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G. H. Hardy (1877 - 1947)
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Chapter 1

Introduction

Graph Theory, Logic and Complexity

Three of the most common entertaining riddles are the following:

1. (Graph Theory) Can you draw a given figure (for example, the left-most
figure in Figure 1.1) without picking up your pen and overlapping lines? or
Can you draw a given figure (for example, the right-most figure in Figure 1.1)
without picking up your pen, overlapping lines and by beginning and ending
at the same point?

Figure 1.1: The drawing riddle

2. (Logic) A prisoner is convicted to death penalty and the judge allows him to
say a last sentence in order to determine the way the penalty will be carried
out. If the prisoner lies, he will be hanged, if he speaks the truth he will be
beheaded. The prisoner speaks a last sentence and to everybody’s surprise
some minutes later he is set free because the judge cannot determine his
penalty. What did the prisoner say?

3. (Complexity) Fill in the blank squares of a sudoku.
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What someone finds out while trying to solve the first riddle is that you can-
not draw every figure without picking up your pen and overlapping lines. More
specifically, it is even more rare to find a figure that you can draw without picking
up your pen or overlapping lines and by beginning and ending at the same point.

For the second riddle (while using logical reasoning) one finds out that his
sentence could be the following: This sentence is a lie! (Notice that this is not the
unique such sentence that the prisoner could have said.)

While solving the third riddle one realises how much harder it becomes to fill
in the empty squares while the dimension of the sudoku board increases.

Behind these riddles and the hardness of finding their solution lie three of
the most beautiful fields of Mathematics: Graph Theory, Logic and Complexity
Theory1 while their common component is Combinatorics.

The first result in the history of Graph Theory is a theorem by L. Eüler (1736)
stating when a figure can de drawn without picking up your pen and overlapping
lines (i.e. when it has an Eüler path) and when a figure can be drawn without
picking up your pen or overlapping lines and by beginning and ending at the same
point (i.e. when it has an Eüler cycle).

Logic has its origins in Ancient Greece where Aristotle was the first to suggest
a formal system that was then used by Euclid. The riddle above is based on the
paradox of Epimenides. Epimenides was a Cretan who stated the following: “All
Cretans lie!”, thus created a contradiction to his one sentence.

Complexity Theory is the most recent one of them but a lot of progress has been
made since the first important papers in its history [7, 33] (Cook-Levin (Леонид
Анатольевич Левин) theorem and other NP-completeness results of R. Karp),

while one of its most important problems, P
?
= NP, remains open.

About this thesis

What we study in this thesis is some problems of Graph Theory and (partially)
their connection with Logic, Complexity and Algorithms. A graph G consists of
two sets (V,E), where the elements of the first set are its vertices and the second
consists of 2-element subsets of V (not necessarily all), called edges. We say that
two vertices v, u of a graph are connected by an edge if {u, v} ∈ E. A graph
parameter is a function mapping a graph to a non-negative integer. We explore
three graph parameters, namely tree-width, path-width and tree-depth of a graph,
concentrating mostly on tree-depth.

The tree-depth (also known as the vertex ranking problem [5], or the ordered
colouring problem [34]) of a graph is equal to the minimum integer k such that
we can colour all of its vertices (with colours 1, 2, . . . , k) in a way that no two

1Sudoku has been proven to be NP-complete.
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vertices connected by an edge have the some colour and every path whose endpoints
have the some colour contains some vertex of greater colour. Tree-depth has
received much attention lately because of the theory of graph classes of bounded
expansion, developed by J. Nešetřil and P. Ossona de Mendez in [49, 50, 51, 52, 48].
Furthermore, the tree-depth of a graph is equivalent to the minimum-height of an
elimination tree of a graph [10, 12, 48] (this measure is of importance for the
parallel Cholesky factorization of matrices [43]).

Moreover, we present one of the most important parts of Graph Minors Theory,
due to its numerous applications in Algorithm Design, which was introduced and
developed by N. Robertson and P. Seymour. Its main result, the Graph Minor
Theorem (also known as the Robertson-Seymour Theorem and formerly known as
Wagner’s Conjecture), is that the finite graphs are well-quasi-ordered by the minor
relation. A direct consequence of this result is that every minor-closed class can
be characterized by a finite set of minor-minimal graphs, called its obstruction set.
As the class Gk consisting of all graphs with tree-depth at most k is minor-closed
for every k ∈ N it follows, that each one of these classes has a finite obstruction
set.

We also present some important relations between tree-depth and the other
parameters (tree-width and path-width) and its properties (reduction-finiteness
lemmata) proven by J. Nešetřil and P. Ossona de Mendez. In this thesis we give
an alternative definition of tree-depth and we examine the set of minor-minimal
graphs not belonging in Gk for k ≥ 0. We call these graphs minor-obstructions for
tree-depth of level k and we denote them as obs(Gk).

Our main result (Chapter 4) is a structural lemma that constructs new obstruc-
tions from obstructions of lower values of k. This permits us to identify all acyclic
graphs in obs(Gk) for every k ≥ 0. So far, such a parameterized set of acyclic
obstructions is known only for the classes of bounded pathwidth [68] and its vari-
ations (search number [56], proper-pathwidth [68], linear-width [69]). Moreover,
using counting arguments, we prove that there are exactly 1

2
22k−1−k(1 + 22k−1−k)

acyclic graphs in obs(Gk) and this is the first time where an exact enumeration
for such a class is derived.

Our next result (Chapter 5) is a general reduction lemma, on the structure of
the obstructions, and the identification of the sets obs(Gk) for k ≤ 3. We thus
derive a complete characterisation for the classes Gk for k ≤ 3.

We finally (Chapter 6) proceed to present two meta-algorithmic theorems. The
first one was proven by B. Courcelle [8] in 1990, and guarantees the tractability of
a wide class of properties of graphs (MSOL-expressible) on graphs with bounded
tree-width. The second one was proven by J. Nešetřil and P. Ossona de Mendez and
guarantees the tractability of a wide class of graphs properties (FOL-expressible)
on graphs of bounded expansion. We concentrate mostly on the second theorem,
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giving a brief introduction of the theory of classes of bounded expansion and the
importance of tree-depth in this.

The results of Chapter 4 and Chapter 5 have been accepted to the European
Conference on Combinatorics, Graph Theory and Applications (EUROCOMB ’09)
and an extended abstract is going to be published at the Electronic Notes on
Discrete Mathematics. [27]



Chapter 2

Basic Notions

In this chapter we introduce some basic notions that we shall use throughout this
Thesis. They include the interpretation of mathematical notation, a wider presen-
tation of the necessary graph-theoretic notions and especially of some parameters
on graphs. Finally, they include a brief introduction to logic over graphs.

2.1 Basics

R,Z,Q and N denote the sets of the real numbers, integers, rational numbers and
natural numbers, respectively. Let A be a set, we denote by Pk(A) the set of
all subsets of A with exactly k elements. For integers m,n the interval {m,m +
1, . . . , n} is denoted [m,n] and it is empty if n < m. Furthermore, let [n] = [1, n].
By the sign ∼ we mean approximately equal and we use α

.
= d to represent a

numerical approximation of the real α by the decimal d, with the last digit of d
being at most ±1 from its actual value.

2.2 Graphs

Graph Theory begins its journey from the famous problem of The Seven Bridges of
Königsberg. The city of Königsberg in Prussia (now Kaliningrad (Калининград),
Russia) was set on both sides of the Pregel River (Преголя), and included two large
islands which were connected to each other and the mainland by seven bridges.
The problem was to find a walk through the city that would cross each bridge
once and only once. The islands could not be reached by any route other than the
bridges, and every bridge must have been crossed completely every time (one could
not walk halfway onto the bridge and then turn around to come at it from another
side). Its answer, negative, was given by L. Eüler (1736) and this is regarded as
the first result in the history of graph theory.
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Definition 2.2.1. A (simple) graph G = (V,E) is a pair of sets where E ⊆
{{v, u} ∈ P2(V ) | u 6= v}. The elements of V are called vertices (or nodes) and
the elements of E are called edges of the graph. For every graph G we denote
V (G) the set of its vertices and E(G) the set of its edges.

v6

v5 v4

v3

v2v1v1 v2

v4v5

v3v6

Figure 2.1: An example of a graph G. Observe that the red edges form a cycle
and the blue edges form a path in the graph.

Definition 2.2.2. A directed graph G = (V,E) is a pair of sets, a set V whose
elements are called vertices and a set E of ordered pairs of vertices called directed
edges, i.e., E ⊆ {(v, u) ∈ V × V | v 6= u}. An edge (v, u) ∈ E is directed from v
to u.

We say that a graph G contains a directed cycle if there exist m ≥ 3 vertices
v1, v2, . . . , vm ∈ V (G) such that {(vi, vi+1) | 1 ≤ i ≤ m − 1} ∪ {(vm, v1)} ⊆ E(G)
(see Figure 2.2).

v6

v4

v3

v2v1

v6

v1 v2

v4v5

v3v6

v5

Figure 2.2: An example of a directed graph G. Observe that the red edges form a
directed cycle and the blue edges form a directed path in the graph.

From now on we assume that all the graphs are simple, i.e. not directed, unless
otherwise stated. The number of vertices of a graph G is its order, denoted as
|G|, and its number of edges is its size, denoted as ‖G‖. Given a graph G and
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v, u ∈ V (G) we say that v, u are adjacent if {v, u} ∈ E(G). The set NG(v) =
{u ∈ V | u 6= v and {v, u} ∈ E(G)} is called the neighbourhood of v in G and the
set NG[v] = NG(v) ∪ {v} is called the closed neighbourhood of v in G. For each
v ∈ V (G), degG(v) = |NG(v)| and we denote δ(G) = min

v∈V (G)
|NG(v)| and ∆(G) =

max
v∈V (G)

|NG(v)|. For example, see Figure 2.1, NG(v1) = {v2, v3, v4, v5}, degG(vi) =

4, 1 ≤ i ≤ 5 and degG(v6) = 2. Therefore, ∆(G) = 4 and δ(G) = 2.
For n ≥ 1 let Kn be the complete graph (or clique) with n vertices, i.e., Kn =

(V,E), where V = {i ∈ N | 1 ≤ i ≤ n} and E = P2(V ).

K4

Figure 2.3: The clique with 4 vertices

The size of the largest clique in a graph G, called clique number and denoted
ω(G), is the maximum k ∈ N such that Kk ⊆ G. In Figure 2.3 you can see the
clique with 4 vertices and in Figure 2.1, the vertices v1, v2, v3, v4 form a clique and
no set of 5 vertices forms a clique in G. Therefore, ω(G) = 4.

A path in G of length n ≥ 0 from a vertex v0 to a vertex vn is a sequence
v0, v1, . . . , vn ∈ V (G) of distinct vertices such that {vi−1, vi} ∈ E(G) for every
i ∈ [n]. A graph G is connected if it is non-empty and for all v, u ∈ V (G) there
exists a path from v to u. (See Figure 2.1 for an example).

The distance distG(v, u) between two vertices v, u of a graph G is the min-
imum length of a path linking v and u, or ∞ if v and u do not belong to the
same connected component. The radius of a connected graph G is: ρ(G) =
minr∈V (G) maxu∈V (G) d(r, u).

A cycle in a graph C = (V,E) of length n ≥ 3 is a sequence v1, . . . , vn ∈ V (G) of
distinct vertices such that {vi, vi+1} ∈ E(G) for all i ∈ [n−1] and{v1, vn} ∈ E(G).
(See Figure 2.1 for an example). The minimum length of a cycle contained in a
graph G is its girth. A graph G is called acyclic or a forest if it does not contain
any cycle. Moreover, if a graph G is both acyclic and connected it is called a tree.

The k × k grid is the graph whose set of vertices is the set V = [k] × [k] and
whose edge set is {{(i, j), (i′, j′)} ∈ P2(V ) | |i− i′| + |j − j′| = 1}. (Figure 2.4)

A rooted tree is a triple T = (V (T ), E(T ), r(T )), where (V (T ), E(T )) is a tree
and r(T ) ∈ V (T ) is a distinguished vertex called the root of the tree. A vertex v
is the parent of a vertex u and u is a child of v if v is the predecessor of u on the
unique path from the root r(T ) to u.
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Figure 2.4: The 4 × 4 grid

Definition 2.2.3. A graph G is called an interval graph if there exists a family
{Iv|v ∈ V (G)} of real intervals such that Iu ∩ Iv 6= ∅ if and only if {u, v} ∈ E(G).

