility of a player i is defined
by u; = 0;(v; — p;), where 6; is the CTR of the slot that have been assigned
to player i by the mechanism. The social welfare (STW) generated by the
mechanism is given by SW(v,m) = >, 6;v; and the total revenue is given

by R(b) = ZZ szz

2.5.1 Implementing VCG to Ad Auctions

We will implement here the VCG mechanism [2.3] to the Ad Auction setting
which is, assigning positions (slots) to players (advertisers). The players are
ranked according to their bids and, as I mention above, the total social
welfare is defined by >, v;6;. The total payment of every player is 6; - p;
and consequently, the total revenue for the mechanism is given by >, 6; - p;.
Assume now that agent s — 1 is missing. Then, all agents below him will

3 Assuming that s; is at the highest position, s2 at the second highest and goes on.
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be transfered one position above, while the agents above him stay in the
position they were. That means that only agents below agent s — 1 are
affected by his absence. Acording to VCG setting, 2.3, the first term of the
agent’s s — 1 payment is the impact?® of his absence which, in this case, is

> b+ Y by

t>s t<s—1

To all the players ¢ for ¢t > s, VCG will now assign a slot one position higher
than before and thus, we have th s bi0i—1. The rest t players, for t < s—1,
will be stay assigned to their original slot, so >, . b:6;.

The total payment of player s — 1 will be:

Ps—1 051 = (that—l + Z bt9t) - Z b0

t>s t<s—1 t#s—1
= thet—l - Z b0y = Z bi(Oi—1 — 0;) &
t>s t>s—1 t>s
Ps_1-0s_1 = th(9t71 — 0,) <VOG is truthful
t>s
Ps—1-0s—1 = Z'Ut(etfl —0:) & (2.4)
t>s
1
Ps=1= 5= > w01 — 6y), (2.5)
ST i>s

which is the price per click of player s — 1.

* In chapter 3, it is shown that there is a Pure Nash equilibrium which
is the same as the VCG payment, equation (2.4) on page 24.

The total revenue generated by the mechanism is:

n

RVCG = Z E’Ut(et_l — Gt) = E(t — 1) . 'Ut(gt—l — Ht)

s t>s t=2

Even though VCG mechanism has very good properties, it is rarely used
in practice. However, it is worth mentioning that VCG was recently adopted
by Facebook for its AdAuction system. In addition, Google also considered
to switch its advertising system to VCG some years ago, but eventually
decided against it and switched to the following mechanism.

4Since all the players below s — 1 will move up one position, they will also be assigned
to one step higher slot than before.
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2.5.2 Generalised Second-Price mechanism (GSP)

In 2002, starting with Google, search engines switched to the so-called Gen-
eralised Second Price mechanism. Currently, it is the premier method by
which sponsored search advertising space is sold and is employed by big
internet companies such as Bing, Google and Yahoo!. It is worth men-
tioning that in 2005, over 98 percent of Google’s total revenue came from
GSP auctions while in 2008 its total advertising revenues were $28 billions.
Similarly, over half of Yahoo!’s profit was derived from GSP auctions while
in May 2006, the joint capitalization of both previous internet companies
exceeded $150 billion.

Even though generalised second price auctions generalise the truthful
Vickrey’s Second Price Auction, section 2.2, they are known neither to be
incentive-compatible nor to maximise social welfare and this fact comes in
sharp contrast to their wide success.

Formal setting of GSP

Each advertiser has a value v; which expresses his personal evaluation for
each slot. To participate in the auction, advertiser ¢ submits a bid b; which
may differ from his true value. The GSP mechanism charges each player
the minimum amount that would be necessary to bid in order to keep his
current position. That is, the bid that have submitted by the player who
gets the slot below him, plus a very small amount €°. We will assume that
e = 0, as this is not an important parameter. The pricing rule per click
of GSP depends on the ranking rule. Remember that in this thesis we will
use only the rank-by-bid rule and thus, only the first pricing rule below.
According to [5], we have the following.

In rank-by-bid, the player who wins slot s pays per click the bid of the
player who is exactly below him and wins slot s+1, which is ps = bs41.

In rank-by-revenue, in order for the winner of slot s to keep his current
position, his payment should satisfy the inequality ¢; - ps > ¢s+1 - bs+1-

The minimum price which satisfies the inequality is p; = qsﬂqﬁ.

The ranking only by bid may lead to non-profitable results. For instance,
ads with low quality score (in which Internet user is less interested), may
be assigned to the highest slots. The fact that such ads have very low
probability of being clicked, significantly lowers the total revenue of the
search engine. Note, for example, that Yahoo! was originally using the
First Price Auction system 2.1, then switced to GSP using the rank-by-bid
ranking rule and finally, to GSP using the rank-by-revenue ranking rule.

5Tt usually equals € = 0.01 and is provided by every search engine for every currency.
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Untruthfulness of GSP

We will describe here an example which shows that bidding truthfully is not
a dominant strategy using GSP mechanism.

» Example.

Assume that we have three players, A, B, C who compete for two slots, s1, s5.
We need to show that at least one player will be “happier” if he lies and we
focus on player’s A utility. In the first case, they bid their true value and
the utility of player A, getting slot s, is: ug = 6s,(va—pa) =1-(7—4) = 3.

Players | Values | Bids Prices | CTRs
A vAa=T|ba=7|pa=4]6s5 =1
B vp=4|bp=4|pg=3]0s =1
C vo=3|boc=3|pc=0

5

Assume now that player A decides to bid an amount lower than his true
valuation, which ranks him in the second place.

Players | Values Bids Prices | CTRs
B |vp=4|bg=4|pa=7]0,=1
A Jvp=Tlbp=5pp=3]0s=5
C ve=3|bc=3]|pc=0

N

Then, being ranked in the second position, he wins slot so and his util-
ity becomes: ug = 6s,(va —pa) = % - (7—3) = 18 which is greater than his
utility in the first truthful case.
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Chapter 3

Equilibrium Analysis of
Position Auctions

“Greek crisis is not economics,
it’s game theory.”

-Matthew Lynn
Matthew Lynn’s London Eye

In this chapter, we will show a theoritical analysis of equilibria of the ad
auction used by Google and Yahoo! under GSP mechanism, introduced in
[1]. It is shown that position auctions represent reasonably accurately the
Google’s ads. Moreover, the full information game always has a Pure Nash
equilibrium and there is a Pure Nash equilibrium which has same outcome
and payments as VCG mechanism.

Auction Model

The mechanism which is being used here is the GSP mechanism which we
have already analysed in section 2.5.2 on page 25. Consider an assignment
problem of agents (advertisers) & = 1,..., A to slots (positions on a web
page) s = 1,...,S. Each slot has a different click-through-rate (CTR)
depending on the slot’s position in the web page. Higher positions receive
more clicks so denoting s; as the highest slot, sy as the second highest and
go on, CTRs’ ordering can be expressed by 6; > 6y > --- > fg so that
all agents agree. To avoid the assignment of the lowest position slot to an
agent who bids very low, assume that A > S+ 1, the number of agents is at
least greater than the number of slots plus one. This ensures that even for
the last slot, the last ranked players will bid competitively. Last, for every
s> 95, set rs = 0.

This problem was motivated by the actual ad auctions used by Google
and Yahoo. Every agent (advertiser) o has a value v, that expresses his
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expected profit per click and therefore, his expected profit obtaining slot s
is given by uqs = vg - 0s. The slots are allocated via an auction that uses the
Generalised Second Price mechanism. Each player submits a bid b, and, if
necessary, the players are renumbered according to their bids. The highest
slot, the one with the best click-through-rate, is assigned to the agent who
bids the highest price, the second highest slot to the second highest bidder
and goes on. Every agent pays the bid of the agent below him, ps = bsy1
so, when an agent is assigned to slot s, his total profit (utility) equals to

Uas = es(voa _ps)‘

3.1 Nash Equilibrium Analysis

Consider the table below which depicts in ranking the positions, values, bids,
payments of 5 agents and the slots assigned to them. Notice that there is
no slot left to be assigned to the last ranked agent. Assume now that agent
3 desires to move up one position. In order to do this, we can see that he
must bid slightly above agent’s 2 bid, by. Assume now that agent 2 wants
to move down by one position. Then, according to the table, he must bid
an amount at least slightly higher than b3 and lower than by.

Position ‘ Value ‘ Bid ‘ Price ‘ CTRs ‘
1 vy b1 | p1="bo th
Vg by | p2 =103 )
U3 by | p3 =14 03
Uy by | pa=10s 04
U5 bs | ps =0 | no slot

T W N

It can be seen from the above analysis that the actual rule for an agent
A who wants to move in another position is the following. When an agent
who obtains slot s desires to move down, in a position below him, say at
s+1, then he must bid an amount higher than the payment of s+’s current
owner and lower than the current owner’s bid. That is, agent A’s bid should
be in the interval (psyi,bsti). If agent A wants to move up, in a position
(slot) above him, say s — j, then he must bid an amount higher than the
bid s — j ’s current owner is making, but lower than the bid of s —j — 1 ’s
owner.

In this point, we will introduce a definition that expresses a particular
set of bids in which all agents are satisfied with their obtained slot.
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Definition 3.1.1. A Nash Equilibrium (NE) is a set of prices such that

es(vs _ps) > 9,5(1}5 _pt)v fO?“ t>s and (3'1)
> Oi(vs —pi-1), for t<s

where py = beyq.

In other words, when a set of bids is in an Nash equilibrium, every agent
prefers his current slot to any alternative slot or he has nothing to gain if
he changes his position. Also notice that, given values vs and click-through-
rates 65, the above inequalities comprise a system and we can solve for the
maximum and minimum equilibrium revenue, attainable by the auction,
using a linear program.

However, there is another set of bids which is a subset of Nash Equilib-
ria. It was first presented by Prof. Hal. Varian in [1] as Symmetric Nash
equilibria but the early years surveys are reffered to as Envy-Free equilibria.
For this reason, we start defining when a player envies another player.