A family of real intervals F = {Ii | i ∈ I} is called nested if for every i, j ∈ I
either Ii ⊆ Ij or Ii ∩ Ij = ∅. A graph G is called a nested interval graph if there
exists a family {Iv|v ∈ V (G)} of nested real intervals such that Iu ∩ Iv 6= ∅ if and
only if {u, v} ∈ E(G).

v4

I4 I6

I3

I1
I2

I5

v1

v3

v6

v5

v2

Figure 2.5: An example of an interval graph where vi maps to Ii, 1 ≤ i ≤ 6.

Definition 2.2.4. Graphs drawn in the plane in such a way that no two edges
intersect in a point other than a common end are called plane graphs and abstract
graphs that can be drawn in such a way are called planar graphs. Moreover, if a
graph has an embedding in the plane such that the vertices lie on a fixed circle and
the edges lie inside the disk of the circle and don’t intersect it is called outerplanar.

Given G = (V,E) and G′ = (V ′, E ′) two graphs we set G∪G′ = (V ∪V ′, E∪E ′)
and G ∩G′ = (V ∩ V ′, E ∩E ′).

Definition 2.2.5. Let G and G′ be two graphs, v ∈ V (G) and e = {v1, v2} ∈
E(G).

1. If G ∩G′ = ∅, G and G′ are disjoint graphs.
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2. If V (G′) ⊆ V (G) and E(G′) ⊆ E(G), G′ is a subgraph of G, denoted G′ ⊆ G.
If G′ ⊆ G and G 6= G′ then G′ is a proper subgraph of G. In any graph G,
the maximal connected subgraphs of G are called (connected) components.
The set of all the connected components of a graph G is denoted by C(G).

3. If G′ ⊆ G and E(G′) contains all the edges of {x, y} ∈ E(G) with x, y ∈
V (G′), then G′ is an induced subgraph of G. We say that V (G′) induces G′

in G, and write G′ = G[V (G′)]. Thus, if U ⊆ V (G) is any set of vertices,
then G[U ] denotes the graph on U whose edges are precisely the edges of G
with both ends in U .

4. The graph obtained from G by deleting one of its vertices, denoted G \ v, is
the graph G \ v = (V (G) \ {v}, {e ∈ E(G) | v /∈ e}.

5. The graph obtained from G by deleting one of its edges, denoted G\ e, is the
graph G \ e = (V (G), E(G) \ {e}).

6. We say that a set X ⊆ V (G) separates G if G \X is not connected, and we
call X a separator of G. Moreover, if X = {v} for some v ∈ V (G) then v
is an articulation point of G. G is called k-connected (for k ∈ N) if |G| > k
and G \X is connected for every set X ⊆ V (G) with |X| < k.

7. The graph obtained from G by contracting one of its edges, denoted G/e, is
the graph G/ e = G̃ = (V (G̃), E(G̃)), where

V (G̃) = (V (G) \ {v1, v2}) ∪ {vnew}
E(G̃) = (E(G) \ ({e} ∪ {e′ ∈ E(G) | e ∩ e′ 6= ∅}))⋃

{{vnew, w} ∈ V (G̃) × V (G̃) | {v1, w} ∈ E(G) or {v2, w} ∈ E(G)}

8. If G′ is obtained from G by applying vertex and edge deletions and edge
contractions then G′ is called a minor of G and it is denoted by G′ ≤ G.

9. G is k-colourable if there exists a mapping χ : V (G) → [k] such that if
{v, u} ∈ E(G) then χ(v) 6= χ(u), for every v, u ∈ V (G). Moreover, χ is
called a k-colouring and χ(G) (the chromatic number of G) is the minimum
k such that G is k-colourable.

10. A star colouring of a graph G is a (proper) vertex colouring in which every
path on four vertices uses at least three distinct colours. Equivalently, in
a star colouring, the induced subgraphs formed by the vertices of any two
colours have connected components that are star graphs. The star chromatic
number χs(G) of G is the least number of colours needed to star colour G.
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11. G has a k-vertex ranking if G is k-colourable, ρ : V (G) → [k] is the corre-
sponding k-colouring and if P is a path from v to u where ρ(v) = ρ(u) then
there exists a vertex v′ ∈ V (P ) such that ρ(v′) > ρ(v).

12. G is homomorphic to G′ if there exists a mapping, called homomorphism,
ψ : V (G) → V (G′) which preserves adjacency: {ψ(x), ψ(y)} ∈ E(G′) for
every {x, y} ∈ E(G). G and G′ are called hom-equivalent if there exists a
homomorphism from G to G′ and a homomorphism from G′ to G.

13. G and G′ are called isomorphic, denoted G ≃ G′, if there exists a bijection
φ : V (G) → V (G′) such that {v, u} ∈ E(G) ⇔ {φ(v), φ(u)} ∈ E(G′) for
every v, u ∈ V (G). If G = G′, φ is called an automorphism. Furthermore,
we denote by Aut(G) the group of the automorshisms of G. A graph G
which admits only one automorphism (namely the identity map) is called
asymmetric.

2.3 Parameters of graphs

A graph parameter p is a function mapping a graph to a non-negative integer k.
In this section we introduce three parameters of graphs.

The first parameter is the tree-width of a graph. It became very famous due
to its use in the Graph Minors Theory and the meta-algorithmic theorem of B.
Courcelle [8] (see Section 6.1).

The second one is the path-width of a graph which is also of great importance
as it constitutes an important part of the Graph Minors Theory and the proof of
Wagner’s Conjecture.

The last one is the tree-depth of a graph. This parameter has not been as
much studied as the tree-width and path-width of a graph but has received a lot
of attention lately as its importance became known from J. Nešetřil and P. Ossona
de Mendez in their theory of classes of bounded expansion (see Section 6.2).

2.3.1 Tree-width

Definition 2.3.1. For a given set M of objects (for which intersection makes
sense), the intersection graph GM of these objects has V (GM) = M and E(GM) =
{{m1, m2} ∈ P2(M) | m1 6= m2 and m1 ∩m2 6= ∅}.

Observe that an interval graph is the intersection graph of the corresponding
family of intervals. (For more on Intersection Graph Theory, see [45])
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Definition 2.3.2. A graph G is chordal (or triangulated) if every cycle contained
in G of length k ≥ 4 contains a chord, where a chord is an edge joining two
nonconsecutive vertices of a cycle.

The next theorem connects the notion of subtrees of a tree to the notion of
chordal graphs. Its importance on this thesis lies to the fact that this was the first
notion to appear which was closely related to the tree-width of a graph.

Theorem 2.3.1 ([26]). A graph is chordal if and only if it is the intersection graph
of subtrees of a tree.

The definition of a tree decomposition of a graph G first appeared in [60].

Definition 2.3.3. Let G be a graph, T a tree and let V = (Vt)t∈T be a family of
vertex sets Vt ⊆ V (G) indexed by the vertices t of T . The pair (T,V) is called a
tree-decomposition of G if it satisfies the following conditions:

1. V (G) =
⋃

t∈T Vt

2. for every edge e ∈ E(G) there exists a vertex t ∈ V (T ) such that both ends
of e lie in Vt

3. Vt1 ∩ Vt3 ⊆ Vt2 whenever t2 is on the path between t1 and t3.

The width of a tree decomposition is tw(G, (T,V)) = max{|Vt| − 1 | t ∈ Vt} and
the tree-width of G is

tw(G) = min{tw(G, (T,V)) | (T,V) is a tree decomposition of G}

Definition 2.3.4. A triangulation of a graph G is a chordal graph G′ such that
V (G) = V (G′) and E(G) ⊆ E(G′).

Lemma 2.3.1 ([60]). Let G be a graph. Then tw(G) is equal to the minimum
value of ω(G′) − 1 over all triangulations G′ of G.

From Theorem 2.3.1, Definition 2.3.3 and Definition 2.3.4 we can derive the
following.

Lemma 2.3.2. The tree-width of a graph G, is the minimum k ∈ N such that
there exists a chordal graph H where G ⊆ H and ω(H) ≤ k + 1.

Intuitionally, the tree-width of a graph G is a way to measure how far is a
graph G from looking like a tree (in the topological sense).
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2.3.2 Path-width

Definition 2.3.5. The interval thickness of a graph G, denoted θ(G), is the min-
imum clique number of an interval graph H that contains G as a subgraph.

The following game, called node searching, on a graph G was introduced in [37]
and is a slight variation of the game (known as the Edge Search Game) that was
introduced in [55].

Definition 2.3.6. The node searching on a graph G is a one-player game with
the following rules:

• Initially, all edges are contaminated.

• A move can consist of

1. Putting a searcher on a vertex,

2. Removing a searcher from a vertex,

3. Moving a searcher over an edge from a vertex to an adjacent vertex.

• A contaminated vertex becomes cleared when there is a searcher on both
ends of the edge.

• A clear edge becomes re-contaminated when there is a path from the edge
to a contaminated edge that does not pass through a vertex with a searcher
on it.

Definition 2.3.7. The node search number of a graph G, ns(G), is the minimum
number of searchers needed to clear all edges of G.

Theorem 2.3.2 ([36]). Let G be a graph. Then θ(G) = ns(G).

Definition 2.3.8. Let G be a graph. A path-decomposition (P,V) is a tree-
decomposition (T,V) of G, where T is a path. The width of a path-decomposition,
pw((P,V)), and the path-width of a graph G, pw(G), are defined analogously.

Definition 2.3.9. Given a graph G, a vertex separator in G is a subset S ⊆ V (G)
of vertices whose removal separates G into two components of approximately equal
size. (For more on graph separation, see [42].)

Theorem 2.3.3 ([35]). Let G be a graph. Then pw(G) = vs(G).

Theorem 2.3.4 ([20]). If G is a graph then ns(G) = vs(G) + 1.

A direct consequence of Theorems 2.3.2, 2.3.3 and 2.3.4 is the following.
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Lemma 2.3.3. The path-width of a graph G is the minimum k ∈ N such that
there exists an interval graph GI where G ⊆ GI and ω(GI) ≤ k + 1.

Intuitionally, the path-width of a graph G is a way to measure how far is a
graph G from looking like a path (in the topological sense).

Remark 2.3.1. Let us remark here, that analogously to path-width, there exist
games defined in a graph G whose minimum solution is equal to tw(G). (See [11]
and [65]).

2.3.3 Tree-depth

The notion of tree-depth has appeared many times in the bibliography and it is
also known as the vertex ranking of a graph [5], the minimum-height elimination
tree of a graph [10, 12, 48] (if the graph is connected) and the minimum number
of colours in a centered colouring [48]. Here, however, we give the following.

Definition 2.3.10. The tree-depth of a graph G, denoted td(G), is the minimum
k ∈ N such that there exists a nested interval graph GI where G ⊆ GI and
ω(GI) ≤ k.

Later (see Section 3.2), we prove its equivalence to the other parameters.

2.4 Logic in graphs

A very important area of both mathematics and computer science is Logic. It has
been widely explored, since Aristotle was the first to suggest a formal system that
was then used by Euclid. Although Logic and its history are a very interesting
subject, its exploration and presentation is out of the purpose of this brief intro-
duction. We will, however, mention R. Dedekind (1831 - 1916), G. Peano (1858 -
1932), D. Hilbert (1862 - 1943) and K. Gödel whose contribution was determining
and their results and suggestions were ahead of their time.

Here, we consider logics over graphs. (For more on Logic see [21] and [46])

2.4.1 First-order logic over graphs

Definition 2.4.1. The syntax of the first-order logic is the following:

• Infinite supply of individual variables, usually denoted by lowercase letters
x, y, z.
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• First-order formulas in the language of graphs are built up from atomic
formulas E(x, y) and x = y by using the usual Boolean connectives ¬ (nega-
tion), ∧ (conjuction), ∨ (disjunction), → (implication), ↔ (bi-implication),
existential quantification ∃x and universal quantification ∀x over individual
variables.

Individual variables range over vertices of a graph. The atomic formula E(x, y)
express adjacency, and the formula x = y expresses equality. From this, the free
variables, the sentences and the semantics of first-order logic are defined in the
obvious way.

For example, a dominating set in a graph G = (V,E) is a set S ⊆ V such that
for every v ∈ V , either v belongs to S or v is adjacent to a vertex u that belongs to
S. (see Figure 2.6) The following first-order sentence (parameterized by k) domk

says that a graph has a dominating set of size k:

domk = ∃x1∃x2 . . .∃xk

(

∧

1≤i<j≤k

¬(xi = xj) ∧ ∀y
(

k
∨

i=1

((y = xi) ∨ E(y, xi))

))

Figure 2.6: The dominating set of a graph (red vertices).