Definition 3.1.2. A player i assigned to slot s; envies a player j assigned
to a slot sj, if © has strictly higher utility in j’s place than his current slot.
That is, Os,(vi — pi) < 0s;(vi — py)-

* In chapter 5, we remodel this definition adding one more condition due
to an additional parameter, a budget restristion for each player (definition
(5.3.2), page 61).

Definition 3.1.3. An assignment of goods (slots) associated with particular
prices is envy-free (or is in envy-free equilibrium) if no winner! is envied by
any other player. That is, Os,(v; — p;) > 05, (vi — p;) for all i, ;.

Definition 3.1.4. A mechanism is called envy-free mechanism if there are
bids which lead to an envy-free assignment.

But what is actually the main difference between envy-free and Nash
equilibria?

3.1.1 Envy-Free versus Nash equilibrium

As I mention above, in Nash equilibria, moving in a lower slot, an agent will
pay the price that the current agent of the new slot is paying. However,
moving in a higher slot, the moving agent will pay the bid amount of the
current owner of that slot.

In contrast, the definition of envy-free equilibria implies that when an
agent moves to an another slot, either higher or lower, he pays the price of the

LA player with positive allocation is called winner.
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agent who currenlty obtains the new slot. This means that in an envy-free
assignment, in case of moving higher, a player pays less? comparatively to
Nash equilibrium. However, he still prefers his original slot. This description
helps us to understand that an envy-free assignment is a more restricted set
than a Nash equilibrium, which motivates the following property.

Property 3.1.5 (EF C NE). Assume that we have an envy-free assignment,
then those prices represent also a Nash equilibrium.

* We must mention here that this property is not satisfied when budget
constraints exist, section 5.4 on page 62.

Proof. Assume that we have an Envy-Free equilibrium with & players and
k — 1 slots. After agents are ranked, we rename them according to their
bids, by > by > ... b,.

Players | Bids | Prices Values | CTR
1 by p1=by v 0s,

{ b; pi=biy1 | v 05

k=1 |bg1 | pr—1="0r | vp_1 Os;,_,
k g, pr =20 Vg no slot

By definition (3.1.3) of envy-free equilibrium we have: Vi Vg, 05, (v; —p;) >
95-(“1’ — pj).
J

We split the proof in two parts:

e If player ¢ goes to a position below him, we have
Vi Vj(j>1), 0s,(vi —pi) > 0s;(vi — pj). (3.3)

In order to have a PNE, we need to show that if agent ¢ underbid agent
7, he will prefer his initial position. Notice that in this case, agent i
will pay agent’s j + 1 bid, b;+1 = p;. That means, the inequality we
must show is the same with (1), which is already true.

2Lower payment implies higher utility, tas = 0s(Va — Pa)
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e If player i goes to a position above him, then we have

Vi V() <i), Os(vi—pi) > 0s;(vi — pj)
Z Hsj (Ui - bj-‘rl) (34)

In order to have a PNE, we need to show that if agent i overbid agent
7, he will prefer his initial position. Notice that in this case, agent ¢
will pay agent’s j bid, b;. That is,

Vi \V/](] < i), 931,(1)1' _pi) > 93j (Ui — bj) (35)
By (3.4) and since b; > bj;1, we have that (3.5) is true.

By (3.3), (3.6), it is implied that this is also a Nash equilibrium. O

Property 3.1.6. In an envy-free (Symmetric) equilibrium, v; > p;.
Proof. By (3.1.3) and by the fact that 6, = 0,Vs > S
Os; (Vi = pi) > Osg,, (Vi —Ps41) =0
O

The following properties of Envy-Free equilibria are not satisfied by all
Nash equilibria sets. In order to prove this argument, we found counterex-
amples which are analytically presented in appendix, page 65.

Property 3.1.7. In an envy-free equilibrium, we have vs_1 > vg VSs.

Proof. By definition of E-F we have
Os;(vi —pi) > Os,(vi —pj) = vi(0s, — 0s;) > pifs, — pj0s;
Os;,(vj —pj) > 05, (vj —pi) = v (0; —0;) > pifs, — pib;
Adding the two above inequalities, we have
(v — 1) (05, — 0s,) > 0, (3.6)

which means that v; and 65; will have the same ordering. Assume that
j <, then 6y, > 05, by the auction model rules and v; > v; by (3.6). O

However, this property is not satisfied over Nash equilibria sets.
» Counterexample. [Appendiz, page 65]
The following table depicts the values, bids, prices of four agents in ranking

and also, the CTRs of the slots assigned to each one of them.
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Positions | Values | Bids Prices | CTRs
1 ’U1:10 61:8 p1:7 951:0.4
2 va=11 | by =7 | p2=4 |05, =02
3 v3=5 |b3=4|p3=2]0s =015
4 vy=4 | by=2|ps=0 | noslot

The next table shows that even if vy > wvq, the above set of bids repre-
sent a Nash equiliblium. The numbers in the first column represent the
starting position, for instance, if the player in position 2 moves to position
3, his new utility will become 1.35 and if player in position 3 moves to 2,
his utility will become -0.4. The (4,7) boxes represent the utilities in their
original positions.

Positions 1 2 3 4
1 1.2 12|12 |0
2 1.2 | 1.4 135 |0
3 -1.21-04 104510
4 -1.6 | -0.6 0 0

We observe that for every row i, we have (i,i) > (i,75) Vj(j # ¢). This

means that every player prefers his slot to any alternative one.

<

Property 3.1.8. (One step solution). If each player at his slot, say s, does
not envy his neighbors at slots s +1 and s — 1, then no player envies any
other player.

Proof.

Suppose that the inequality in defintion (3.1.3), on page 29, holds for slots
s — 1 and s, and for slots s and s + 1. Then we show that it holds also for
s —1 and s + 1. By definition (3.1.3) of E-F equibrium, we have

s—1~s: Usfl(asfl - 95) > ps—10s-1 — psbs (37)
s~s+1: US(93 - 95) > pses — p5+195+1 = Us=1>Us
Us—l(as - 95) > pses - ps+105+1 (38)

Adding (3.7) and (3.8), we have

s—1~s+1: U8—1(08—1 - 05—}—1) > ps—105-1 — ps+195+1
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We show the opposite direction following the same way.

s+1~s: Us+1(03+1 - 03) > ps+193+1 — psbs (39)
s~s—1: 'Us(es - 0371) > pses - psflesfl :Z:igjj11<0
U3+1(95 — (93,1) 2 p595 — p5,103,1 (310)

Adding (3.9) and (3.10), we have
s+1~s—1: Us(eerl - 0371) > ps+193+1 — Ps—16s-1

O]

We show again by a counterexample that this property is not satisfied by
all Nash equilibria.

» Counterexample. [Appendiz, page 67]

The following table depicts the values, bids, prices of four players in ranking
and also, the CTRs of the slots assigned to each one of them.

Positions | Values | Bids Prices CTRs
1 U1=10 b1=8 p1=7 95120.4
2 U2:11 b2:7 p2:4 952:0.2
3 v3=>5 |b3=4 p3 =19 | 0, =0.15
4 vy =4 by=19 | ps =0 no slot

The next table shows that even if the inequalities of Nash equilibria hold
for every slot and its neighbor slots, they are not satisfied by slots who are
more than one step away. In this example, they are not satisfied for slots 1
and 3.

Positions 1 2 3 4
1 1.2 | 1.2 | 1.215 | 0
2 1.2 | 1.4 | 1.365 | O
3 -1.21-041] 045 |0
4 -1.6 | -0.6 0 0

We observe that if every player moves to a neighbor slot, either lower or
higher, he does not prefer the new position since his utility at the original
slot is at least equal to his utility at any of its neighbor slots. However, this
is not true if agent 1 moves to position 3 in which his utility becomes 1.215
from 1.2 that was before.
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<

Property 3.1.9. In an envy-free equilibrium, we have p;_10,, , > pifOs, and
pi-1 > pi, Vi

Proof.
By definition (3.1.3) we have

(vi = pi)0s, > (Vi — pi—1)0s,_, =
pi—lesi_l Z pzez + Ui(esi_l - 0&) > pzesz

Applying v; > p; in (3.1) we have

piflesi_l > pzﬂsi + ’Ui(esi_l - 931) > piesi +pi(08i_1 - 931) = psesi_l-

However, this property is not satisfied by all Nash equilibria sets.
» Counterexample. [Appendiz, page 68]

The following table depicts the values, bids, prices of four players in ranking
and also, the CTRs of the slots assigned to each one of them.

Positions | Values | Bids Prices | CTRs
1 vi=10 | by =8| p=7]|0; =04
2 ’U2:11 b2:7 p2:4 052:0.2
3 ’U3:5 b3:4 p3:4 053:0.15
4 vy=4 |by=4]|ps=0 ] noslot

In contrast to envy free equilibria , the next table shows that in a set of
Nash equilibrium, it is possible for equal® prices to exist.

Positions 1 2 3 4
1 1.2 {12109 |0
2 1.2 | 14 [ 1.05 |0
3 -1.21-0410.15|0
4 -1.6 | -0.6 0 0

<

Hal Varian proved in [1] that pure strategy Nash equilibria can be found
by the recursive forms below. Actually, they represent intervals, upper and

3In case of equal biddings, the agents are usually ranked by lexicographic order.
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lower bounds, in which sequences of bids leads to envy free assignments and
therefore, to Nash equilibria sets.

52]9571 = ’Usfl(esfl - 93) + bs+193
bSLQS,1 = Us(esfl - 93) + bs+193

The solutions to the above recursions are:

0.1 = v 1(6i-1 — 0y)
t>s

bl 1= vy(0-1 — 0y) (3.11)

t>s

The starting point of the recursive forms follow from the fact that 65, =
0, Vs> S. Then b§+195 = US+1(95 — 95+1) = U5+1(95 = ngrl = VUS+1
which meams that it is optimal for the first excluded player to bid his value.
If you are excluded, it is pointless to bid lower than your value and, espe-
cially for the first excluded player, there is a chance for him to join again
the auction due to a possible dropping out of another higher player.

At this point, we observe the following result. The solution of the lower
bound recursion (3.11) equals to the payment of VCG mechanism (2.4), on
page 24. In other words, there is a Pure Nash Equilibrium in Ad Auctions
game with the same outcome and payment as VCG.