2.4.2 Monadic second-order logic over graphs

Definition 2.4.2. The syntax of the monadic-second order logic is the following:

• Infinite supply of individual variables, usually denoted by lowercase letters
x, y, z (as above).

• Infinite supply of set variables, usually denoted by uppercase letters X, Y, Z.

• Monadic second-order formulas in the language of graphs are built up from
atomic formulas E(x, y), x = y and X(x) (for set variables X and individual
variables x) by using the Boolean connectives ¬ (negation), ∧ (conjuction), ∨
(disjunction), → (implication), ↔ (bi-implication), existential quantification
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∃x, ∃X and universal quantification ∀x, ∀X over individual variables and set
variables.

Individual variables range over vertices of a graph (as above) and set variables are
interpreted by sets of vertices. The atomic formula E(x, y) express adjacency (as
above), the formula x = y expresses equality (as above) and X(x) means that the
vertex x is contained in the set X. The semantics of the monadic-second order
logic is defined in the obvious way.

Continuing the above example of first-order logic, the following formula says
that X is a dominating set:

dom(X) = ∀y (X(y) ∨ ∃z(E(y, z) ∧X(z)))





Chapter 3

Properties of tree-depth

In this chapter we discuss the properties of tree-depth and its relation to the other
parameters.

3.1 Graph minors

Let us first discuss some important results of N. Robertson and P. Seymour in the
Graph Minors Theory that we will use from now on.

Definition 3.1.1. Let C be a class of graphs. We say that C is closed under taking
of minors (minor-closed) if G ∈ C and H ≤ G implies that H ∈ C.

If H is any class of graphs, then the class Forb≤(H) = {G | H 6≤ G for all H ∈
H} of all graphs without a minor in H is a graph property, i.e. is closed under
isomorphism. Consider the following (for a proof, see [15]).

Lemma 3.1.1. A graph property P can be expressed by forbidden minors if and
only if it is closed under taking of minors.

Observe that if P is minor-closed then P = Forb≤(P), where P is the com-
plement of P. However, one naturally seeks to make the set of forbidden minors
as small as possible. There is indeed a smallest such set:

KP = {H|H is ≤ -minimal in P}

that satisfies P = Forb≤(KP) and is contained in every other set H such that
P = Forb≤(H). KP is called the Kuratowski set (or obstruction set) for P and its
elements are called obstructions. From now on the obstruction set of a minor-closed
class of graphs C will be denoted by obs(C).
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Definition 3.1.2. A reflexive and transitive relation is called a quasi-ordering. A
quasi-ordering ≤ on X is a well-quasi-ordering, and the elements of X are well-
quasi-ordered by ≤, if for every infinite sequence x0, x1, . . . in X there are indices
i < j such that xi ≤ xj .

The following theorem is one of the deepest results of modern Combinatorics.

Theorem 3.1.1 (Graph Minor Theorem). The finite graphs are well-quasi-ordered
by the minor relation ≤.

This theorem was first proven for trees (also known as Vázsonyi conjecture)
by J. Kruskal [38]. In 1963 a shorter proof (again for trees) was given by Crispin
St. John Alvah Nash-Williams [47]. In the general case it was proven by N. Robert-
son and P. Seymour [62] in their Graph Minors Series. One of its direct implications
is the following.

Lemma 3.1.2. The Kuratowski set for any minor-closed graph property is finite.

K5K3,3

Figure 3.1: The Kuratowski set for planar graphs

The most famous example of a Kuratowski set is the set depicted in Figure 3.1.
K. Kuratowski proved that a graph is planar if and only if it excludes K5 and K3,3

as a minor. This is the first obstruction set ever found and its proof [39] (1930) was
published by K. Kuratowski1 long before the Graph Minor Theorem was proven
(2004). It is also known as the Kuratowski-Pontryagin theorem, because it is
claimed that it was first proven in the unpublished notes of L. Pontryagin (Лев
Семёнович Понтрягин). (Other proofs can be found in [18], [19], and [44]).

Remark 3.1.1. The algorithmic drawback of the proof of the Graph Minor Theorem
and of Graph Minors Theory, in general, is that it is nonconstructive, i.e. we
are assured of a finite obstruction set without being given (by the arguments
that establish the theorem) a means of identifying the elements of the set, the
cardinality of the set, or even the order of the largest graph in the set.

1K. Kuratowski proved the theorem for the relation of the topological minors (where instead
of contracting any edge, we only contract edges whose one of the incident vertices has degree
exactly 2, also called disolving a vertex of degree 2) and its extension to minors was observed by
K. Wagner [70].
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Let k be a non-negative integer. We denote by Gk the class of graphs with
tree-depth at most k, i.e. Gk = {G | td(G) ≤ k}. We also denote by PWk the
class of graphs with path-width at most k, i.e. PWk = {G | pw(G) ≤ k} and by
T Wk the class of graphs with tree-width at most k, i.e. T Wk = {G | tw(G) ≤ k}.
Lemma 3.1.3 ([48, 5]). If a graph H is a minor of a graph G then td(H) ≤ td(G).

A direct consequence of Lemma 3.1.3 is the following.

Observation 3.1.1. The class Gk is minor-closed for every k ∈ N.

Lemma 3.1.4 ([59]). If a graph H is a minor of a graph G then pw(H) ≤ pw(G).

Lemma 3.1.5 ([60]). If a graph H is a minor of a graph G then tw(H) ≤ tw(G).

The following is a direct implication of Lemmata 3.1.4 and 3.1.5.

Observation 3.1.2. The classes PWk and T Wk are minor-closed for every k ∈
N.

As it is expected by Remark 3.1.1, only a few obstruction sets have become
known while a lot of graph classes are proven to be minor-closed. Therefore, the
focus of research has (mostly) turned to finding lower and upper bounds on the
cardinality of the obstruction set of such classes [68, 56, 69, 29, 64, 40, 17].

3.1.1 Lower bounds on the cardinality of the obstruction set

of minor-closed classes

Theorem 3.1.2 ([68]). The obstructions of the class PWk are at least (k!)2.

Theorem 3.1.3 ([29]). The obstructions of the class T Wk are 2Ω(k log k).

Definition 3.1.3. A feedback vertex set, (fvs) of a graph G is a set of vertices
X ⊆ V (G) such that every cycle of G passes through at least one vertex of X.
For a graph G we denote by fvs(G) the cardinality of a minimum feedback vertex
set. We denote by FVSk the class of graphs FVSk = {G | fvs(G) ≤ k}. We also
denote by Yk the class of all outerplanar graphs in obs(FVSk).

Observation 3.1.3. The class FVSk is minor-closed for every k ∈ N.

Theorem 3.1.4 ([64]). |Yk| ∼ α · k− 5

2 · ρ−k, where α
.
= 0.02602193 and ρ−1 .

=
14.49381704.

Remark 3.1.2. It is noteworthy that the proof of Theorem 3.1.4 makes use of
Analytic Combinatorics [22].

From the previous lemmata, we observe that although the cardinality of an
obstruction set is finite it can be very large. In Section 4.2 we prove that the
acyclic graphs in obs(Gk) are exactly 1

2
22k−1−k(1 + 22k−1−k), thus we give a lower

bound on the cardinality of obs(Gk) that is a doubly exponential function of the
parameter k.
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3.1.2 Upper bounds on the cardinality of the obstruction

set of minor-closed classes

We now see some results on the upper bounds on the cardinality of the obstruction
set of minor-closed classes.

Theorem 3.1.5 ([40]). Let G be a graph. If G ∈ obs(PWk), then |E(G)| is at
most exponential in O(k4).

Theorem 3.1.6 ([40]). Let G be a graph. If G ∈ obs(T Wk), then |E(G)| is at
most doubly exponential in O(k5).

Definition 3.1.4. Let G be a graph. A set S ⊆ V (G) is a vertex cover of G is
every edge of G is incident with a vertex in S (see Figure 3.2). We denote by
vc(G) the minimum k ∈ N such that G has a vertex cover of cardinality k and by
VCk the class VCk = {G | vc(G) ≤ k}.

Figure 3.2: The vertex cover of a graph (red vertices).

Observation 3.1.4. The class VCk is minor-closed for every k ∈ N.

Theorem 3.1.7 ([17]). Let G be a graph. If G ∈ obs(VCk) then |V (G)| ≤ 2(k+1).

3.2 Characterisations

A rooted forest is a disjoint union of rooted trees. The height of a vertex x in a
rooted forest F is the number of vertices of the path from the root (of the tree
to which x belongs to) to x and is noted height(x, F ). The height of F is the
maximum height of the vertices of F . Let x, y be vertices of F . The vertex x is an
ancestor of y if x belongs to the path linking y and the root of the tree to which y
belongs to. The closure clos(F ) of a rooted forest F is the graph with vertex set
V (F ) and edge set {{x, y} | x is an ancestor of y in F, x 6= y}. A rooted forest F
defines a partial order on its set of vertices: x ≤F y if x is an ancestor of y in F .

The following definition of tree-depth is attributed to J. Nešetřil and P. Ossona
de Mendez and first appeared in [48].
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Definition 3.2.1. Let G be a graph. The tree-depth of G, td(G), is the least
k ∈ N such that there exists a rooted forest F where G ⊆ clos(F ) and the height
of F is equal to k.

The following lemma proves the equivalence of Definition 2.3.10 of tree-depth
to Definition 3.2.1 .

v

Figure 3.3: An example of the statement of Lemma 3.2.1 where v is the root of the
tree and from left to right are represented the graph G, the corresponding interval
graph GI and the rooted tree T , respectively.

Lemma 3.2.1. Let G be a graph. Then td(G) ≤ k if and only if there exists a
rooted forest F of height lower or equal than k such that G ⊆ clos(F ).

Proof. Without loss of generality we may assume that G is connected. Ob-
serve that if k = 1 then G = K1 and the lemma follows trivially. We now
prove the non-trivial case where k ≥ 2. For the straightforward let td(G) ≤
k. Then there exists a nested interval graph GI such that G ⊆ GI and
ω(GI) ≤ k. Let T ′ be the directed graph where V (T ′) = V (GI) and E(T ′) =
{(u, v) ∈ P2(V (GI)) : ((Iv ⊆ Iu)&(¬∃x ∈ V (G) \ {u, v})(Iv ⊆ Ix ⊆ Iu)), v 6= u}.

Claim. There does not exist distinct vertices v1, v2, v3 ∈ V (T ′) such that
(v2, v1), (v3, v1) ∈ E(T ′).
Proof of the Claim. Assume in contrary, that there exist distinct vertices
v1, v2, v3 ∈ V (T ′) such that (v2, v1), (v3, v1) ∈ E(T ′). Then Iv1

⊆ Ivi
, i = 2, 3

and Iv2
∩ Iv3

6= ∅. Moreover, Iv1
⊆ Iv2

⊆ Iv3
or Iv1

⊆ Iv3
⊆ Iv2

, a contradiction.
Let T be the graph where V (T ) = V (T ′) and E(T ) = {{u, v} ∈ P2(V (T )) |

(u, v) ∈ E(T ′)}. We claim that T is acyclic. Assume in contrary, that there exists
a cycle in T . Then there exists a cycle Cm in T ′. From the Claim it follows that
Cm is a directed cycle. Then there exist v1, v2, . . . , vm distinct vertices in V (T ′)
such that Iv1

⊆ Iv2
⊆ · · · ⊆ Ivm

⊆ Iv1
, a contraction to the hypothesis that k ≥ 2.

Therefore T is acyclic. We claim now that T does not contain a path of length
greater than k. Assume, in contrary, that T contains a path of length k + 1 as a
subgraph. Then T ′ contains a path Pk+1. From the above Claim it follows that
Pk+1 is directed. Therefore, there exist k + 1 distinct vertices in V (T ′) such that



22 Properties of tree-depth

Ivi
⊆ Ivi+1

, 1 ≤ i ≤ k. Then ω(GI) ≥ k + 1, a contradiction. Finally observe that
G ⊆ clos(T ) and the straightforward direction follows.

Conversely, assume that there exists a rooted forest T of height lower or equal
than k such that G ⊆ clos(T ). Consider the following algorithm that recursively
maps V (G) to a family of real intervals I. First, map the root of T to the interval
(0, 1). When a vertex v is already mapped to an interval I divide the interval
to degG(v) − 1 disjoint intervals and map each one of its children to one of the
intervals in a way that no two vertices are mapped in the same interval. It trivially
follows that I is a family of nested intervals, ω(GI) ≤ k and G ⊆ GI . Therefore,
td(G) ≤ k and the lemma follows.