Equally important is that the upper recursive solution for the EF (envy-
free) revenue is the same as the maximum revenue for the NE, while the
minimum revenue for NE is less than the solution to the lower recursion of
EF equilibria. Therefore,

max revenue NE = value of upper recursion of EF >

value of EF lower recursion > min NE revenue.

3.1.2 Equilibrium Hierarchy in GSP

Consider a function 77 : N — N that assigns slot ¢ to player 7(i). According
to [11], we have the following.

Definition 3.1.10. An equilibrium is efficient if it maximises social welfare,
which occurs when (i) =i for all i.

Even though all envy-free equilibria are efficient, there are also efficient
equilibria which are not envy-free, as well as inefficient equilibria. Therefore,
we have the following hierarchy [11]:

VCG envy-free efficient all Nash
C Sep c Nash C e . P
outcome equilibria e s equilibria
equilibria
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Chapter 4

Generalized Second Price Ad
Auctions under Budget

Constraints

“Don’t tell me what you value,
show me your budget and I’ 1l
tell you what you value.”

-Joe Biden

An interesting research line arises if we add one more parameter to the Ad
Auction models we previously analysed, which is a budget constraint for each
player. Even though budgets are a main feature of all actual Ad Auctions,
the most of the works completely ignore this issue. In this chapter, firstly,
we present the budget auction model in [2] along with the results about the
existence and properties of its pure Nash equillibria. Secondly, based on an
omission we observed in the induction process of the main theorem’s proof
in [2], we described a counterexample for the claim that was used as base
in the induction. For this purpose, we also slightly remodeled the definition
of critical bid. Moreover, we also found a counterexample for an additional
theorem in [3] and our positive result is a condition under which pure Nash
equilibria exist. This condition is simpler and does not involve the critical
bids.

4.1 The Budget Auction Model

Consider k agents, K = {1,...,k} who bid b = (b1, bs,...,bs) to buy N
identical divisible items. Each agent ¢« € K has two private values: (1) a
value v;, which is his personal evaluation of item ¢ and (1) his true budget
Ei, which is the restriction on the amount of money he can use each day.
We use z; to define the amount of items he receives and p; the amount he
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pays per item. The utility of each agent is given by w; = z;(v; — p;), subject
to x;p; < B; which means that he can afford x; items. In case of exceeding
his budget (z;p; > B;), his utility becomes u; = —o0.

Ranking

Initially, the auctioneer sets a minimum price p,q,. After all agents submit
their bid b; (b; € [pmin,vi])! and their budget B;, he renames the agents
according to their bid, such that by > by > -+ > bg. In the case of equal
bids, he first sell items to agent with the lower original index (lexicographic
order).

Charge

The auctioneer runs a sequence of Second Price Auction (section 2.2), which
means that each agent pays per item the bid of the agent exactly below
him. Due to the minimum price pm,;, that auctioneer sets, we have p; =
maz{bi+1,Pmin}, Vi € K per item. The total price agent 7 has to pay is p;z;
(for the x; items he receives). If he gets no items, then p; = 0.

Allocation

The items agent ¢ will receive depends on (1) his budget, (11) his price per
item and (1) on how many items are left by the first buyers. Thus, the
allocation of agent ¢ is given by

i1
B
r; =min(N — Y x;, —). (4.1)
JZ:; 7 pi

The actual allocation process is the following. Initially, agent 1 starts to buy
items paying p; = max{ba, pmin} and he stops when he runs out of budget
or items. In case of running out of his budget and there are still items for
sale, agent 2 starts to buy paying ps = max{bs, pmin}. This procedure is
continued until all items all sold or all agents exhaust their budget. If all
items are sold before agent’s i turn to buy, then z; = 0, Vi(i > k).

* The aggregate allocation of items to agents will never exceed the total
items (3 ;e i < N).

! According to [2], bids are not always conservative. It is mentioned that, theoretically,
an agent ¢ can bid above his value making the agent above him pay more and taking more
items for himself. Indeed such a choice may lead to a profit for agent i. However, it is
a risk since the agent above him may underbid . If this happens, agent ¢ pays a price
higher than his value which yields to an unsatisfactory transaction.
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Categories of Agents

Definition 4.1.1 (winner). An agent i is called winner when z; > 0 and
he is not the last one with positive allocation.

A winner agent always exhausts his budget since at least one more agent
ranked below him has a positive allocation. This means that for every winner
we have

TiPi = B;.

Definition 4.1.2 (border). An agent i is called border when x; > 0 and he
18 the last agent with positive allocation.

If agent ¢ is a border agent, no player ranked below him (in case he is
not the last ranked agent) gets any items, so Vj > i,x2; = 0. Moreover, a
border agent can either exhausts his budget or not, having that

z; - p; < B;.

Definition 4.1.3 (loser). An agent i is called loser when he gets no item,

Every agent who is ranked below the border agent, is a loser.

How it works for 2 agents
In the following example, I describe in details how this budget auction model
works for two players.

» Exzample.

Consider two agents, K = {1,2}, a minimun price ppin, IV identical di-
visible items and a vector b = (b1, b2). Assume that by > be then, according
to the previous model, the agents’ ranking and payments are:

11b1 | v |p1r=0 B
by | v2 | P2 = Pmin 0r 0 | Bo

Depending on the combination of agents’ types, we have the following cases.

e agent 1: winner
agent 2: border
In this case, agent 1 will first start buying items. According to equation
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(4.1), his allocation will be 1 = min(N, %) = % = % and his utility

will be u; = z1(v1 —p1) = %(Ul — by).
When agent 1 exhausts his budget, agent 2 will start buying items.
As a border, he will buy all the remaining items. So, his allocation

will be 9 = N — % =N — % and his utility ug = x2(ve — p2) =

(N fl )(UQ prnin)-

* Notice that N — 3y May be equal to =2 which means that the items
are left by the ﬁrst ranked player may be equal to the items that the
second ranked player can buy with his whole budget. In this case, he
also exhausts his budget.

e agent 1: border

agent 2: loser

In this case, similarly agent 1 will first start buying items. As a border,
he is the last one with positive allocation so, he will buy all the items.
Thus, his allocation will be x; = min(N, %) = N and his utility will
be u; = z1(vy — p1) = N(v; — bg). Since all items are sold before
agent’s 2 turn to buy, we have that xo = 0 which means that also his
utility and payment are zerow, us = 0 and p; = 0.

4.2 Preliminaries

In a Pure Nash Equilibrium, no agent can increase his utility by changing
unilaterally his bid b; and budget B;. According to [2], we present the
definition of a dominant strategy. We use symbolizations b_; and B_; for
all the bids and budgets, respectively, except for agent’s .

Definition 4.2.1. (In [2]) Submitting budget y is a dominant strategy for
agent i if for any bid vector 5, any alternative budget vy and B_;, we have
that u(x;, p;) > u(z), pl), whe7:e z; and p; (x} and p}, respectively) are the al-
location and price under bids b and budgets (B—;,y) ( (B—i,y') respectively).
Submitting bid z is a dominant strategy for agent i if for any submitted bud-
gets B, for any alternative bid 2’ and b_;, we have that u(z;, p;) > u(x}, pl),
where x; and p; (x} and p;, respectively) are the allocation and price under
budgets B and bids (b_;,y) ( (b—i,y') respectively).

Next, we present the definitions of the demand of a player and the
Market Equilibrium price.

Definition 4.2.2. (In [2]). The demand of agent i at price p is an interval
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Figure 4.1: Market Equilibrium Price

D(p) or a point, as follows,

% Zf v; > D,
0 if vi < p,

Di(p) =

In the second case, the price he is asked to pay is strictly higher than his
value, hence, he does not demand any item. In third case, the agent does
not care about how many items he will buy because, for any amount of items
his profit will be zero, u; = x;(v; — p;). Thus, his “demand” is the interval
[0, %]. We use D(p) for the aggregated demand of all agents at price p, such

that D(p) = > ;cx Di(p).

Definition 4.2.3. The Market Equilibrium Price pe, is the price point
where the total supply equals to the aggregated demand of items.

Notice that if N € D(p) then p is the Market Equilibrium Price peg.
Moreover, we observe that function D(p) is decreasing in p which means
that peq is a unique point.

» FExample.

In figure 4.1 we observe that the Market Equilibrium price is 0.75 which
is the point that the total supply equals the aggregated demand, as we
previously said in definition 4.2.3. We also observe some intervals in which
the drops are vertical, i.e. for price 0.5. This happens when the values
equals to prices and, thus, agents are indifferent to any allocation amount
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between [150,200] for price 0.5, as we have explained in the third case of
definition 4.2.2 on page 40.

<

4.3 Properties of the budget auction model

This mechamisn does not optimise the Social Welfare and thus, it is not ef-
ficient. The following properties concerns actions which are either dominant
strategies or not. In section 2.5.2, we had proved that in GSP mechanism is
not a dominant strategy for an agent to bid his true value. In this chapter,
even if we have the additional budget constraints, it is proven again.

Property 4.3.1. For an agent i, bidding his true value v; is not a dominant
strategy.

Proof.
(By an example, in [2]).

Consider four agents competing for N = 100 items. We focus in agent
B showing that submitting his true value is not a dominant strategy. The
table below depicts their budgets B;, values v;, submitted budgets B;, bids
b;, allocations x;, prices per item p;, utilities u; and last, the type of each
agent. The items being on sale are and the minimum price is pmpin = 0.

Agents | B; | v; | B; | b; | pi | x; | u; | agent type
A 200 2 20| 1 1 12020 winner
B 25 1.5 25| 1 | 0550150 winner
C 30 151200503 ]|30]| 36 border
D 20105120103 ] 0O 010 loser

If agent B bids his value bp = 1.5, he will be ranked first as we see in the
next table.

Agents | B; | v; | B; | b; | pi | z; | u; | agent type

B 2515125115 1 |20 20 winner

A 200 2 |20 1 |0.5]50]50 winner

C 30115120 (05|03 |30 36 border

D 20105(20(03| 0 | 0] O loser
His allocation now is xp = f—g = % = 25. Therefore, his utility is:
up = zg(vp — pp) = 25(1.5 — 0.5) = 25 which is lower than before
(UB = 50). O
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Property 4.3.2. For an agent i, bidding his true budget B; is a dominant
strategy.

Proof.

Each agent i reports his bid and budget to participate in the auction and his
utility becomes x;(v; — p;) when x; - p; < B;. We see that utility depends on
values v;, prices p; and allocation x;. The budgets does not affect the ranking
order and thus, neither the prices. However, they affect the allocation of
agent 7. Assume now that agent ¢ wants to change his budget from B; to
B;. Let z;, u; and x;, u;, be the allocation and utility when he submits B;
and B;, respectively. Then, we have the following cases:

-<Bi<ﬂép
Assume that agent ¢ submits a lower budget B; than his true one B;
and receives z; items. By the allocation form in section 4.1, we have

i—1 B i—1 B
x; = min(N — T, — and  z; = man(N — &5, —).
= min(¥ = 3y, 2 = min( =325, 2
J=1 7j=1
(4.2)

All the agents who are ranked above agent i are not effected by his
budget misreport. Therefore, x; = &; for j < 4 which implies that
N — Z;;ll Ty = N — Z;_:ll Zj. Due to the inequality B; < B;, we have
that % < % or better, x; < Z;. This means that also u; < ;.
—.Bi>méy

Assume that agent ¢ submits a higher budget B; than his true one B;.
Then, there are two cases. Either he will receive the same number of
items or a higher number.

- x; = Z;. In this case, he submits a higher budget but still he gets
the same items. This happens if he is a border or a loser. Since
Tip < Bi, we have also that x; - p; < El which means that he
does not even exhaust his real budget, implying that u; < ;.

- x; > ;. In this case, he sumbits a higher budget and he gets
more items. This means that he had exhausted his true budget.
That is, #; - p; = B; which implies that z; - p; > B;. Thus,
u; = —00 < ;.
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4.4 Properties of a Pure Nash Equilibrium

According to Arnon’s work in [2], any PNE must have some properties. One
of them is that all winner agents must pay the same price p, which implies
that every winner and the border agent must bid the same amount. We
observe here that the first winner may bid higher than the others since his
bid has no impact to his price (p; = bz). More precisely,

Claim 4.4.1. In any PNE, all winner agents pay the same price p, the
border agent pays a price p’ < p, and any loser agent j (if it exists) has value
v; < p. In addition, p is at most the Market Equilibrium price, p < peg.

Proof.

Assume that there is a PNE with two? winners who pay different prices.
Say pi1 the price paid by the first ranked winner agent 1 and, say p;, the
first different price paid by a lower in ranking winner agent j, p; < p;. it is
proven that agent 1 can increase his utility which contradicts the fact that
we have a PNE. Since all agents above agent j are winners, we have that for
any i > j, x; = % and sz 2, < N=x <N-— ZLQ x;. Assume that
agent 1 drops down in order to be ranked in position j (by bidding b; — ).
] By B1 _

B
. However, =L =z
pj) ’ pj > D1 1

and N — 2522 x; > x1, so 2} > x1. Being ranked in a lower position, agent 4
pays less. In addition, he receives at least the same items as before. Hence,
he strictly increases his utility which contradicts that this is a PNE. Thus,
all the winners pay the same price p.

The border agent is ranked after all the winners, so he pays a price p’ < p.
Regarding the losers, assume that a loser had a value such that v; > p. Then
he could bid an amount p+ ¢ and be a winner having a positive utility. But,
as a loser, his utility is zero and this contradicts the fact that it is a PNE.
So, for a loser agent, we have that v; < p.

Regarding the Market Equilibrium Price p.,, assume that there is a
D > peq Which yields in a PNE. Since the prices are in PNE, the utility of
the winner j who pays p > peg, is at least equal if he was the border agent
paying p’ < p. Thus,

. . /I . _ 7 .
His allocation becomes z; = min(N —3 i _, x;,

&(”j -p)=(N- ) ZY(v; —p), where S ={i:v;>p}.
P ieS—{j}

Since (v; —p) < (v; —p'), we have that

sz(N— > %) = Z%ZN (4.3)

2For one winner the claim holds trivially
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Since p > peg and the function of demand D is decreasing in p, we have
that D(p) < D(peq). By the fact that N € D(pe,) (note under definition
4.2.3 pg.) and ), g % € D(p), we have ) . ¢ % < N which contradicts
the inequality (4.3). O

The next claim concerns the strategy of loser agents.

Claim 4.4.2. If loser agents are restricted to bid their true value and budget
then there exists a budget auction in which there is no PNE.

Proof. (Example in [2])
In this example, we saw that the loser agent D bids his true value. How-

ever, the border agent C' has higher utility if he underbids agent D, as we
can see at the second table. Thus, this is not a PNE.

Agents | B; | v; | B; b; i z; | u; | agent type
A 40 | 2 | 40 | 1.143 | 1.143 | 35 | 30 winner
B 40 | 2 | 40 | 1.143 | 1.143 | 35 | 30 winner
C 40 | 2 | 40 | 1.143 1 30 | 30 border
D 8 | 1| 8 1 0 01]0 loser

Agents | B; | v; | B; b; i x; | u; | agent type
A 40 | 2 | 40 | 1.143 | 1.143 | 35 | 30 winner
B 40 | 2 | 40 | 1.143 1 40 | 40 winner
D 8 | 1] 8 1 1—€¢| 8]0 winner
C 40 | 2 |40 | 1 —€ 0 17 | 34 border
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4.5 Critical Bid

Let the function f;(x) be agent’s j utility if he bids «, is ranked first and
pays z:

=

fi(z) = (vj —x) if ppin <z < % (j: border)
’ .(Uj —z) if % <z (j: winner)

s |®

Let the function g;(z) be agent’s j utility if he bids x, ranks last and pays

Pmin:
0 if prin <2 < ZZ% (loser)
iz Bi o Diny Bi > iz Bi
g](.’IJ) = (N - %)(Uj _pmin) if % <z < % (border)
B; . > iz Bi D it 3 B;
pimZ‘n (U] — pmzn> lf m S X (bOI‘deI‘ | N — % S pmzn)

The following properties are satisfied:

(¢) Both functions are continuous in the range [pmin, v;)-

(#) Function f; is (strictly) decreasing and g; is (weakly) increasing in x.
(Z“) fj(pmin) > gj(pmm)'

(iv) gj(vj) > fj(v;) = 0.

The conclusion is that these two functions intersect in a unique point, as
the following picture shows, which motivates the following definition.

Definition 4.5.1. Consider an auction with k agents and a minimum price
Pmin- The critical bid for agent j, x = c;j(k,pmin), is the intersection of
the two above functions, f; and gj. Therefore, when all agents bid b =
(x,z,...,xz), then agent j is indifferent between the top rank (being a winner
or a border) and the bottom rank (being a border or a loser).

(x) In addition, f;j(z) > g;(x) for x < c¢; and fj(x) < gj(z) for x > ¢;. In
other words, for v < c;j, agent j prefers top rank and, for x > c;, agent j
prefers bottom rank.
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Uj‘

N(vj = Pmin)
B

N(’U]' W]) L

0 in  2iziBi B Yiz; Bi _ .
Pmin TJ ﬁ] __LwiFy v b_]
&

Critical bid for all cases

According to the interval in which the two utility functions, g;(x) and f;(z),
intersect, we have the cases of bottom and top rank, right below. For each
case, we present the critical bid, ¢;(k, pmin) = .

Cases:

e (i) top rank: ‘border’
bottom rank: ‘loser’

Nwj—z)=0 <«

r = Uj.
e (ii) top rank: ‘border’
bottom rank: ‘border’
S B
N(vj =) = (N = ZZ22) (0 = pmin) -
N2 — Nppint — ZBz’(Uj — Pmin) = 0.
i)
Since A = N?p?. +4N Z Bi(vj — pmin), (4.4)
i#]
Npmi A
we have = = W, T e [sz‘mvj] (4.5)
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e (iil) top rank: ‘border’

bottom rank: ‘border who exhausts his budget (N — % = %)’
N(UJ - 1‘) = ('Uj pmzn) —
Pmin
B
TN poin (0 = Pmin)
(4.6)

e (iv) top rank: ‘winner’
bottom rank: ‘loser’

B.
—j(vj —2) =0 < (The allocation of the first ranked agent is always positive.)
x

SL‘:Uj.

e (v) top rank: ‘winner’

bottom rank: ‘border’

B. Z . B
vy —a) = (N = ZZ) (0~ pin) &
i Bi(vj — Pmin) + Bj - vj
N(Uj _pmin) .

e (vi) top rank: ‘winner’

bottom rank: ‘border who exhausts his budget (N — % = Biy

B;j B
vi —x) = Vi — Pmi &
T ( J ) pmin( J pmzn)
T = Pmin-

* Notice that in every case except for (vi), the critical bid ¢;(k, pmin) = @
depends on agent’s private value v;.

4.6 Existence of Pure Nash Equilibrium

In this section, firstly, we present the main result of [2] which concerns the
existence of PNE in the general budget auction model for any number of
agents. Secondly, we present our counterexample for this theorem. More
specifically, the main theorem is proven by an induction and our counterex-
ample concerns the induction base. In addition, our observation has impacts
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on the next steps of the proof induction, the general case. The actual main
theorem is the following.

There exists a PNE for any number of agents, where
Theorem 4.6.1. agents submit their true budgets (B; = B;) and bid at
most their value b; < v;.

To prove this theorem, they use a specific induction kind which goes as
follows. They start by proving the existence of PNE for two agents and for
multiple agents with identical budgets. Then, they prove that even if we
add one more agent, there is still a PNE (induction step). Last, using all
the previous steps, they prove the PNE existence for any number of agents
(general case). The actual process is the following.

e Base.
(Two agents)
Assume that we have two agents with co < ¢;. Then any bids b =
by € [c2, min{va,c1}] are a PNE, and those are the only PNEs where
agents submit their true budget.
(Claim [4.7], pagel7 in [2])

(Multiple agents with Identical Budgets.)