Definition 3.2.2. A centered colouring of a graph G is a vertex colouring c, such
that, for any induced connected subgraph H of G, some colour c(H) appears
exactly once in H . Note that a centered colouring is necessarily proper.

Definition 3.2.3. The vertex ranking of a graph G is the minimum k ∈ N such
that G admits a k-vertex ranking.

Lemma 3.2.2 ([48]). The minimum number of colours in a centered colouring of
a graph G is exactly td(G).

Lemma 3.2.3 ([48]). Any vertex ranking is a centered colouring and conversely
any centered colouring defines a vertex ranking with the same number of colours.
Thus the vertex ranking of a graph G is the minimum number of colours in a
centered colouring of G.

An immediate consequence of Lemmata 3.2.2 and 3.2.3 is the following.

Corollary 3.2.1 ([48]). Let G be a graph. Then td(G) is equal to its vertex
ranking.

Definition 3.2.4. Let G be a connected graph. An elimination tree for G is a
rooted tree Y with vertex set V (G) defined recursively as follows. If V (G) = {x}
then Y is reduced to {x}. Otherwise, choose a vertex r ∈ V (G) as the root of Y .
Let G1, G2, . . . , Gp be the connected components of G \ r. For each component Gi

let Yi be an elimination tree. Y is defined by making each root ri of Yi adjacent
to r.

Lemma 3.2.4 ([48, 12]). Let G be a connected graph. A rooted tree Y is an
elimination tree for G if and only if G ⊆ clos(Y ). Hence td(G) is the minimum
height of an elimination tree for G.

A direct implication of Lemma 3.2.4 is the following.
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Lemma 3.2.5. Let G be a graph and let G1, G2, . . . , Gp be its connected compo-
nents. Then,

td(G) =











1, if |V (G)| = 1

1 + minv∈V (G) td(G \ v), if p = 1 and |V (G)| > 1

maxp
i=1 td(Gi), otherwise

3.3 The inequalities and the properties

In this section we discuss some interesting inequalities between tree-depth, tree-
width and path-width and some reduction and finiteness lemmata for tree-depth.

3.3.1 The Inequalities

A graph and its tree-depth

Lemma 3.3.1 ([50]). If G is a graph and Pk is the longest path in G then

⌈log2(k + 1)⌉ ≤ td(G) ≤
(

k + 2

2

)

− 1

Lemma 3.3.2 ([60, 6, 2, 48]). Every graph G of order n with no minor isomorphic
to Kh has tree-depth at most (2 +

√
2)
√
h3n.

Lemma 3.3.3 ([48]). Let G be a tree of size m having p leaves such that td(G) = k.
Then

m ≤ (2k−1 − 1)p

Tree-depth and its relation to the other parameters of a graph

Definition 3.3.1. Let G be a graph of order n. An α-vertex separator of G is
a subset S of vertices such that every component of G \ S contains at most αn
vertices.

Lemma 3.3.4 ([48]). Let G be a graph of order n and let sG : {1, 2, . . . , n} → N

be defined by

sG(i) = max
|A|≤i

A⊆V (G)

min
{

|S| | S is a 1
2
-vertex separator of G[A]

}

Then:

td(G) ≤
log2 n
∑

i=1

sG

( n

2i

)

.
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Lemma 3.3.5 ([5, 48]). For any connected graph G of order n,

tw(G) + 1 ≤ td(G) ≤ (tw(G) + 1) · log2 n.

Observation 3.3.1. If G = P is a path then the upper bound is tight (Figure 3.4)
and for G = K2 the lower bound is tight.

G = P6

Figure 3.4: An example of the tightness of the inequality of Corollary 3.3.5

Lemma 3.3.6 ([6]). For any connected graph G of order n,

tw(G) ≤ pw(G) ≤ tw(G) · log2 n

Corollary 3.3.5, Lemmata 3.3.6 and 2.3.3 and Definition 2.3.10 imply the fol-
lowing.

Lemma 3.3.7. For any connected graph G of order n,

pw(G) + 1 ≤ td(G) ≤ (pw(G) + 1) · log2 n

Chordal, interval and nested interval graphs (a hierarchy)

The relation of the chordal, interval and nested interval graphs is noteworthy. That
is because a hierarchy of the classes (according to refinement) follows, making it
easier to comprehend most of the above inequalities.

Chordal graph
↓

Chordal graph & AT-free = Interval graph
↓

Interval graph & P3-induced subgraph free = Nested interval graph
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Definition 3.3.2. An asteroidal triple (AT) of a graph is a set of three indepen-
dent vertices such that any two of them are joined by a path avoiding the closed
neighbourhood of the third. A graph is called asteroidal triple-free (AT-free) if it
does not contain an AT.

Lemma 3.3.8 ([41, 30])). A graph G is an interval graph if and only if it is chordal
and AT-free.

Lemma 3.3.9 ([67]). An interval graph is a nested interval graph if and only if is
does not contain P3 as an induced subgraph (P3-induced subgraph free).

Remark 3.3.1. The notion of the nested interval graphs was first introduced by E.
Wolk ([71, 72]) in 1962 while the notion of the interval graphs is one of the oldest
notions of Graph Theory.

Remark 3.3.2. It can be proven that a graph G is a nested interval graph if and
only if it is (C4, P3)-induced subgraph free. [1]

3.3.2 The Properties

In this section we present two powerful reduction theorems (and finiteness results)
related to tree-depth.

Definition 3.3.3. Let G = (V,E) be a graph and f ∈ Aut(G). We say that f
has the fixed-point property if, for every connected subgraph H of G, f(H)∩H is
either empty or contains a vertex x ∈ V (H) such that f(x) = x. f is also said to
be involuting if f ◦ f is identical map.

Let g : V (G) → [N ] be any mapping, f is said to be g-preserving if f ◦ g = g.

Theorem 3.3.1 ([48]). There exists a function F : N × N → N with the fol-
lowing property: For any integer N , any graph G of order n > F (N, td(G)) and
any mapping g : V (G) → [N ], there exists a non-trivial involuting g-preserving
automorphism µ : G→ G with the fixed-point property.

Corollary 3.3.1. Any asymmetric graph of tree-depth at most t has order at most
F (1, t).

Corollary 3.3.2. For any graph G and any mapping g from V (G) to a set of
cardinality N , there exists a subset A of V (G) of cardinality at most F (N, t), such
that G has a g-preserving homomorphism to G[A].

In particular, any graph G is hom-equivalent to one of its induced subgraphs of
order at most F (1, td(G)).
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Corollary 3.3.3. Let k ≥ 1 be an integer. Then, the class Gk of all graphs G
with td(G) ≤ k includes a finite subset Ĝk such that, for every graph G ∈ Gk, there
exists Ĝ ∈ Ĝk which is hom-equivalent to G and isomorphic to an induced subgraph
of G.

The previous consequences indicate that tree-depth is a good “scale” for asym-
metric graphs and even cores: For each given tree-depth we get only finitely many
cores.

Finally, an interesting property of tree-depth is the following.

Theorem 3.3.2 ([48]). There exists a function µ : N → N, such that any graph G
has a connected subgraph H ⊆ G, so that td(H) = td(G) and |E(H)| ≤ µ(td(G)).

Tree-depth vs. Tree-width

Definition 3.3.4. A countable partially ordered set is said to be universal if it
contains any countable partial order as an (induced) suborder.

Definition 3.3.5. A graph G is called series-parallel if it may be turned into K2

by a sequence of the following operations:

• Replacement of a pair of parallel edges with a single edge that connects their
common endpoints.

• Replacement of a pair of edges incident to a vertex of degree 2 with a single
edge.

An implication of Definition 3.3.5 the following.

Lemma 3.3.10. A graph G is series-parallel if and only if it is biconnected and
tw(G) ≤ 2.

Theorem 3.3.3 ([32]). The class of all series parallel graphs of given girth is
universal.

Remark 3.3.3. By Theorem 3.3.3 and Lemma 3.3.10 follows that tree-width does
not share the same nice properties of tree-depth.

3.4 The minor-hierarchy of the parameters

In this section we see how a natural hierarchy occurs to the tree-width, the path-
width and tree-depth of a graph G by excluding specific graphs as minors.

Lemma 3.4.1 ([61, 63, 58, 16]). For every planar graph H there exists an integer
w such that for every graph G with no minor isomorphic to H, tw(G) ≤ w.
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Remark 3.4.1. What N. Robertson and P. Seymour actually proved in [61] is that
a graph G has bounded tree-width if it does not contain a grid as minor and by
that they derived Lemma 3.4.1.

Intuitionally, if G does not contain a grid as a minor, then it looks like a forest.

Lemma 3.4.2 ([59, 14]). For every forest H there exists an integer w such that
for every graph G with no minor isomorphic to H, pw(G) ≤ w.

Intuitionally, if G does not contain a forest as a minor, then it is looks like a
path.

Lemma 3.4.3 ([48]). For every path H there exists an integer w such that for
every graph G with no minor isomorphic to H, td(G) ≤ w.

You can also observe that Lemma 3.4.3 also follows from Lemma 3.3.1. A
hierarchy then follows trivially from Lemmata 3.4.1, 3.4.2 and 3.4.3 and is depicted
in Table 3.1.

Excluded Minor of G Large Scale Structure of G
Grid Forest (bounded tree-width)
Forest Path (bounded path-width)
Path Point (bounded tree-depth)

Table 3.1: The minor-hierarchy of the parameters

Remark 3.4.2. Notice that the minor-hierarchy above corresponds to the hierarchy
that we observed at Section 3.3.1.





Chapter 4

Lower bounds on obs(Gk)

In this chapter we prove a structural lemma that recursively constructs new ob-
structions from obstructions of lower levels. This permits us to identify all acyclic
graphs in obs(Gk) for every k ≥ 0 and count them. To do so we use methods of
Algebraic Graph Theory (For more information, see [3] and [28]). By this counting
we derive a lower bound on the number of obstructions for the classes of tree-depth
at most k, Gk, for every k ≥ 1.

4.1 Structural lemmata

T3

−→ −→ −→
T0 T1 T2

B3 A3

Figure 4.1: The classes T0, T1, T2, T3

Before we start proving the lemmata consider the following observations. Recall
the following.

Observation 4.1.1. For any graph G, td(G) = max{td(C) | C ∈ C(G)}.

Observation 4.1.1 directly implies the following.

Observation 4.1.2. For every k ≥ 0, all graphs in obs(Gk) are connected.
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Observation 4.1.3. Let r be a positive integer. Let also G be an r-connected
graph and let ρ : V (G) → [k] be a k-vertex ranking of G such that k ≥ r. Then
|ρ−1(i)| ≤ 1, where k − r + 1 ≤ i ≤ k.

Proof. Let r = 1. If v1 and v2 are two (non-adjacent) vertices in ρ−1(k), then there
exists a path with end-vertices v1, v2. Observe that all internal vertices of this path
have colour smaller than k, a contradiction. Assume that the hypothesis is true for
r = m and let r = m+1. Observe that G is m-connected as G is m+1-connected.
Therefore, by the induction hypothesis |ρ−1(i)| ≤ 1 for k−m+1 ≤ i ≤ k and this
implies that G contains ≤ m vertices with colour strictly greater than k −m. We
claim that |ρ−1(k−m)| ≤ 1. Assume in contrary that v1, v2 are two (non-adjacent)
vertices in ρ−1(k−m). Then by Menger’s theorem there exist m+1 disjoint paths
with end-vertices v1, v2. Therefore, there exist at least m+ 1 vertices with colour
strictly greater than k − m, a contradiction and this completes the proof of the
claim.

Observation 4.1.4. If G ∈ obs(Gk) then for every v ∈ V (G) there exists a
(k + 1)-vertex ranking ρ such that ρ(v) = k + 1.

Proof. As G ∈ obs(Gk), G \ v admits a k-vertex ranking ρ. Then ρ ∪ {(v, k)} is
the required (k + 1)-vertex ranking of G.

Let G1 an G2 be two disjoint graphs and let vi ∈ V (Gi), i = 1, 2. We define
j(G1, G2, v1, v2) = (V (G1) ∪ V (G2), E(G1) ∪E(G2) ∪ {{v1, v2}}).
Observation 4.1.5. Let G1 and G2 be disjoint graphs where td(G1) ≤ k and
td(G2) ≤ k. Let also vi ∈ V (Gi), i = 1, 2. Then the graph G = j(G1, G2, v1, v2)
has tree-depth at most k + 1.