There exists a PNE for any number of agents with identical budgets,
where each agent bids b; € [pmin,v;], loser agents bid b; = v;, and
agent submit their true budget (B; = B;). (Theorem [4.9], pagel8 in

[2])

e Induction Step.
(Increasing the numbers of agents by one.)
Let 51 be a PNE with hagents and minimum price p,,in, such that
all winner agents pay price p. If there is a new agent h + 1 such
that (a) vy, > vh + 1, and (b) For every i € S} the new critical bid
¢i(Sh+1, Pmin) = Vpt1, then we can define a by which is a PNE for
Sp+1 with the same minimum price py,in, where agent h + 1 is a loser
agent.
(Claim [4.12], page 20 in [2])

o Result.
(General case)
Using all the previous steps and additional lemmas, they prove the
general case of a budget auction for any numbers of agents (Theorem
5.5.1).
(Theorem [4.13], page 22 in [2])
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4.7 Counterexample 1

We recall here the claim that was proved as the induction base of the main
theorem’s proof.

Claim 4.7.1. [4.7. p.17 in [2]] Assume that we have two agents with ca <
c1. Then any bids by = by € [co, min{va, c1}] are a PNE, and those are the
only PNFEs where agents submit their true budget.

Our first observation in the proof of this claim was the following. It
is assumed that the two agents are ranked by the auctioneer according to
their critical bid, instead of their names. However, this is impossible since
the critical bid is a private information. It depends on the private value
v;3, as we have noticed at section 4.5, pg 47-48. According to the original
budget auction rules, in the case of identical bids, the tie is broken using the
lexicographic order. This means that the agents, after their bidding, they
are renamed according to their name. The agent with the lower original
index will first start buying items. Therefore, we conclude that the order of
critical bids respects the order of agents’ names which does not seem to be
legitimate.

» Counterexample 1.
Assume that we have two agents, A and B, with ¢4 < ¢ and by = bp €

[ca,min{va, cp}]. Since by = bp, the auctioneer uses the lexicographic or-
der. Thus, agent A is ranked first and agent B is ranked second.

A|by=0bp
B |bp=0bas

According to claim 4.7.1, any identical bids in the interval [c4, min{va, cp}]
are a PNE. We choose by = bp € (cA,min{UA,cB}). Therefore, c4 < by
which implies, by definition 4.5.1(%), that agent A prefers bottom. Moreover,
since bp < min{va,cp} < cp, we have also that bp < cp which implies, by
definition 4.5.1(x), that agent B prefers top rank. So, both agents want to
change their positions which contradicts the claim that this is a PNE.

What if their bid is on the boundaries of the interval [c4, min{va,cp}]?
In these cases, only one of the agents prefers to change his position which
still implies that there is no PNE. Assume that:

e by =bp =cu. Then, bp < cp and, as previously, agent B prefers top
rank.

e by =bp =min{va,cp}

30nly in case v;, the critical bid does not depend on the private value v;.
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- by =bp =wvx < cp. Similarly, agent B prefers top rank.

- by =bp =cp. Then, by > c4 and agent A prefers bottom.

Therefore, in the case that agent with the lower original index has the
minimum critical bid, there is no PNE.

<

We should mention here that the only case PNE exists in claim 4.7.1, is
when ¢4 = min{va,cp} and by = bp = c4 = c¢g. This implies that both
agents bid their critical bid so, according to critical bid’s definition, they
are both indifferent between top and bottom rank which means that this is
always a PNE, regardless to their order.

This problem is also extended to the next induction steps for any number
of agents. For the general case the following claim is being used.

Claim 4.7.2 (4.10. p.19 in [2]). If the lowest critical bid is lower than the
value of any agent, i.e., ¢; = ¢p(Pmin) < Vp, then b= (cj,...,c;j) is a PNE,
where agent j is the border agent and other agents are winner agents.

Similarly, in this claim, it is assumed that there is a connection between
the order of critical bids and the order of names. More precisely, the agent
with the highest original index must have the lower critical bid, c;. However,
there is a footnote in which they assume that agent j slightly underbids c;,
in order for the previous problem to be avoided.

If agent j slightly underbids c¢;, say b; = ¢; — €, then the winner agent
who is exactly above him (the last winner) will pay ¢; — € per item, which
is a different price than c; that the other winners pay. This fact contradicts
claim (4.4.1) on page 44 which says that one of the PNE properties is that
all winners pay the same price.

4.8 Counterexample 2

In this section, we present one more counterexample for theorem 3.1 in [3]
which consists of two parts. The first part concerns the PNE existence for
equal bids in [ca, min{va, ¢1 }] for which we previously showed counterexam-
ple 1. The second part concerns the PNE existence for non-identical bids.

Theorem 4.8.1 (Theorem 3.1 in [3], second part). Assume that we have
two agents with co < c1. If %1 > N, then any bids by € [pmin,v2] and
by € [ve,v1] are a PNE.

(ci, Bi,v; is the critical bid, budget and value of agent i, respectively.)

o1



4.8. COUNTEREXAMPLE 2 Chapter 4.

» Counterexample 2.

We show that in the case of by = by = w9, the previous theorem is not
true. The following table depicts the data (values, budgets) of two agents
with N = 2 (total items) and ppm = 3.

Agents | Values | Budgets
1 v = 4 B1 =9
2 v9 =3 | By =28

Let both agents bid b; = bs = vy = 3 and assume that agent 1 has a higher
original index than agent 2. Then the ranking is the following.

Agents | Bids Prices Values | Budgets | Allocation
2(14) b2:U2:3 p2251:3 U2:3 32:8 mzmin{%,N}:N
1(3) b1:1}2:3 plzpmm:?) U1:4 31:9 x1:0

The conditions are satisfied:
e - by = U2 € [Pmin, V2]
- b1 = V9 € [UQ,Ul].

By
v2

e-D1=8=-3>2=N.
e - <& 34
Even though all the conditions are satisfied, this is not a PNE.

Proof. We focus on agent 1. The utility of agent 1 is : u; = 0 (loser).
If he overbids agent 2 then we have the following.

Agents | Bids Prices Values Budgets | Allocation
1 b1 > by = vy plzbzz?) v =4 B =9 mlzmin{%,N}:N
2 bp=v2=3 | p2=pPmin=3 | V2=Pmin=3 | B2 =8 | 12=0

Agent’s 1 new utility is u; = z1(v1 —p1) = N(4 —3) M=% 9 which is higher
than his previous utility (zero). Therefore there is at least one agent who
wants to change his position. Hence there is not a PNE, which contradicts
theorem 3.1. O

Checking the critical bids

By definition 4.5.1, the critical bid ¢; of an agent j is the bid amount x such
that, if both agents bid that amount, i.e. b = (z,x), agent j is indifferent
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between top and bottom rank. We will check this for both agents.

Firstly, we assume that both agents bid by = by = 3 and we show that

agent 2 is indifferent between top and bottom.
v2=p2

Uo—top = T2(v2 —p2) = 0.
Agents | Bids Prices Values Budgets | Allocation
2 b2:3 p2:l71:3 ngpmm:3 32:8 (L'szin{g,N}:N
1 by =3 | p1=Pmin=3 | v1 =4 Bi=9 |z21=0
x2=0
U2 _pottom = T2(v2 —p2) "= 0.
Agents | Bids Prices Values Budgets | Allocation
1 b1262:3 p1:b2:3 ’U1:4 31:9 xlzmin{%,N}:N
2 bp=c2=3 | P2=Pmin =3 | V2=Pmin =3 | Ba=8 | x2=0

Indeed, ¢y = 3.

Secondly, we do the same for agent 1. Assume that both agents bid b =
by = c¢1 = 4 and then we show that u1_s0p = U1—bottom-

Ul—top = 1(V1 — p1) =,

Agents | Bids Prices Values Budgets | Allocation
1 b1261:4 p1:b2:4 ’U1:4 31:9 xlzmzn{%,N}:N
2 bo=c1=4 | p2=pPmin=3 | V2=pPmin=3 | Ba=8 |x3=0

x1=0
U1 —pottom = T1(v1 —p1) = 0.
Agents | Bids Prices Values Budgets | Allocation
2 b2201:4 pQZblz4 ngpmm:?) 32:8 Z'szin{g,N}:N
1 by=cir=4|p1=pmin=3|v1=4 Bi1=9 |z21=0

<

4.8.1 Correctness

At this section, we present a theorem which is a remodeled version of the
previous theorem 4.8.1 on page 51.

Theorem 4.8.2. [New version] Assume that we have two agents with cg <

cr. If % > N, then any conservative bids such that by > co, are a PNE.

Proof of Theorem 4.8.2.

Claim 4.8.3. If By /vy > N, then ca = vs.
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Proof. Assume that both agents bid = vy. According to the auction rules,
in case of equal bidding, the agents are ranked according to their original
index, name.

e If agent 2 is ranked first, then he is either a border with utility N (v —
v2) = 0 or a winner with utility %(vz —w9) =0.

e If agent 2 is ranked second, then by %1 > N* we observe that we are
on the first branch of function g; on page 46. Hence, agent 2 is a loser
with ug = 0.

Consequently, agent 2 has the same utility being either first or second
ranked. This means that he is indifferent between top and bottom rank. By
the critical bid definition 4.5.1, cg = vs.

O

Claim 4.8.4. Assume that we have two agents, 1 and 2, who bid by < co <
b1 such that by < %. If agent 2 changes his bid such that by < %, he will
have no additional profit.

Proof.

(A) Firstly, we find agent’s 2 utility for the given bids. By by < ¢o < by,
agent 1 is first and agent 2 is ranked second. By by < % = N < %, which
means that if agent 1 is first, he gets all the items and agent 2 is a loser. So
U = 0.

(B) Secondly, we find agent’s 2 utility for any other different by and compare
with the original utility.

e Assume agent 2 changes his bid, either higher or lower, but he is still
second ranked. Then, by N < %, agent 2 will be always a loser
regardless of his bid. So, uo = 0 and he has no additional profit.

e Assume agent 2 changes his bid and he becomes first. He can be
ranked first either with by = b (in case he has a lower original index),
or with by > bo.