Proof. Let ρi be a k-vertex ranking of Gi, i = 1, 2. Then ρ = ρ1∪ρ2\{(v1, ρ1(v1))}∪
{(v1, k + 1)} is a (k + 1)-vertex ranking of G.

Observation 4.1.6. Let G1 and G2 be disjoint graphs where td(G1) ≥ k and
td(G2) ≥ k. Let also vi ∈ V (Gi), i = 1, 2. Then the graph G = j(G1, G2, v1, v2)
has tree-depth at least k + 1.

Proof. Assume in contrary that there exists a k-vertex ranking ρ : V (G) → [k].
Notice that ρ−1(k) 6= ∅, otherwise td(G) < k contradicting the fact that td(G1) ≥
k. Combining this fact with Observation 4.1.3, G has a unique vertex v where
ρ(v) = k. W.l.o.g. we assume that v ∈ V (G1). Then ρ gives a (k − 1)-vertex
ranking of G2, a contradiction.

Lemma 4.1.1. Let k be a positive integer. Let G1, G2 be disjoint graphs such
that G1, G2 ∈ obs(Gk−1) and let v1 ∈ V (G1), v2 ∈ V (G2). Then j(G1, G2, v1, v2) ∈
obs(Gk).
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Proof. Let G1, G2 such that G1, G2 ∈ obs(Gk−1) and let vi ∈ V (Gi), i = 1, 2. We
set G = j(G1, G2, v1, v2). We first prove that td(G) = k + 1. Indeed, Observa-
tion 4.1.5 yields td(G) ≤ k + 1 and Observation 4.1.6 yields td(G) ≥ k + 1.

We now prove that if G′ is the result of the contraction or the removal of some
edge e in G, then td(G′) ≤ k. We examine first the case where e = {v1, v2}. If
G′ = G \ e, then from Observation 4.1.1, td(G) = max{td(G1), td(G2)} ≤ k.
Suppose now that G′ = G / e. From Observation 4.1.4, there exists a k-vertex
ranking ρi of Gi such that ρi(vi) = k, i = 1, 2. Then if vnew is the result of the
contraction of e we have that ρ : V (G′) → [k] where

ρ(x) =











ρ1(x) if x ∈ V (G1) \ {v1}
ρ2(x) if x ∈ V (G2) \ {v2}
k if x = vnew

is a k-vertex ranking of G′, therefore td(G′) ≤ k.
Finally, we examine the case where e is an edge of G1 or G2. Without loss of

generality we assume that e1 ∈ E(G1). Because G1 ∈ obs(Gk−1), there exists a
(k − 1)-vertex ranking ρ′1 of G1 / e. By Observation 4.1.4, since G2 ∈ obs(Gk−1),
there exists a k-vertex ranking ρ2 of G2 such that ρ2(v2) = k. It is easy to see that
ρ′1 ∪ ρ2 is a k-vertex ranking of G′, thus td(G′) ≤ k and this completes the proof
of the lemma.

In the previous lemma we proved that if G1, G2 ∈ obs(Gk) are disjoint graphs
we can construct a graph G ∈ obs(Gk+1) by adding an edge connecting a vertex v1

of G1 and a vertex v2 of G2. In the following lemma we prove that if G ∈ obs(Gk+1)
and G is a tree then there exists an edge e ∈ E(G) such that if C(G\e) = {G1, G2}
then G1, G2 ∈ obs(Gk).

Lemma 4.1.2. Let G be a tree in obs(Gk) for k ≥ 1. Then there exists an
e ∈ E(G) such that if {G1, G2} = C(G \ {e}) then G1, G2 ∈ obs(Gk−1).

Proof. We examine the non-trivial case where k ≥ 2. From Observation 4.1.5,
we obtain that for each edge e = {v1, v2} ∈ E(G), at least one of the connected
components G1, G2 of G\e has tree depth at least k. We claim G contains at least
one edge e = {v1, v2} such that both connected components G \ e have tree depth
k. Suppose that this is not correct. Then we can direct each edge e = {v1, v2}
of E(G) such that its tail belongs to the connected component of G \ e that has
tree-depth < k. We denote this directed tree by T̃ . As k ≥ 2, T̃ contains internal
vertices. Moreover, all edges of T̃ that are incident to a leaf are directed away from
it. It follows that T̃ contains an internal vertex v of out-degree 0. This means
that each, say Gi, connected component of G \ v has a (k − 1)-vertex ranking ρi.
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Then ρ = {(v, k)}∪⋃i=1,...,m ρi is a k-vertex ranking of G, a contradiction and this
completes the proof of the claim.

Let now Gi be the connected component of G \ e that contains vi, i = 1, 2.
If one, say G1, is not in obs(Gk−1) then there is a graph G′

1 ∈ obs(Gk−1) that
is a proper minor of G1. Then, G′

1 contains a vertex v′1 such that the graph
G′ = j(G′

1, G2, v
′
1, v2) has tree-depth at least k + 1 (Observation 4.1.6). This is a

contradiction as G′ is also a proper minor of G and lemma follows.

For every integer k ≥ 0, we recursively define the class Tk as follows. Let
T0 = {K1} and for every k ≥ 1 we set

Tk = {j(G1, G2, v1, v2) | G1, G2 ∈ Tk−1, vi ∈ V (Gi), i = 1, 2}

The following is a direct consequence of Lemma 4.1.1 and Lemma 4.1.2.

Theorem 4.1.1 ([27]). Let k be a non-negative integer. Then Tk is the set of all
acyclic graphs in obs(Gk).

For an example, see Figure 4.1.

4.2 The bounds

In this section, we prove that |Tk| = 1
2
22k−1−k(1 + 22k−1−k) for every integer k ≥ 1.

which gives as a lower bound on the number of obstructions for the class of graphs
of tree-depth at most k for every integer k ≥ 1.

A direct consequence from Theorem 4.1.1 is the following.

Observation 4.2.1. Let k be a non-negative integer. If G1, G2 are graphs such
that G1, G2 ∈ Tk then |V (G1)| = |V (G2)| = 2k.

Consider also the following.

Observation 4.2.2. Let T 1, T 2 be two trees and ei = {vi
1, v

i
2} ∈ E(T i), i = 1, 2.

Let also φ an isomorphism from T 1 to T 2 such that φ(v1
i ) = v2

i , i = 1, 2. Let also
T j

i be the connected component of T j \ ej that contains vj
i , i = 1, 2, j = 1, 2. Then

φi = {(x, y) ∈ φ | x ∈ V (T 1
i )} is an isomorphism from T 1

i to T 2
i , i = 1, 2.

Observation 4.2.2 easily implies the following.

Observation 4.2.3. Let T be a tree and e = {v1, v2} ∈ E(T ). Let also φ ∈
Aut(T ) such that φ(vi) = v3−i, i = 1, 2. Let also Ti be the connected component
of T \ e that contains vi, i = 1, 2. Then φ′ = {(x, y) ∈ φ | x ∈ V (T1)} is an
isomorphism from T1 to T2.
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In the following lemma we prove that if φ is an isomorphism from G to G′

where G,G′ are graphs that have been constructed as described in Lemma 4.1.1
by the graphs Gi, i = 1, 2 and e ∈ E(G), e′ ∈ E(G′) are these edges then φ(e) = e′.

Lemma 4.2.1. Let G1, G2 be disjoint graphs such that G1, G2 ∈ obs(Gk), k ≥ 1
and let vj

i ∈ V (Gj), i = 1, 2, j = 1, 2. Let also φ an isomorphism from G to
G′, where G = j(G1, G2, v

1
1, v

2
1) and G′ = j(G1, G2, v

1
2, v

2
2). Then φ({v1

1, v
2
1}) =

{v1
2, v

2
2}.

Proof. Let ei = {v1
i , v

2
i }, i = 1, 2. Assume in contrary that at least one of the

connected components of G′ \ e2, say G1, contains an edge e′ such that φ(e1) = e′.
Clearly, φ is also an isomorphism from G\e1 to G′\e′. Let G′

1, G
′
2 be the connected

components of G′ \ e′ where e2 ∈ G′
2. Observe that G′

1 is a proper subgraph of G1.
Therefore they cannot be isomorphic and thus td(G′

1) < td(G1) = k + 1. Then
G′

1 and G2 are isomorphic, thus td(G2) = td(G′
1) ≤ k, a contradiction.

A direct consequence of Lemma 4.2.1 is the following.

Observation 4.2.4. Let G1, G2 be disjoint graphs such that G1, G2 ∈ obs(Gk), k ≥
1 and let vi ∈ V (Gi), i = 1, 2. Let also φ ∈ Aut(G), where G = j(G1, G2, v1, v2).
Then either φ(vi) = vi, i = 1, 2 or φ(v1) = v2 and φ(v2) = v1.

In what follows we prove that if G ∈ Tk, k ≥ 0 and φ(v) = v for some v ∈ V (G)
and φ ∈ Aut(G) then φ = id. Consider first the following.

Lemma 4.2.2. Let G ∈ Tk for k ≥ 1, e = {v1, v2} ∈ E(G) the edge of Lemma 4.1.2
and φ ∈ Aut(G). If there exists v ∈ V (G) such that φ(v) = v, then φ(vi) = vi, i =
1, 2.

Proof. We examine the non-trivial case where k ≥ 2. Notice first that if v ∈ e, then
the result follows directly from Observation 4.2.4, therefore we may assume that
v 6∈ e. Suppose, in contrary, that φ(vi) = v3−i, i = 1, 2. We denote by G1, G2 the
connected components of G\e where, w.l.o.g, v, v1 ∈ V (G1). By Observation 4.2.3,
φ′ = {(x, y) ∈ φ | x ∈ V (G1)} is an isomorphism of G1 to G2, a contradiction since
φ′(v) = φ(v) = v.

We now proceed to prove the following.

Lemma 4.2.3. Let k be a non-negative integer. Let also G ∈ Tk and φ ∈ Aut(G).
If there exists v ∈ V (G) such that φ(v) = v, then φ = id.

Proof. We use induction on k. For k = 0 the claim is trivial. Assume now that
the claim is true for k = n ≥ 0. Let k = n + 1. We denote by e = {v1, v2} ∈
E(G) the edge of Lemma 4.1.2 and by G1, G2 the connected components of G \ e,



34 Lower bounds on obs(Gk)

where vi ∈ V (Gi), i = 1, 2. Since φ ∈ Aut(G), by Lemma 4.2.2, it follows that
φ(vi) = vi, i = 1, 2. Hence φ is an isomorphism from G \ e to G \ e. From
Observation 4.2.2, φi = {(v, u) ∈ φ | v ∈ V (Gi)} ∈ Aut(Gi), i = 1, 2. Observe
that φi(vi) = φ(vi) = vi, i = 1, 2. Since Gi ∈ Tn, i = 1, 2, by the induction
hypothesis, φi, i = 1, 2 is the trivial automorphism of Gi. Therefore, φ = id.

Let G be a graph and v ∈ V (G). We denote trG(v) = {u ∈ V (G) | ∃φ ∈
Aut(G) such that φ(u) = v}, i.e. trG(v) is the orbit of the automorphism group
of G that contains v.

Consider now the following two.

Lemma 4.2.4. Let G1, G2 be disjoint graphs such that G1, G2 ∈ Tk and v1 ∈
V (G1), v2, v

′
2 ∈ V (G2) such that v2 ∈ trG2

(v′2). Then G = j(G1, G2, v1, v2) and
G′ = j(G1, G2, v1, v

′
2) are isomorphic.

Proof. Notice that if v2 = v′2 the result follows directly since G = G′. Therefore,
we may assume that G2 ∈ Bk and v2 6= v′2. Let id ∈ Aut(G1) and φ ∈ Aut(G2),
such that φ(v2) = v′2. Then id ∪ φ is an isomorphism from G to G′.

Lemma 4.2.5. Let G1, G2 be disjoint graphs such that G1, G2 ∈ Tk and v1 ∈
V (G1), v2, v

′
2 ∈ V (G2) such that v2 6∈ trG2

(v′2). Then G = j(G1, G2, v1, v2) and
G′ = j(G1, G2, v1, v

′
2) are not isomorphic.