— ¢ < by = by. By 4.5.1(x), agent 2 prefers bottom. If he was in
bottom, his utility would be zero (by N < %). Since he prefers
to be bottom ranked with zero utility, his utlity in top is negative,
us < 0.

— o < by < by. In the previous case of co < by = bs, agent 2 has
negative utility. For any higher by, his utlity will still be negative.
Thus, us < 0.

4Since agent 1 is ranked first, he can buy at least all the items (p1 = b2 = v2). So,
agent 2 is a loser.
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In all cases, agent 2 has either equal or lower profit than his original one.
Hence, he has no additional profit. O

Claim 4.8.5. Assume that by < by such that bs < ¢y. Then if agent 1
changes his bid, he will have no additional profit.

Proof.

e Assume that agent 1 changes his bid remaining first (even for b; = by
if he has lower original index). Then his utility remains the same as
before, ui* = uq.

e Assume that he changes his bid and becomes second ranked. He could
be ranked in bottom either with b; = by, or with by < bs.

— by = by < ¢;. By 4.5.1(x), agent 1 prefers top. Thus, his new
utility uq* is lower than his utility in top for by = by which equals
to his original utility wy for by > bs. So, ui*x < uj.

— by = by = ¢1. By critical bid definition 4.5, he is indifferent
between top and bottom, thus ui* = u;.

— by < by <. If agent 1 lowers his bid, the only he could succeed
is to lower his utility. Lowering his bid, he also lowers the price
of agent 2 (second-price: ps = by). Hence, agent 2 can buy more
items so the items are left for agent 1 are less® than before. So
up * x < upk and upx < uy (previous cases).

In any case, agent 1 has no additional profit changing his bid. O

Claim 4.8.6. If co < c1, then for bids bs < co < b1, no agent has a net gain
if he changes his bid (under the condition that agent 2 changes conservatively
his bid such that by < 51).

Proof. By claim 4.8.4 and claim 4.8.5. O

Moreover, we have the following observation.

B B
ZL>N= b—l > N for any conservative bs. (4.7)
U2 2

Finally, by claim 4.8.3, claim 4.8.6 and the previous observation 4.7, the
theorem is proven.

O]

°If agent 2 had bought all the items, then even if agent 1 lowers more his bid, his
allocation would be the same as before, xox = x2 = 0.
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In Appendix A.4 on page 69, we give a specific numerical counterexample
showing that if bids can be changed non-conservatively, then a pair of bids
as in theorem 4.8.2 is not necessarily PNE.

4.9 Special case of PNE existence

Our contribution in this work is a condition under which PNE exists for
two agents. This condition is simple, does not involve the critical bids and
concerns non-identical bids.

Theorem 4.9.1. Consider two agents with non-identical conservative bids.
Let agent 1 be the first and 2 the second ranked agent. If agent 2 has a
budget such that %2 > N, then any bids by = vy and by € (va,v1] are a
PNE.

(B;,v; are the budget and value of agent i, respectively.)

Proof.
Suppose that we have two agents with bids b1 > by such that by = vy and
by € (va,v1]. Then

Agents | Bids Prices | Values | Budgets | Allocation
1 b1 > v p1 =712 | U1 By T = min(N, %)
2 b2 = v2 | Pmin Uy By ro = min(N — %, %)
Agent’s 1 utility:
up = x1(v1 — p1) = 21(V1 — V2) >0, (4.8)
since v1 > by > by = vo.
Agent’s 2 utility:
ug = x2(v2 — p2) = £2(V2 — Pmin)- (4.9)

In the worst case us = 0 (either because of he is a loser, or vy = pyin)-

We will show that this is always a PNE.

e |f agent 2 changes his bid.

Agent 2 cannot bid higher than vs due to the conservatively bidding.
If he lowers his bid, the only he couls succeed is to lower his utility.
More precisely, he lowers the price of agent 1, so agent 1 can buy more
items. Thus, less items are left for agent 2. So agent 2 has no profit if
he changes his bid.
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e |f agent 1 underbids agent 2.

Agents | Bids Prices Values | Budgets | Allocation
) by =vo | pa = by Uy By x9 = min(N, 522)
1 b1 <02 | Pt = Pmin | U1 By 71 = min(N — s, p]jjn)

If agent 1 has higher original index (name), he could be ranked last
even by bidding by = by = vy. The following explanation satisfies this
case too. By our assumption we have that % > N. This means that
agent 2 gets all the items if he pays vs. Consequently, agent 2 gets
also all the items for any lower price than vy. Since we have a second
price auction, the payment of agent 2 is agent’s 1 bid, po = b;. There-
fore, for any b < wvo, agent 2 gets all the items and agent 1 is a loser
(1 =0). So u; = 0, which is lower than his original utility (4.8).

(%) In case of by = v2 = pmin, if agent 1 has lower original index
than agent 2, the only way that he could be ranked last, is by bidding
b1 < b2 = Pmin-

Agents | Bids Prices Values Budgets | Allocation
2 (B) | b2 = pmin | p2=b1 = Pmin | V2 = Pmin | B zg =N
1 (A) | b1 <pmin | p1=0 U1 By 1 =0

However, bidding under the minimum price he cannot participate in
the auction according to the auction rules. Thus, his utility would be
u; = 0 which is lower than his original one (4.8).

(%) In case of by = v2 = pmin, if agent 1 has higher original index than
agent 2, he could be ranked last even if he bids the same amount with
agent 2, by = ba = v9 = ppin. This happens due to the lexicographic

order.
Agents | Bids Prices Values Budgets | Allocation
2 (A) | b2 = Pmin P2 = b1 = Dmin | V2 = Pmin | B2 xg =N
1 (B) bl = b2 = Pmin | P1 = Pmin U1 By 1 =0

As we mentioned before, due to the condition By/ve > N, agent 2
gets all the items. Therefore, agent 1 is a loser, x1 = 0. His utility
(u1 = 0) is lower that his original utility.

In any case, no agent has a profit if he changes his position, so this is a
PNE. O
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4.9.1 Non-existence of PNE without the condition

At this point, we give an example which shows that for the same bids as be-

fore, by = vy and by € (v2,v1], but without the previous condition % >N,
there exist settings with no balance.
» Example.
N =100, pmin =1
Agents | Values | Budgets
1 v =7 | By =60
2 vg =4 | By =30
o If by > by
Players| Bids Prices Values | Budgets | Allocation
1 bl p1:b2:4 ’U1:7 31:60 561:%:15
2 | bo=4|pr=pmn=1|ve=4] By =30 2o =min(N — 15,2%) = 30

The utility of agent 1 is

uyp = 561(1}1 - pl) = 15(7 — 4) =45 (410)
Lets examine his utility if he underbids agent 2.
Players | Bids Prices Values | Budgets | Allocation
2 52:4 p2:b1 U2:4 32:30 .7}2:%
1 by <4 | p1=pmin=1]v1=7]| Bi=60 | 21 =min(N — {2, 9
Depending on by, the worst case for agent 1 (his minimum new util-

ity) is when agent 2 gets the maximum amount of items, according
to his budget By. This happens for by = ppin. Even if agent 1 bids
b1 = Pmin = 1, his new utility u; = x1(v1 —p1) = 60(7 — 1) = 360 is
higher than his previous utility (4.10). Thus, agent 1 desires to change

his position.

o If by > by

In this case, agent’s 2 bid should be over his value because of by > vs.
But this is not legitimate due to conservative bids of the theorem’s

hypothesis.

In both cases, there is an agent who wants to change his position, therefore

we have no PNE.
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Chapter 5

Budgeted Second-Price Ad
Auctions with Envy-Free
equilibria

“In competitive behavior,
someone always loses.”

-John Nash
A beautiful mind

In this chapter, we present another Second-Price Budgeted Auction
model of an on-going paper of J. Diaz, Y. Giotis, L. M. Kirousis, E. Markakis
and M. Serna. This auction model concerns the selling of advertising space
on web pages. It is focused on the existence of envy-free assignments and
their relation with pure Nash equilibria under budget constraints.

5.1 The auction model

The ad space is assumed to be divided into slots. There exist k slots and
n players (n > k) who compete with each other for those slots through a
second price auction. Every slot has different visibility and therefore, every
ad in each slot has different probability of being clicked. These probabilities
are called click-through-rates (CTR) and we symbolize them with 6, for each
slot i € {1,...,k}. Depending on slots’ position on the web page, we have
01 >09>--->0,>0.

Every player ¢ has a private value v; and a public budget constraint B;
which expresses the total payment they are willing to pay. Each player is
assumed to be assigned to at most one slot. The auctioneer ranks the players
according to their bids and renames them such that b; > by > --- > b,,. The
bids need not to be conservative, therefore a player could overbid his value,
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bi > v;. In case player ¢ gets slot s;, he will pay 0, - p;, where p; = b1
(second price auction). In case he gets no slot, he pays p; = 0.

After players are ranked by decreasing bid, each player is assigned to the
slot with the highest CTR that is currently available and within his budget.
For instance, assume that player ¢ is assigned to slot 7 = s; which is the slot
with highest CTR that is currently available, it has not been taken so far
by another player i’ < 7 in the ranking. Then, player ¢ must also be able to
afford this slot, that is p;#s, < B; = b;110s; < B;. In case there is no slot
left that player ¢ can aford in his turn, he gets nothing.

Categories of players

Definition 5.1.1 (winner). A player is called winner if he is assigned to a
slot.

The utility of a winner player i being assigned to slot s; is u; = 6, (v; —
pi) = 0s,(vi — bit1)

Definition 5.1.2 (loser). A player is called loser if he gets no slot.

The utlity of a loser player is u; = 0.