Proof. Assume, in contrary, that φ is an isomorphism from G to G′. By
Lemma 4.2.1 follows that either φ(v1) = v1 and φ(v2) = v′2 or φ(v1) = v′2 and
φ(v2) = v1. We first exclude the case where φ(v1) = v1 and φ(v2) = v′2. In-
deed, by Observation 4.2.2, φ′ = {(x, y) ∈ φ | x ∈ V (G2)} ∈ Aut(G2) and
moreover φ′(v2) = φ(v2) = v′2, a contradiction since v2 6∈ trG2

(v′2). Thererefore,
φ(v1) = v′2 and φ(v2) = v1. By Observation 4.2.2, φi = {(x, y) ∈ φ | x ∈ V (Gi)}
is an isomorphism from Gi to G3−i, i = 1, 2. Then ψ = φ1 ◦ φ2 ∈ Aut(G2) and
ψ(v2) = φ1(φ2(v2)) = φ1(φ(v2)) = φ1(v1) = v′2. It follows that v2 ∈ trG2

(v′2), a
contradiction.

In the following we count |Tk|. By the previous lemmata we first need to count
|trG(v)| for every orbit of every graph G ∈ Tk. Recall that, given a graph G we say
that G is asymmetric if for every v ∈ V (G) and every orbit of the automorphism
group of G that contains v it is true that |trG(v)| = 1. We also say that a graph G
is bisymmetric if for every v ∈ V (G) and every orbit of the automorphism group
of G that contains v it is true that |trG(v)| = 2.

Lemma 4.2.6. Let k be a non-negative integer and let G1, G2 be two disjoint non-
isomorphic graphs such that G1, G2 ∈ Tk. Then the graph G = j(G1, G2, v1, v2) is
asymmetric.
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Proof. Suppose that φ ∈ Aut(G) and φ 6= id. From Lemma 4.2.3, φ(v) 6= v for
all v ∈ V (G) and from Observation 4.2.4, φ(vi) = v3−i, i = 1, 2. From Observa-
tion 4.2.3, G1 is isomorphic to G2, a contradiction.

Lemma 4.2.7. Let k be a non-negative integer, let G1, G2 two disjoint graphs such
that G1, G2 ∈ Tk. Let also φ an isomorphism from G1 to G2 and vi ∈ V (Gi), i =
1, 2 such that φ(v1) /∈ trG2

(v2). Then G = j(G1, G2, v1, v2) is asymmetric.

Proof. Suppose that ψ ∈ Aut(G) and ψ 6= id. From Lemma 4.2.3, ψ(v) 6= v
for all v ∈ V (G) and from Observation 4.2.4, ψ(v1) = v2 and ψ(v2) = v1. From
Observation 4.2.3, χ = {(x, y) ∈ ψ | x ∈ V (G1)} is an isomorphism from G1 to G2.
Moreover, χ(v1) = ψ(v1) = v2 ∈ trG2

(v2), a contradiction to the fact that if G1, G2

are two disjoint graphs, φ an isomorphism from G1 to G2 and vi ∈ V (Gi), i = 1, 2
such that φ(v1) /∈ trG2

(v2) then ψ(v1) /∈ trG2
(v2) for every isomorphism ψ from

G1 to G2.

In the previous lemmata we proved that if G1, G2 are disjoint non-isomorphic
graphs such that G1, G2 ∈ Tk then for every vi ∈ V (Gi), i = 1, 2 the graph G =
j(G1, G2, v1, v2) is asymmetric. We also proved that the following is true: if G1, G2

are isomorphic graphs and vi ∈ V (Gi), i = 1, 2 are vertices such that φ(v1) /∈
trG2

(v2). We now examine the remaining case where G1, G2 are isomorphic graphs
and vi ∈ V (Gi), i = 1, 2 are vertices such that φ(v1) ∈ trG2

(v2), for an isomorphism
φ from G1 to G2. Finally, we prove the following.

Lemma 4.2.8. Let k be a non-negative integer, let G1, G2 two disjoint graphs such
that G1, G2 ∈ Tk, and let φ : V (G1) → V (G2) be an isomorphism from G1 to G2.
Let also vi ∈ V (Gi), i = 1, 2 such that φ(v1) ∈ trG2

(v2). Then G = j(G1, G2, v1, v2)
is bisymmetric.

Proof. Let S be an orbit of the automorphism group of G that contains exactly
one element. Then, from Lemma 4.2.3, Aut(G) = {id}. Observe also that there
exists an isomorphism ψ from G1 to G2 such that ψ(v1) = v2 and notice that
id 6= ψ ∪ ψ−1 ∈ Aut(G), a contradiction. Suppose now that S contains three
distinct vertices u1, u2, and u3. Then there exist φ1, φ2 ∈ Aut(G), such that
φ1(u1) = u2 and φ2(u2) = u3. As u1, u2, and u3 are distinct, φi 6= id, i = 1, 2.
Therefore, φi(v1) = v2, i = 1, 2 and φi(v2) = v1, i = 1, 2. Moreover, φ2 ◦ φ1 6= id,
since (φ2 ◦ φ1)(u1) = u3. However, φ2(φ1(v1)) = φ2(v2) = v1, a contradiction and
the lemma follows.

A direct implication of Theorem 4.1.1 and Lemmata 4.2.6, 4.2.7 and 4.2.8 is
the following.

Observation 4.2.5. If G is a graph such that G ∈ Tk then G is either asymmetric
or bisymmetric.
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For every integer k ≥ 0, we define for following partition of Tk:

Ak = {G ∈ Tk | Aut(G) = {id}} and Bk = {G ∈ Tk | Aut(G) 6= {id}}.
We denote αk = |Ak|, βk = |Bk| and τk = |Tk| = αk + βk (see Figure 4.1). We
also set γk = 2k−2. A direct consequence of Observation 4.2.1 and Lemmata 4.2.7
and 4.2.8 is the following.

Observation 4.2.6. Let k ≥ 2 be an integer. Then the automorphism group of
each graph in G ∈ Ak (resp. G ∈ Bk) has exactly γk+2 (resp. γk+1) orbits.

Observation 4.2.7. Clearly, b0 = a1 = a2 = 0 and a0 = b1 = b2 = 1.

Theorem 4.2.1 ([27]). For every integer k ≥ 1, τk = 22k−(2k+1) + 22k−1−(k+1).

Proof. First observe that for k = 1, 2 the claim is true. Let G be a graph. Recall
that G ∈ Tk iff G = j(G1, G2, v1, v2) for some Gi ∈ Tk−1, and vi ∈ V (Gi), i = 1, 2.
Therefore, in order to count τk it is sufficient to count the ways to choose G1, G2 ∈
Tk−1 and vi ∈ V (Gi), i = 1, 2 and not end up to isomorphic graphs. Let G1, G2 be
graphs such that Gi ∈ Tk−1 and vi ∈ V (Gi), i = 1, 2. We define

A1
k = {G | G = j(G1, G2, v1, v2), G1 6≃ G2, Gi ∈ Ak−1, i = 1, 2,

and vi ∈ V (Gi), i = 1, 2} (4.1)

A2
k = {G | G = j(G1, G2, v1, v2), G1 6≃ G2, Gi ∈ Bk−1, i = 1, 2,

and vi ∈ V (Gi), i = 1, 2} (4.2)

A3
k = {G | G = j(G1, G2, v1, v2), G1 6≃ G2, G1 ∈ Ak−1, G2 ∈ Bk−1,

and vi ∈ V (Gi), i = 1, 2} (4.3)

A4
k = {G | G = j(G1, G2, v1, v2), G1 ≃φ G2, Gi ∈ Ak−1, i = 1, 2,

and vi ∈ V (Gi), i = 1, 2, such that φ(v1) 6∈ trG2
(v2)} (4.4)

A5
k = {G | G = j(G1, G2, v1, v2), G1 ≃φ G2, Gi ∈ Bk−1,

and vi ∈ V (Gi), i = 1, 2, such that φ(v1) 6∈ trG2
(v2)} (4.5)

B1
k = {G | G = j(G1, G2, v1, v2), G1 ≃φ G2, Gi ∈ Ak−1, i = 1, 2,

and vi ∈ V (Gi), i = 1, 2, such that φ(v1) ∈ trG2
(v2)} (4.6)

B2
k = {G | G = j(G1, G2, v1, v2), G1 ≃φ G2, Gi ∈ Bk−1,

and vi ∈ V (Gi), i = 1, 2 such that φ(v1) ∈ trG2
(v2)}. (4.7)

By their definitions, the above sets are a partition of Tk. By Lemma 4.2.6 (for
relations (1)–(3)) and by Lemma 4.2.7 (for relations (4) and (5)), the union of the
first five is a subset of Ak. Moreover, by Lemma 4.2.8 (applied to relations (6) and

(7)) the union of the last two is a subset of Bk. We conclude that Ak =
⋃

i=1,...,5

Ai
k

and Bk = B1
k ∪ B2

k.
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From Observation 4.2.6, Lemmata 4.2.4 and 4.2.5, and Relations (1)–(7) we
derive that

|A1
k| =

(

αk−1

2

)

· γ2
k+1,

|A2
k| =

(

βk−1

2

)

· γ2
k ,

|A3
k| = αk−1 · γk+1 · βk−1 · γk,

|A4
k| = αk−1 ·

(

γk+1

2

)

|A5
k| = βk−1 ·

(

γk

2

)

|B1
k| = αk−1 · γk+1

|B2
k| = βk−1 · γk

Therefore,

αk =

(

αk−1

2

)

γ2
k+1 +

(

βk−1

2

)

γ2
k + αk−1

(

γk+1

2

)

+ βk−1

(

γk

2

)

+αk−1βk−1γkγk+1 (4.8)

βk = αk−1γk+1 + βk−1γk (4.9)

By simplifying (4.8),

αk =
1

2

[(

γ2
k+1α

2
k−1 + γ2

kβ
2
k−1 + 2αk−1βk−1γkγk+1

)

− (αk−1γk+1 + βk−1γk)
]

=
1

2

(

β2
k − βk

)

It follows (using Relation (4.9)) that,

τk =
1

2

(

β2
k + βk

)

and βk = γkβ
2
k−1

Let δk = 2k−1 − k and observe that βk = 2δk = 22k−1−k, for every integer k ≥ 2.
Then τk = 22k−(2k+1) + 22k−1−(k+1), k ≥ 3 and the theorem follows.





Chapter 5

Obstructions for tree-depth at most

3

Our primary goal in this chapter is to fully characterize the classes Gk for k ≤ 3
by identifying their obstruction sets (who are finite by the Graph Minor Theo-
rem 3.1.1).

It is easy to prove that obs(G0) = {K1}, obs(G1) = {K2}, obs(G2) = {K3, P3}.
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Figure 5.1: The minor obstruction set for the class of graphs with tree-depth at
most 3.

Let C = {K4, P7, P
i
3P

e
3 , 2P

i
3, K3P

i
3, K3P

e
3 , 2K3, K

∗
4 , K

2
3 , C

1
4 , K

1
3 , C5} be the set of

the graphs in Figure 5.1. In this chapter we prove that obs(G3) = C. We call a
graph C-minor-free if it does not contain any of the graphs in C as a minor.
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5.1 The reduction

Given a graph G we say that a set S ⊆ V (G) is a set of siblings if for every
x, y ∈ S, NG(x) = NG(y). Consider the following.

Observation 5.1.1. Let G be a graph and ρ be a k-vertex ranking of G. Let
also v1, v2 ∈ V (G) such that {v1, v2} ∈ E(G) and ρ(v1) < ρ(v2). Then ρ(v2) /∈
ρ(NG\{v2}(v1)).

We now prove the following general reduction-lemma.

Lemma 5.1.1. Let k be a positive integer, G be a graph and S ⊆ V (G) be a set
of siblings of G each of degree k. Let also G′ = G \ S ′ where S ′ is any subset of S
such that |S ′| ≤ |S| − k. Then td(G) = td(G′).

Proof. We examine the non-trivial case where |S| ≥ k + 1. We denote S ′′ =
S \ S ′ = {ui | i ∈ |S ′′|}. As G′ is a subgraph of G, it is enough to prove that
td(G) ≤ td(G′). Let ρ′ : V (G′) → {1, . . . , t} be a vertex ranking of G′. Let
N = {vi | i ∈ [k]} be the common neighbourhood of the vertices in S ′′ and w.l.o.g
assume that ρ′(vi) ≤ ρ′(vi+1), i ∈ [k − 1]. Notice that |S ′′| ≥ k and w.l.o.g assume
that ρ′(ui) ≤ ρ′(ui+1), i ∈ [|S ′′| − 1]. We need the following claim.

Claim 1. Let P be a (z′, z)-path in G where z ∈ S ′′, z′ ∈ (G \ S ′′) \ N , and
ρ′(z) = ρ′(z′). Let P ′ be the portion of P between z′ and the first vertex, say x, in
N (recall that N is a separator of G). Then there exists a vertex y ∈ V (P ′) \ {z′}
such that ρ′(y) > ρ′(z′).
Proof. It is enough to observe that the path P ′′ = (V (P ′)∪ {z}, E(P ′)∪ {{x, z}})
should contain an internal vertex y where ρ′(y) > ρ′(z′).

In what follows we construct a vertex ranking ρ : V (G) → {1, . . . , t}. Let

m =

{

max{i | ρ′(u1) > ρ′(vi)} + 1 if A = {i | ρ′(u1) > ρ′(vi)} 6= ∅
1 otherwise

and observe that m ≤ k + 1. We claim that

ρ = {(x, ρ′(x)) | x ∈ V (G′) \ (S ′′ ∪
⋃

i∈[m−1]

{vi})} ∪ σ

where

σ =

{

{(vi, ρ
′(ui+1)) | i ∈ [m− 1]} ∪ {(x, ρ′(u1)) | x ∈ S} m 6= k + 1

{(vi, ρ
′(ui)) | i ∈ [m− 1]} ∪ {(x, ρ′(v1)) | x ∈ S} m = k + 1
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is a t-vertex ranking of G.
First we examine the case where m = 1. Then observe that

ρ′′ = {(x, ρ′(x)) | x ∈ V (G′) \ S ′′} ∪ {(x, ρ′(u1)) | x ∈ S ′′}

is a t-vertex ranking of G′. It is easy to observe that ρ′′ ∪ {(x, ρ′(u1)) | x ∈ S ′} is
a t-vertex ranking of G that is equal to ρ.

We examine now the case where 1 < m ≤ k + 1. As A 6= ∅, Observation 5.1.1
implies that

ρ′(ui) < ρ′(ui+1), i ∈ [|S ′′| − 1] (5.1)

ρ′(vi) < ρ′(vi+1), m ≤ i ≤ k − 1 (5.2)

ρ′(NG′\S′′(
⋃

i∈[m−1]

{vi})) ∩ ρ′(S ′′) = ∅ (5.3)

thus, from (5.1), |ρ′(S ′′)| = |S ′′| ≥ k. We distinguish the following cases:

Case 1. 1 < m < k + 1. We claim that

ρ′′ = {(x, ρ′(x)) | x ∈ V (G′) \ (S ′′ ∪
⋃

i∈[m−1]

{vi})} ∪

{(vi, ρ
′(ui+1)) | i ∈ [m− 1]} ∪ {(x, ρ′(u1)) | x ∈ S ′′}

is a t-vertex ranking of G′. Indeed, ρ′′ is a valid colouring of G′ because of
(5.1), (5.2), and (5.3). To prove that ρ′′ is a t-vertex ranking, we consider a
(z′, z)-path P between two vertices z, z′ ∈ V (G′) where ρ′′(z) = ρ′′(z′). We ob-
serve the following.

Claim 2. |ρ′′(N)| = k.
Proof. It follows directly from (5.1) and (5.2).

We distinguish the following subcases.
Subcase 1.1. If one, say z, of the endpoints of P belongs to S ′′, then P contains
at least one vertex vi, i ∈ N . If i ∈ A then ρ′′(vi) ≥ ρ′(u2) > ρ′(u1) = ρ′′(z). If
i ∈ [k] \ A, then ρ′′(vi) = ρ′(vi) > ρ′(u1) = ρ′′(z).
Subcase 1.2. If one, say z, of the endpoints of P belongs to N ′ = {vi | i ∈ A}, then
we assume that z = vi and, from Claim 2, z′ ∈ (V (G′) \ S ′′) \ N . Let P ′ be the
portion of P between z′ and the first vertex x in N . Then from Claim 1, there exists
a vertex y ∈ V (P ′) \ {z′} where ρ′(y) > ρ′(z′). Observe that ρ′(z′) = ρ′′(z′) and
ρ′′(y) ≥ ρ′(y). Therefore, ρ′′(y) > ρ′′(z′) and we are done as y ∈ V (P ′) ⊆ V (P ).
Subcase 1.3. If one, say z, of the endpoints of P belongs to N \ N ′, then again
from Claim 2, z′ ∈ (V (G′) \ S ′′) \ N . Let P ′ be the portion of P between z′ and
the first vertex x in N . If w = z then P ′ = P and we are done. If x 6= z, we define
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P ′′ = (V (P ′) ∪ {u1, z}, E(P ) ∪ {{x, u1}, {u1, z}}) and observe that ρ′(z) = ρ′′(z′)
and ρ′(z′) = ρ′′(z′). Therefore, P ′′ contains some internal vertex y where ρ′(y) >
ρ′(z) = ρ′′(z). Notice also that ρ′(u1) < ρ′(z), thus y ∈ V (P ′). It also holds that
ρ′′(y) ≥ ρ′(y), therefore ρ′′(y) > ρ′′(z) and we are done as y ∈ V (P ′) ⊆ V (P ).
Subcase 1.4. If both z, z′ belong in (V (G′) \ S ′′) \ N , then we examine the non-
trivial case where V (P ) ∩ S ′′ 6= ∅ (recall that the new colouring, only increases
the colours not in S ′′). Let P ′ (resp. P ′′) be the portion of P between z (resp.
z′) and the first vertex x (resp. x′) in N . We define the path P ′′′ = P ′ ∪ P ′′ ∪
({u1, x, x

′}, {{x, u1}, {x′, u1}}). Again ρ′(z) = ρ′′(z′) and ρ′(z′) = ρ′′(z′) and let y
be a vertex in P ′′′ where ρ′(y) > ρ′(z) = ρ′′(z). If y ∈ V (P ′) ∪ V (P ′′) then we are
done as ρ′′(y) ≥ ρ′(y) and V (P ′)∪V (P ′′) ⊆ V (P ). If y = u1, then we are also done
as S ′′ ∩ V (P ) 6= ∅ and the colour assigned by ρ′′ to every vertex in S ′′ ∩ V (P ) 6= ∅
is equal to ρ′(u1).

We just proved that ρ′′ is a t-vertex ranking of G′. It remains now to observe
that ρ′′ ∪ {(x, ρ′(u1)) | x ∈ S ′} is a t-vertex ranking of G that is equal to ρ.

Case 2. m = k + 1. We claim that

ρ′′ = {(x, ρ′(x)) | x ∈ V (G′) \ (
⋃

i∈[m−1]

{vi} ∪ S ′′)} ∪

{(vi, ρ
′(ui)) | i ∈ [m− 1]} ∪ {(x, ρ′(v1)) | x ∈ S ′′}

is a t-vertex ranking of G′.
Observe first that Claim 2 is again true from (5.1).
We distinguish the following subcases.

Subcase 2.1. If one, say z, of the endpoints of P belongs to S ′′, then P contains
at least one vertex vi, i ∈ N . Then ρ′′(vi) ≥ ρ′(u1) > ρ′(v1) = ρ′′(z).
Subcase 2.2. If one, say z, of the endpoints of P belongs to N , then we assume
that z = vi and, from Claim 2, z′ ∈ (V (G′) \ S ′′) \ N . Let P ′ be the portion of
P between z′ and the first vertex x in N . Then from the Claim 1, there exists
a vertex y ∈ V (P ′) \ {z′} where ρ′(y) > ρ′(z′). Observe that ρ′(z′) = ρ′′(z′) and
ρ′′(y) ≥ ρ′(y). Therefore, ρ′′(y) > ρ′′(z′) and we are done as y ∈ V (P ′) ⊆ V (P ).
Subcase 2.3. If both z, z′ belong to (V (G′) \ S ′′) \ N , then we examine the non-
trivial case where V (P ) ∩ S ′′ 6= ∅ (recall that the new colouring, only increases
the colours not in S ′′). Let P ′ (resp. P ′′) be the portion of P between z (resp.
z′) and the first vertex x (resp. x′) in N . We define the path P ′′′ = P ′ ∪ P ′′ ∪
({u1, x, x

′}, {{x, u1}, {x′, u1}}). Again ρ′(z) = ρ′′(z′) and ρ′(z′) = ρ′′(z′) and let y
be a vertex in P ′′′ where ρ′(y) > ρ′(z) = ρ′′(z). If y ∈ V (P ′) ∪ V (P ′′) then we are
done as ρ′′(y) ≥ ρ′(y) and V (P ′) ∪ V (P ′′) ⊆ V (P ). If y = u1, then we are done as
ρ′′(x) ≥ ρ′(u1) and x ∈ V (P ′) ∪ V (P ′′) ⊆ V (P ).

We just proved that ρ′′ is a t-vertex ranking of G′. It remains to observe that
ρ′′ ∪ {(x, ρ′(v1)) | x ∈ S ′} is a t-vertex ranking of G that is equal to ρ.
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We call a graph G k-sibling-free if every maximal set of siblings each of degree
k has at most k elements. We say that a graph G is reduced if it is k-sibling-free
for each k ≥ 0.

5.2 The proof

Let G be a graph and let x be an articulation point of G. We define the x-
components of G the graphs G1, . . . , Gq constructed as follows: Let V1, . . . , Vq be
the vertex sets of the connected components of G \ x. Then Gi = G[{x} ∪ Vj ].
We call an articulation point x of G critical if it belongs to some biconnected
component of G and at least two of the x-components of G are different than
K2. Given a graph H , we call an (x, x′)-path P an H-path if V (P ) ≥ 2 and
V (G) ∩ V (P ) = {x, x′}.

Before the proof of the result of this section consider the following auxiliary
lemmata.

Lemma 5.2.1. Let G be a connected reduced graph such that K4 6≤ G, C5 6≤ G.
Then its 2-connected components are either K3, C4 or K−

4 .

Proof. From [15, Proposition 3.1.3], a graph G is 2-connected if and only if it can
be constructed from a cycle by successively adding H-paths to graphs H already
constructed. Under the assumptions of the lemma, the construction of G should
start from a graph H that is either C3 or C4. It is now easy to see that every
addition of an H-path in H should construct K−

4 and any other application of
the same rule would construct graphs they contain either K4 or C5 as minors or a
graph that is not 2-sibling-free.

Lemma 5.2.2. Let G be a connected C-minor-free reduced graph and H be a 2-
connected component of G. Then H contains at most two articulation points.
More specifically, if H contains two articulation points v1, v2 then if H = C4 then
{v1, v2} 6∈ E(C4) and if H = K−

4 then degH(vi) = 3, i = 1, 2.

Proof. Assume, in contrary, that H is 2-connected but contains 3 articulation
points, vi, i = 1, 2, 3. Then there exist three vertices ui, i = 1, 2, 3 ∈ V (G) \ V (H)
such that {vi, ui} ∈ E(G). Therefore K1

3 ≤ G, a contradiction. If H = C4 and
{v1, v2} ∈ E(C4) then C1

4 ≤ G, a contradiction. If H = K−
4 and for at least one,

say v1, of it’s articulation points degK−

4
(v1) = 2, then K∗

4 ≤ G, a contradiction.

Lemma 5.2.3. Let G be a connected C-minor-free reduced graph and H be a 2-
connected component of G. Let also vi, i = 1, 2 be two distinct articulation points
of H and G1, G2 be the two connected components of G \ (V (H) \ {v1, v2}). Then
H contains at most one critical articulation point.



44 Obstructions for tree-depth at most 3

Proof. Assume, in contrary, that there exist vertices ui ∈ V (Gi), i = 1, 2 such that
there exists a (vi, u2)-path in Gi of length ≥ 2. Then K2

3 ≤ G, a contradiction.

Lemma 5.2.4. Let G be a connected C-minor-free reduced graph containing a cycle
and let x be a critical articulation point of G. Then all the acyclic x-components
of G are paths of length ≤ 3.

Proof. Let H be some acyclic x-component of G. Notice that H does not contain
a path of length 4, otherwise K3P

e
3 ≤ G. Let P be a path in H of maximum length

that has x as endpoint. If P has length one, then we are done. If P has length 2
then H = P since G is reduced. Finally, if P has length 3, then the vertex of P
adjacent to x has degree 2, otherwise K3P

i
3 ≤ G and the other internal vertex has

also degree 2 because G is reduced and we are done.

Lemma 5.2.5. Let G be a connected C-minor-free reduced graph. Then G contains
at most one critical articulation point.

Proof. Assume, towards a contradiction, that x1 and x2 are distinct critical ar-
ticulation points in G. From Lemma 5.2.3 there are two distinct biconnected
components H1 and H2 of G where xi ∈ V (Hi), i = 1, 2. Then there is a path of
length ≥ 1 from a vertex of H1 to a vertex of H2. As bothH1, H2 can be contracted
to K3, we obtain that 2K3 ≤ G, a contradiction.