5.2 Types of Second-Price auctions

Three types of budgeted second price auctions are defined below.

e In the non-excluding-budget auction, the mechanism ranks first the
players according to their bids in a decreasing order. Each player
pays per click the bid of the player who is ranked exactly below him.
Then, the slots are also assigned to the players in a decreasing order.
However, the mechanism ignores the budget constraints. This means
that it is possible for some budget constraints to be violated. The
utility of those players whose budget constraints are violated is u =
—00.

e In the excluding-budget auction, the mechanism ranks first the players
according to their bids in a decreasing order. Then, it assigns to each
player a price per click, equal to the bid of the player who is ranked
exactly below him. Respecting players’ decreasing order and budget
constraints, the mechanism assigns to each player the highest available
slot. In this model, it is possible for a player i to be assigned to a
higher! slot than the slot of a player i’ for ' < i. In other words, a

!The slot of player ¢ has higher click-through-rate than the slot of player 4’.
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player assigned to a higher slot (player i) may pay less than another
player who is assigned to a lower slot (player i'). Notice that some
slots may remain unassigned in case that no player can afford them.
Also, in case that the lowest bidding player is awarded a slot, he pays
Zero.

e In the decreasing auction, a price point is lowered, starting from infin-
ity. A player requests a slot if the price is equal or lower than his bid
and his budget in case he would be asked to pay for that slot. The
highest slot is assigned to the first player who requests it. The price
of a player will be the price point where a second player (assigned or
unassigned) requests that slot. Then, the same procedure follows for
the next slot, resetting the price point to infinity.

In all mechanisms, in the case of bid ties, the players are ordered accord-
ing to their original index, ranking first the player with the lower original
index.

5.3 Envy and envy-free assignment

In compare with the definition of envy (3.1.2) on page 29, the envy definition
in this budgeted model differs. due to the additional paremeter, the budget
constraint to each player. More precisely, in order for a player ¢ to envy the
place of another player j, he must also be able to afford j’s place.

Rationality

Definition 5.3.1. A price assignment is called rational if for every player
1 his price is at most his value, p; < vi.

Envy

Definition 5.3.2. Given a rational price and slot assignment, we say that a
player j envies a winner i with assigned slot s; if j can afford s; and j would
be strictly better off in i’s place than his present situation, i.e. 05,p; < B;

and Hsj(vj —pj) < Hsi(vj —pi)-

We should notice that the definition of j envying i does not involve the
value v; or the budget B; of player i.

Envy-free assignment

Definition 5.3.3. We say that the assignment is envy-free (or is in envy-
free equilibrium) if it is rational and no player envies another player. That
18, for every player j

61



5.4. ENVY-FREE EQUIL. VS PNE UNDER BUDGETS Chapter 5.

Os;(v; —ps;)s if Os, - ps; < By
(v; —p.) > i il oA 7
03] (UJ pSJ) = { 0, otherwise,

where sj and ps; 1s the slot assigned to player j and the price® per click he
would be asked to pay, respectively.

Notice that in an envy-free equilibrium, a player 7 may not envy another
player ¢ because he cannot afford i’s place, 8s,ps, > B;.

5.4 Envy-free equil. vs PNE under budgets

By property (3.1.5) on page 30, we have that the class of envy-free equilibria
is a subset of pure Nash equilibria. In that model, there were no budget
constraints. This implies that this property is also satisfied under the non-
excluding-budget second-price auction model.

However, this property under the excluding-budget second-price auction
model. Since the slot allocation respects the budget constraints, a player
could alter the allocation in his benefit forcing other player to get out of
their budget, increasing his utility. We present here an example as it follows.
First, we have an envy-free assignment without budget constraints. This is
also a pure Nash equilibrium. Then, we add a budget restriction to each
player. Even though the assignment is still envy-free (according to definition
(5.3.2) on page 61), we show that it is not a PNE.

» Exzample.
Envy-free assignment without budget contraints

The following table depicts an envy-free assignment of slots, s1, s2, to four
players, A, B,C, D, associated with particular prices, pa, pp,pc,pp (proof
of envy-freeness in Appendix B, page 71).

Players | Bids Prices Values CTR

ba =20 | pa=15|va4 =30 |6 =0.3
bp =15 | pp =12 | vp =20 | b5, =0.2
bo =12 | pc =0 | vo =12 | no slot
bp=9 | pp=0 | vp =10 | no slot

S| Q||

By property (3.1.5) on page 30, this is also a Pure Nash equilibrium.

Envy-free assignment under excluding-budget setting

2p5j equals to zero should player j awarded no slot.
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Lets now add a budget constraint to each player. The allocation is still an
envy-free assignment according to definition (5.3.2) (proof in Appendix B.2,

page 73). However, we will show that this is not a PNE.
Notice that player A cannot afford slot s; since 6g, - pa = 1% -15 = % >

% = B4. Thus, he gets the next currently available slot within his budget.
Slot sy is within player’s A budget, since 6, - p4 = % 15 =3< % = By.
Players | Bids Prices Values Budgets CTR

A [ba=20|pa=15|va=30 | Ba=%=35]6,,=02

B bp =15 | pp=12 | vp =20 | Bgp = 3.6 05, =0.3

C bo =12 | pc =0 |veg=12 | Bc=1 no slot

D bp=9 |pp=0 |vp=10 BD—%:0.5 no slot

Not a pure Nash equilibrium

Proof.

The utility of player A is ug = 0s,(v4 — pa) = 1%(30 —15) = 1% -15 = 3.

If player A underbids player C' by bidding b4 = 10, then we have the fol-
lowing. Player B becomes first and can still afford slot s; since 0;, - pp =
% -12 = 3.6 = Bp, so s9 is assigned to B. Player C cannot afford slot ss,
since O, - pc = % -10 > 1 = Bg (if he could afford slot sq, he would pay
pc = ba = 10). Thus, he gets no slot and pc = 0. However, player A can
afford slot sa, since 05, - p4 = 1—20 -9 =1.8 < 3.5 = B4. Therefore, slot ss is
assigned to player A.

Players | Bids Prices Values Budgets CTR
B bp=15 | pp=12 |vg =20 | Bp = 3.6 0s, = 0.3
C bc=12 | pc =0 |ve=12 | Bc=1 no slot
A |ba=10|pa=9 |va=30|Ba=7=35]6;,=02
D bp=9 |pp=0 |vp=10 BD:%:O.5 no slot
The new utility of player A is uq = 0,,(va — pa) = 5(30 —9) = % =42
which is higher than before, so he wants to change his position. Therefore,
this is not a PNE. O
<

5.5 Main Results

One of the main relults of this working paper is the existence of envy-free
equilibria under the excluding-budget auction.

63



5.5. MAIN RESULTS Chapter 5.

There exists bids such that the excluding-budget second-
Theorem 5.5.1. price auction produces an envy-free assignment of prices
(per click) to the players and of players to the slots.

Proof Idea.
! This is only the main idea of the theorem’s proof. It will be presented and
described in details in [4].

The assignment process goes as follows. Initially, to every slot is tagged
the positive price oo such that no player can afford any slot at that price.
Each time the price of an arbitrary slot is continuously lowered until a player
can afford it or envies it (in case he is already assigned to another slot). If
he envies it, he leaves his first slot and is assigned to the new one. His
previous slot is now free and its price starts being lowered until, similarly, a
player can afford it or envies it. The procedure is repeated for all slots. At
the end, is proved that all slots will be assigned to the players. Moreover,
the allocation of prices and slots becomes with a particular method such
that the following properties are satisfied. The final assignment respects the
budget constraints, is envy-free and rational, which completes the proof. [J

Theorem 5.5.2. There are settings under excluding-budget auction where
no Nash equilibrium exists.

The following table depicts one of those settings.

Players | Values | Budgets
1 v = 50 B1 =50
2 vy =16 | Bo =5
3 v3=8 | Bg=2

Theorem 5.5.3. There are settings under non-excluding-budget auction
where no Nash equilibrium exists.

Since the class of envy-free equilibria is a subset under the non-excluding-
budget auction, we have the following.

Corollary 5.5.4. There are settings under non-excluding-budget auction
where no envy-free equilibrium exists.

The proofs of the all the previous theorems will be analytically presented in
[4].

64



Appendix A

Counterexamples

A.1 Property 3.1.7

Positions | Values | Bids Prices | CTRs
1 U1:10 b1:8 p1:7 951:0.4
2 Vg = 11 b2 =7 P2 = 952 =0.2
3 ’U3:5 53:4 p3:2 953:0.15
4 vy=4 | byg=2]| ps=01] noslot

Player 1’s utility

e In his position:
e In 2’s position:
e In 3’s position:

e In 4’s position:

Player 2’s utility

e In his position:
e In 1’s position:
e In 3’s position:

e In 4’s position:

Player 3’s utility

e In his position:

e In 1’s position:

uy = 951 (Ul —pl) = 04(10 - 7) =1.2.
U2 = Os, (V1 — p2) = 0.2(10 — 4) = 1.2.
U3 = O (V1 — p3) = 0.15(10 — 2) = 1.2.

he gets no slot, so w4 = 0.

U = 952(1)2 *pg) == 02(11 - 4) =1.4.
U1 = 04, (Vg — by) = 0.4(11 — 8) = 1.2.
U3 = Og (Vg — p3) = 0.15(11 — 2) = 1.35.

he gets no slot, so usq4 = 0.

ug = O54(v3 — p3) = 0.15(5 — 2) = 0.45.

Uz = O, (V3 — by) = 0.4(5 — 8) = —1.2.

65



A.1. PROPERTY 3.1.7

Appendix.

e In 2’s position:
e In 4’s position:

Player 4’s utility

e In his position:

e In 1’s position:
e In 2’s position:

e In 3’s position:

he gets no slot, so ug.4 = 0.

he gets no slot, so ug = 0.

Ugs1 = 05, (Vg — b1) = 0.4(4 — 8) = —1.6.

Ugrry = B, (Vg — b2) = 0.2(4 — 7) = —0.6.

Ug~3 = 933 (U4 - b3) = 015(4 — 4) = O
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A.2. PROPERTY 3.1.8

A.2 Property 3.1.8

Positions | Values | Bids Prices CTRs
1 ’U1:10 51:8 p1:7 93120.4
2 ’U2:11 b2:7 p2:4 93220.2
3 V3 = 5 b3 =4 pP3 = 1.9 953 =0.15
4 vy=4 | by=19 | ps=0 no slot

Player 1’s utility

Player 2’s utility

e In his position:
e In 1’s position:
e In 3’s position:

e In 4’s position:

Player 3’s utility

e In his position:
e In 1’s position:
e In 2’s position:

e In 4’s position:

Player 4’s utility

In his position:
In 2’s position:
In 3’s position:

In 4’s position:

uy = 931 ('Ul — p1> = 0.4(10 — 7) =1.2.
Ul~2 = 952 (’Ul — pg) = 0.2(10 — 4) =1.2.
—p3) = 0.15(10 — 1.9) = 1.215.

U1~3 = 033 (Ul

he gets no slot, so ui,4 = 0.

U = 032(1)2 —pg) = 0.2(11 — 4) =1.4.
Up1 = 04, (Vo — by) = 0.4(11 — 8) = 1.2.
Uz = Os4(v2 — p3) = 0.15(11 — 1.9) = 1.365.

he gets no slot, so usq4 = 0.

us = 633 ('U3 — pg) = 0.15(5 — 2) = 0.45.
U3~s1 = (951 (U3 — bl) = 0.4(5 — 8) =—-1.2.

he gets no slot, so ug4 = 0.

e In his position:he gets no slot, so uy = 0.

e In 1’s position:
e In 2’s position:

e In 3’s position:

ug1 = 0, (L4 — b1) = 0.4(4 — 8) = —1.6.

Ugy = O, (Vg — b2) = 0.2(4 = 7) = —0.6.

gz = Oy (V4 — b3) = 0.15(4 — 4) = 0.
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A.3. PROPERTY 3.1.9

A.3 Property 3.1.9

Positions | Values | Bids Prices | CTRs
1 U1:10 b1:8 p1:7 931:0.4
2 U2:11 b2:7 p2:4 932:0.2
3 U3:5 b3:4 p3:4 933:0.15
4 vy=4 | byg=4]|pg=01] noslot
Player 1’s utility
e In his position: u; =05, (v1 —p1) =0.4(10—-7) = 1.2.

e In 2’s position:
e In 3’s position:

e In 4’s position:

Player 2’s utility

e In his position:
e In 1’s position:
e In 3’s position:

e In 4’s position:

Player 3’s utility

e In his position:
e In 1’s position:
e In 2’s position:

e In 4’s position:

Player 4’s utility

Utz = O, (1 —p2) = 0.2(10 — 4) = 1.2.

U3 = B, (01 — p3) = 0.15(10 — 4) = 0.9.

he gets no slot, so w4 = 0.

U2 = 932 (’UQ —pQ) = 0.2(11 — 4) =14.
U2~s1 = 951(122 — bl) = 0.4(11 — 8) =1.2.
U3 = 055 (V2 — p3) = 0.15(11 — 4) = 1.05.

he gets no slot, so ug,4 = 0.

us = 933(’(}3 —p3) = 0.15(5 — 4) = 0.15.

uzw1 = 05, (v — b)) = 0.4(5 — 8) = —1.2.

he gets no slot, so us,4 = 0.

e In his position:he gets no slot, so uy = 0.

e In 1’s position:
e In 2’s position:

e In 3’s position:

Ug1 = 05, (v — b1) = 0.4(4 — 8) = —1.6.
Ugrry = O, (Vg — bg) = 0.2(4 — 7) = —0.6.
Ugry = Osy(vg — bg) = 0.15(4 — 4) = 0.
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Appendix. Theorem 4.8.2/non-conservative bids

A.4 Theorem 4.8.2 on page 53,

(bidding non-conservatively).

Agents | Values | Budgets
1 vi=4| B =9 |and N =3, ppin =3
2 vy =3 | By =12

The conditions are satisfied:
B 9
e ¢y =3 <4 =¢; (The proof of critical bids is at the end.)

Assume that agent 1 bids b; = v1 = 4 and agent 2 bids by = v = 3.

Agents | Bids Prices Values | Budgets | Allocation
1 bi=vi=4|pi=b=3 |uvi=4|B=9 |z =min{ZL, N} =N
2 b2:U2:3 pgzpmin:3 U2:3 32:12 IL‘QZN—l'l:O

The bids b1,bo are conservative and by = 4 > 3 = c2, so by Theorem
4.8.2, this is a PNE.

But what would happen if agent 2 could change his bid non-conservatively
remaining at bottom? We show that in this case the previous bids are not
in a PNE because agent 2 has a higher utility bidding non-conservatively.

Proof.
Assume that agent 2 changes his bid by bidding by = % > 3 = vs.
Agents | Bids Prices Values | Budgets | Allocation
1 |bi=vi=4|p=b=] |vi=4|B1=9 |z=min{;p N}=7F
2 62:%>U2 P2 =Pmin =93 | va =3 | By =12 xgzmin{N—xl,%}:%

We observe that agent 2 forces agent 1 to pay more. As a result agent
2 gets more items and his utility becomes positive which is higher than his
original zero utility. Thus, he prefers to deviate = this is not a PNE.

O

Checking the critical bids

Firstly, we assume that both agents bid b = by = 3 and we show that
agent 2 is indifferent between top and bottom.

v2=p2
U2—top = x?(v2 - p2) =0
Agents | Bids Prices Values Budgets | Allocation
2 bo=3|pr=b =3 V2 = Prin =3 | Bo =12 | 23 = min{Z, N} = N
1 b1 =3 | p1=DPmin=3|v1=4 Bi=9 |21=0
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Theorem 4.8.2/non-conservative bids Appendix.
x2=0
U2 _pottom = T2(v2 —p2) =" 0.
Agents | Bids Prices Values Budgets | Allocation
1 bi=co=3|pr=by=3 v =4 B =9 |z =min{], N} =N
2 by=co=3 | p2=pPmin=3 | V2=pPmin=3 | Bo=12 | 22 =0
Indeed, co = 3.

Secondly, we do the same for agent 1. Assume that both agents bid b; =
by = c1 = 4 and then we show that ui_iop = U1—pottom-

Ul—top = T1(V1 — P1) =
Agents | Bids Prices Values Budgets | Allocation
1 bi=c1=4|pi=by=4 |v;=4 B =9 |z =min{], N} =7
2 by=c1=4 | py=Pmin=3| V2 =pmin=3 | Ba=12 [ zy =3
x1=0
Ul —bottom = 1131(1}1 - ]91) = 0.
Agents | Bids Prices Values Budgets | Allocation
2 b2261:4 p2:b1:4 U2:pmin:3 32:12 x2:m1n{%,N}:N
1 by=c1=4 | p1=pmin=3 | v =4 Bi=9 |21=0

Indeed, ¢y = 4.
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Appendix B

Envy-free assignments

B.1 No budget constraints

Players | Bids Prices Values CTR
A ba=20 | pa=15 | va=30 | s, =0.3
B bp =15 | pp =12 | vp =20 | 65, = 0.2
C bc =12 | pc =0 | v =12 | no slot
D bp=9 pp =0 vp = 10 | no slot

Proof. Firstly, it is obvious that the assignment is rational since v; > p;
for i« = A,B,C,D. Now we will show that no player envies another one,
according to the definition (3.1.2) on page 29.

Player A’s utility

e In his position: 6, (v4 —pa) = +5(30 — 15) = 4.5.

e In B’s position: fy,(va — pp) = (30 — 12) = 35 = 3.6.
e In C’s position: He gets no slot, so ug = 0.

e In D’s position: He gets no slot, so ug = 0.

Player B’s utility

e In his position: 0, (v — pp) = £(20 — 12) = 18 = 1.6.

e In A’s position: 0, (v — pa) = (20— 15) =3 15 = 1.5.
e In C’s position: He gets no slot, so up = 0.

e In D’s position: He gets no slot, so ug = 0.

Player C’s utility
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B.1. NO BUDGET CONSTRAINTS Envy-free assignments

e In his position: uc = 0.
e In A’s position: 0, (ve —pa) = 15(12 = 15) = & - (=3) = —-%.
e In B’s position: 0y, (ve — pp) = 75(12 — 12) = 0.
e In D’s position: He gets no slot, so uc = 0.

Player D’s utility
e In his position: up = 0.
e In A’s position: 0, (vp — pa) = £5(10 — 15) = 2 - (=5) = — 2.
e In B’s position: 6, (vp — pp) = 45(10 —12) = & - (=2) = -4,
e In C’s position: He gets no slot, so up = 0.

For any player, his utility at his position is at least equal with his utility in
any other player’s position. So this is an envy-free assignment. O
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Envy-free assignments

B.2. UNDER BUDGET CONSTRAINTS

B.2 Under budget constraints

Players | Bids Prices Values Budgets CTR
A | ba=20|pa=15|va=30 | By=7=35 [0, =02
B bp=15[pp=12 | vp=20 | Bg=2=36 |6, =03
C bo=12 | pc =0 |vo=12 | Bg=1 no slot
D bp=9 | pp=0 |vp=10 BD:%:0.5 no slot

2 7
va=30>15=pa and pA952:15-E:3§§—BA,
3
UB:20212:])B and p3951:12-ﬁﬁ3.6233.

- Secondly, no player envies any other player, according to the definition
(5.3.2) on page 61.

Player A’s utility

e In his position: ,,(va —pa) = =(30 — 15) = 3.

10
e In B’s position: 0, (va — pp) = £5(30 — 12) = %% 18 = 22 but it is
out of his budget (05, - pp = 5 - 12 =38 > 32 = 1 = B ).
e In C’s position: He gets no slot, so ug = 0.
e In D’s position: He gets no slot, so ug = 0.
Player B’s utility
e In his position: 0, (vp — pp) = £5(20 — 12) = 2.
e In A’s position: 0, (vp —pa) = 5(20 — 15) = 1.
e In C’s position: He gets no slot, so ug = 0.
e In D’s position: He gets no slot, so ugp = 0.
Player C’s utility
e In his position: uc = 0.
e In A’s position: 0,,(vc —pa) = 15(12 — 15) = % - (=3) = —1%

2
0
In B’s position: 6, (ve — pp) = (12 — 12) = 0.

In D ’s position: He gets no slot, so uc = 0.
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B.2. UNDER BUDGET CONSTRAINTS

Envy-free assignments

Player D’s utility

e In his position: up = 0.

e In A’s position: O, (vp —pa) =

e In B’s position: 0s,(vp — pp) =

e In C ’s position: He gets no slot, so up = 0.

No player envies another player, so this is an envy-free assignment.
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