We now, finally, prove the following.

Theorem 5.2.1 ([27]). The class C is the obstruction set of G3.

Proof. Notice that all graphs in C have tree depth ≥ 4 and every minor of them
has tree-depth ≤ 3. Therefore C is a collection of minor-minimal graphs with tree-
depth ≥ 4. It remains to prove that any minor-minimal graph G where td(G) ≥ 4
is a graph in C. Suppose in contrary, that G 6∈ C. Then G is C-minor-free. We will
arrive to a contradiction by proving that td(G) ≤ 3.

First of all G is connected by Observation 4.1.2. Also from the fact that G
is minor-minimal and Lemma 5.1.1 we obtain that G is reduced. Moreover, G
cannot be a tree as otherwise, by Theorem 4.1.1, G ∈ T3 ⊆ C, a contradiction.
From Lemma 5.2.5, we distinguish two cases.
Case 1. G has no critical articulation points. Notice that G cannot have more
than one biconnected components. Indeed, if H1, H2 are such components, then
take a shortest path between vertices of H1 and H2 and observe that its endpoints
are both critical articulation points, a contradiction to Lemma 5.2.5. Let H be
the unique biconnected component of G. Then, from Lemmata 5.2.1 and 5.2.2 H
is a subgraph of the graph W depicted in Figure 5.2 that has a 3-vertex ranking.
Case 2. G has a critical articulation point x. Let G1, . . . , Gq be the x-components
of G. W.l.o.g. let G1 be the one containing a biconnected component H1 that
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1
1

3

W

1

1

Figure 5.2: The graph W and a 3-vertex ranking of it.

contains x as a vertex. From Lemmata 5.2.1 and 5.2.2G1 is a subgraph of the graph
W ′ = W \α that has a 3-vertex ranking where x is coloured by 3 (see Figure 5.2).
Let now J = Gi, i = 2, . . . , q. If J is a tree then J is a subgraph of P3 that can be
coloured such that the colour of x is 3 (in Figure 5.2 P3 can be seen as any path of
length 3 starting from unique vertex coloured by 3). If J is not a tree, then each
biconnected component of J should contain x as a vertex (otherwise, G would have
two critical articulation points contradicting Lemma 5.2.5). Therefore J contains a
unique biconnected component that contains x and from Lemmata 5.2.1 and 5.2.2,
J is a subgraph of W ′ that has a 3-vertex ranking where x is coloured by 3 (see
Figure 5.2). Let ρi be the 3-vertex ranking of Gi as defined above. Clearly,
ρ =

⋃

i=1,...,q ρi is a 3-vertex ranking of G, and we are done.





Chapter 6

Graphs, Logic and Algorithms

In 1990 B. Courcelle proved a fundamental theorem stating that graph properties
definable in monadic second-order logic can be decided in linear time on graphs
of bounded tree-width. This is the first in a series of meta-algorithmic theorems.
But what do we mean by the term meta-algorithmic theorem?

The general form of meta-algorithmic theorems is:

All problems definable in a certain logic
on a certain class of structures can be solved efficiently.

The term meta-algorithmic refers to the fact that these results describe al-
gorithms for whole families of problems, while usually an algorithm refers to a
specific problem, whose definition typically has a logical and a structural (usually
graph-theoretical) component.

Although the problems may be of different types (e.g., optimisation or counting
problems) in this thesis we consider decision problems. Moreover, the structures
that we consider are graphs. We will, however, consider two types of logic, specif-
ically first-order and monadic second-order logic.

What remains is to explain what we mean by the term efficient solvability. Ef-
ficient solvability may mean, polynomial time solvability (e.g., linear or quadratic
time solvability) but could also mean fixed-parameter solvability (i.e., given a pa-
rameter along with the structure, if we fix the parameter then the problem can
be solved in polynomial time). For more on Parameterized Complexity Theory1

see [23] and [53].
A recent meta-algorithmic theorem guarantees that all first-order definable

properties of planar graphs can be decided in linear time [24] (proven by M. Frick
and M. Grohe, 2001). An ever more recent meta-algorithmic theorem states that

1Parameterized Complexity Theory was recently developed by R. Downey and M. Fellows.
For Classical Complexity, see [33], [25] and [54]
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all first-order definable optimisation problems on classes of graphs with excluded
minors can be approximated in polynomial time to any given approximation ra-
tio [9] (proven by A. Dawar, M. Grohe, S. Kreutzer and N. Schweikardt, 2006).

In this chapter we will present two meta-algorithmic theorems. The first is the
one that was proven by B. Courcelle and the second one was proven by J. Nešetřil
and P. Ossona de Mendez and states that graph properties definable in first-order
logic can be decided in linear time on graphs of bounded expansion.

6.1 A meta-algorithm for monadic second-order

logic

In this section we present B. Courcelle’s meta-algorithmic theorem. Before doing
so, consider the following.

Theorem 6.1.1 ([4]). For all k ∈ N, there exists a linear time algorithm, that
tests whether a given graph G has tree-width at most k, and if so, outputs a tree-
decomposition of G with tree-width at most k.

Remark 6.1.1. The proof of Theorem 6.1.1 is constructive in the sense that in [4]
H. Bodlaender provided a way to construct an algorithm as above.

Theorem 6.1.2 ([8]). Let K be a class of finite graphs G = 〈V,E,R〉 represented
as τ2 structures, that is: by two sorts of elements (vertices V and edges E) and
an incidence relation R. Let also φ be a MSOL(τ2) sentence. If K has bounded
tree-width and G ∈ K, then checking whether G |= φ can be done in linear time.

Remark 6.1.2. The proof of Theorem 6.1.2 is also constructive. Whenever such an
algorithm exists, it can be constructed by the proof of this Theorem combining
Logic and Automata Theory (For more on Automata Theory, see [66] and [31]).

From the example of Section 2.4 it follows that if K is a class of finite graphs
with bounded tree-width and H is a fixed graph in K it is decidable in linear time
if it contains a dominating set of k elements.

6.2 A meta-algorithm for first-order logic

Definition 6.2.1. A p-centered colouring of a graph G is a vertex colouring such
that, for any induced connected subgraph H , either some colour c(H) appears
exactly once in H , or H gets at least p colours.

The p-centered colourings were introduced in [48] as a local approximation of
centered colourings.
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Definition 6.2.2. Let C be a class of graphs. Then C has a low tree-width colouring
if, for any integer p ≥ 1, there exists an integer N(p) such that any graph G ∈ C
may be coloured using N(p) colours so that each of the connected components of
the subgraph induced by any i ≤ p parts has tree-width at most (i− 1).

Definition 6.2.3. Let C be a class of graphs. Then C has a low tree-depth colouring
if, for any integer p ≥ 1, there exists an integer N(p) such that any graph G ∈ C
may be coloured using N(p) colours so that each of the connected components of
the subgraph induced by any i ≤ p parts has tree-depth at most i.

This naturally leads to a sequence χ1, χ2, . . . of chromatic numbers χp, where
χ1 is the usual chromatic number, χ2 is the star chromatic number and, more
generally, χp is the minimum number of colours such that any i ≤ p parts induce
a graph with tree-depth at most i.

Theorem 6.2.1 ([13]). Any minor-closed class of graphs excluding at least one
graph as a minor (proper minor-closed class) has a low tree-width colouring.

Theorem 6.2.2 ([48]). Any proper minor-closed class of graphs has a low tree-
depth colouring.

The following definition of the greatest reduced average density was introduced
in [49].

Definition 6.2.4. Let G be a graph. A ball of G is a subset of vertices inducing
a connected subgraph. The set of all families of balls of G is noted B(G).

Let P = {V1, V2, . . . , Vp} be a family of balls of G.

• The radius ρ(P) of P is ρ(P ) = maxX∈P ρ(G[X]).

• The quotient G/P of G by P is a graph with vertex set V (G/P) = {1, . . . , p}
and edge set E(G/P) = {{i, j} | (Vi × Vj) ∩ E(G) = ∅ or Vi ∩ Vj = ∅}.

The greatest reduced average density (grad) of G with rank r is

∇r(G) = max
P∈B(G)
ρ(P)≤r

|E(G/P)|
|P|

By relaxing the notions of the neighbourhood of a vertex in a graph and of the
minor of a graph we get the following.

Definition 6.2.5. Let G and H be graphs and d any positive integer. Then
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• the d-neighbourhood Nd
G(u) of a vertex u ∈ V (G) is the subset of vertices of

G at distance at most d from u in G, i.e. Nd
G(u) = {v ∈ V (G) | distG(u, v) ≤

d}.

• the graph H is said to be a shallow minor of G at depth d, denoted ≤d,
if there exists a subset {v1, v2, . . . , vp} of V (G) and a collection of disjoint
subsets V1 ⊆ Nd

G(v1), . . . , Vp ⊆ Nd
G(vp) such that H is a subgraph of the

graph obtained from G by contracting each Vi to vi and removing loops and
multiple edges. The set of all shallow minors of G at depth d is denoted by
G▽i.

Remark 6.2.1. The notion of shallow minors first appeared in [57], then called low
depth minor, and is attributed to Ch. Leiserson and S. Toledo.

Remark 6.2.2. Let G,H be graphs. Notice that H ≤0 G if and only if H ⊆ G.
Moreover, H ≤∞ G if and only if H ≤ G. Therefore, the shallow minors define
a hierarchy of relations on graphs between the relation of the subgraph and the
minor of a graph.

⊆ = ≤0,≤1, . . . ,≤n, . . . ,≤∞ = ≤

It is easy to observe that the following is true.

Lemma 6.2.1. The grad of a graph G with rank r is equal to

∇r(G) = max

{‖H‖
|H| | H ∈ G▽r

}

By extension, for a class C of graphs, we denote by C▽r the set of all shallows
minors at depth r of graphs of C, i.e.

C▽r =
⋃

G∈C

(G▽r)

Hence we have

C ⊆ C▽0 ⊆ C▽1 ⊆ · · · ⊆ C▽r ⊆ · · · ⊆ C▽∞

By C▽∞ we denote the class of all minors of graphs of C.

Lemma 6.2.2 ([49]). For any graph G and any positive integer r:

∇r(G) ≤ (2r + 1)

(

χ2r+2(G)

2r + 2

)

Lemma 6.2.2 motivated the following.



6.2 A meta-algorithm for first-order logic 51

Definition 6.2.6. A class of graphs C has bounded expansion if there exists a
function f : N → R such that for every graph G ∈ C and every r ∈ N holds

∇r(G) ≤ f(r)

The expansion of a class C with bounded expansion is the function f defined
by

f(r) = ∇r(C) = sup
G∈C

∇r(G)

The following theorem summarizes the relation between χp, p-centered colour-
ings, low tree-width colourings, low tree-depth colourings and bounded expansion.

Theorem 6.2.3 ([49]). Let C be a class of graphs. Then the following conditions
are equivalent:

1. C has low tree-width colouring,

2. C has low tree-depth colouring,

3. for any positive integer p, {χp(G) | G ∈ C} is bounded,

4. for any positive integer p, there exists an integer X(p) such that any graph
in C has a p-centered colouring using at most X(p) colours,

5. C has bounded expansion.

Theorem 6.2.4 ([50, 52]). Let C be a class with bounded expansion and let p be
a fixed integer. Let φ be a FOL(τ2) sentence. Then there exists a linear time
algorithm to check whether ∃X : (|X| ≤ p) ∧ (G[X] |= φ).

A direct consequence of Theorem 6.2.4 is the following.

Theorem 6.2.5. Let C be a class with bounded expansion and let p be a fixed
integer. Let φ be an existential FOL(τ2) sentence. Then there exists a linear time
algorithm to check whether an input graph G ∈ C satisfies φ or not.

These theorems have great importance in the (parameterized) Complexity The-
ory.

Theorem 6.2.6 ([50]). For any fixed integer k, there exists a linear time algorithm
which decides whether an input graph G has tree-depth at most k or not.

Remark 6.2.3. We should not neglect to mention that the proofs of Theorem 6.2.4
and 6.2.6 make use of the Theorem 6.1.2.
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In [5] a polynomial-time algorithm is constructed that for any integer k, given
a graph G with tree-width at most k, determines the vertex ranking of a graph
(equivalently, the tree-depth of a graph) and finds an optimal vertex ranking of G.

From the example of Section 2.4 it follows that if K is a class of graphs that
has bounded expansion and H is a fixed graph in K it is decidable in linear time
if it contains a dominating set of k elements.
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