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Chapter 1

Introduction

Algorithms and complexity theory, these are terms any student of a mathe-
matic or computer science department will often encounter, residing in har-
mony in one phrase. It will only require a longer period of time to actually
comprehend, that much as the day and the night, the joy of the one relies on
the absence of the other.

Under the light of the conjecture that P is not equal to NP, the class
of interesting problems tends to be exactly the one consisting of NP-hard
problems. Indeed usually, an interesting problem is difficult and a difficult
problem is interesting.

And although complexity theory suggests that NP-hard problems should
be rather left alone, even the next guy – blessed with the unawareness of
prominent mathematical principles – will come across and successfully over-
come more than one such problems in his everyday life.

The missing link can be interpreted in various ways. Accordingly, different
schools of algorithm design have been developed: approximation algorithms,
randomized algorithms, probabilistic algorithms, only to name a few. Ar-
guments portrayed include “optimality is not an issue, good enough is good
enough”, or “that could very well be a solution to the problem”.

A sensible approach is based on the observation, that most of the times
only a limited sized instance is one of practical interest. As example, when
asking how many guards are needed to prevent any acts of smuggling, one
can rarely employ arbitrarily many guards. By this consideration, roughly
speaking, emerges the theory of fixed-parameter complexity and algorithms,
that has been developed during the last two decades [22, 23, 24, 21, 1].

Given an alphabet Σ, a parametrization of Σ∗ is any computable in poly-
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8 CHAPTER 1. INTRODUCTION

nomial time mapping κ : Σ → N. A parameterized problem associated
with Σ, is a pair (L, κ), where L ⊆ Σ∗ and κ a parametrization of Σ∗. An
algorithm is called a fixed parameter algorithm, if there exists a countable
function f : N → N, such that for any x ∈ Σ∗ the algorithm replies in
at most f(k(x)) · |x|O(1) steps. A parameterized problem (L, κ) is fixed pa-
rameter tractable and, thus, contained in the parameterized complexity class
FPT, if there is a fixed parameter algorithm on κ deciding L (for more on
parameterized complexity see the surveys [29, 30, 27, 26, 25, 28], see also
books [20, 33, 43]).

In algorithm theory, the means to formalize and approach most compu-
tational problems are provided by graph theory. A graph G is a pair of sets
(V, E), the vertices and edges respectively, such that E ⊆ [V ]2. Having said
that, the input of a parameterized problem can be expressed as (G, k). The
parameter k, here, can be the size of a set of vertices incident to all edges,
for example.

In this work, we focus on the planar versions of the problems considered,
i.e. when the input graph of the problem is planar, or in other words it can
be embedded on the sphere S0, so that its vertices and edges are pairwise
distinct. We stress however that the same techniques can be implemented
in designing algorithms handling wider classes of graphs, such as bounded
genus graphs [11], apex-minor-free graphs [10] and H-minor-free graphs [11].

We study how efficient algorithms for a range of graph theoretical prob-
lems can be designed. In particular, we examine an established technique de-
livering sub-exponential parameterized algorithms for planar graphs, which
much relies on graph decompositions (see Chapter 3). Introduced by Robert-
son & Seymour in their monumental proof of the Graph Minor Theorem ([]),
graph decompositions provide a powerful tool for the implementation of al-
gorithms. We analyze different ways of decomposing a graph, and how this
allows us to employ a common strategy for addressing intractable problems,
namely dynamic programming.

In fact, these techniques are steamed by the relatively new theory of bidi-
mensionality (see Chapter 4) developed in [14, 11, 12, 10]. We survey the fea-
tures of this theory, emphasizing on its generic applicability, which manages
to encapsulate the basic structural properties of different graph parameters,
delivering thus combinatorial bounds associated with a class of problems.
Utilizing these, we can deliver algorithms of the desired complexity.

On this account, we proceed to a “tailor made“method, which requires a
more precise understanding of the particular characteristics of the problem
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in question. Doing so, we prove deeper combinatorial results, which we use
for the improvement of the algorithmic analysis of the parameterized version
of three widely studied combinatorial problems on planar graphs. The first is
the planar version of Feedback Vertex Set that asks, whether a planar
graphcontains at most k vertices meeting all its cycles. The second is the
Face Cover that asks, whether all vertices of a plane graph G lie on the
boundary of at most k of G. The last is the Cycle Packing that asks,
whether a planar graph contains at least k disjoint cycles.

Historically, the Feedback Vertex Set, as well as its directed version,
are one of the most studied NP-complete problems (for NP-completeness
see [37]), mainly due to their numerous applications (see [32]). A wide
range of algorithmic results on Feedback Vertex Set have been pro-
posed including approximation algorithms [9, 39, 38], exact algorithms [34]
and heuristics [42].

We consider the parameterized version of the three problems on planar
graphs, namely p-Planar Feedback Vertex Set, p-Face Cover and
p-Planar Cycle Packing, where the integer k in the definition of the
previously described problems is fixed as the parameter. These problems are
solvable by subexponential FPT-algorithms ([41]), i.e. algorithms running in
O(2o(k) ·nO(1)) steps (here, and generally, we denote by n the size of the input
graph). In addition, Fernau and Juedes proved in [31] that Face Cover

can be solved in O(224.551
√

k · n) steps.

Following the approach outlined above, we prove that p-Planar Feed-

back Vertex Set, p-Face Cover and p-Planar Cycle Packing can
be solved in O(215.11·

√
k + nO(1)), O(210.1·

√
k + nO(1)) and O(226.347·

√
k + nO(1))

steps, respectively. To our knowledge, these are the fastest, so far, algorithms
for the mentioned problems.

Two corner stones of our proof are the use of hypergraphs, a natural
extension of the notion of a graph where a hyperedge is now a non-empty set
of vertices, and plane duality, a fascinating topic of the planar graph theory
involving combinatorial and topological characteristics of the surface of the
sphere S0 minus the embedded graph. It is their combination, which enables
us to unify the analysis of both problems studied, by exploiting a duality
relation between them.

Hypergraphs and plane duality, as well as other basic notions and proofs
of simple propositions laying the scenery for the advanced material, are the
subject of the following Chapter. Next, in Chapter 3 we gain an insight on
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graph decompositions; in particular we emphasize in sphere-cut decomposi-
tions, which hold an important role to several of our proofs. The theory
of bidimensionality is analyzed in Chapter 4. Consequently, Chapter 5 is
dedicated to the thorough analysis of the structure of face covers in planar
graphs, which leads to the proof of our main result and to its reflection on the
structure of feedback vertex sets in planar graphs, two combinatorial bounds
of independent interest. Finally, in Chapter 6, we conclude the algorith-
mic consequences of our results, and discuss the interesting open problems
emerged from this work.



Chapter 2

Basic Notions

Although most of the graph theoretical tools and techniques discussed in this
study, affect wider classes of graphs, we focus our interest in plane graphs
and hypergraphs. Dealing with planarity, our proofs share combinatorial and
topological aspects. In this first chapter, we introduce the combinatorial no-
tions of both a graph and a hypergraph, and get familiar with basic features.
We, then, outline some simple topological facts in brief, allowing us to define
plane embedings of graphs on the sphere.

Once this is done, we can proceed in presenting the concept of plane dual-
ity, an elegant topic on its own, which will hold an important role throughout
the study. Complementing the selection of basic tools in our arsenal, we ex-
amine the radial and the medial graph, analyzing the way duality reflects
upon them.

2.1 Graphs and Hypergraphs

A graph is a pair G = (V, E), where V is a finite set, and E a set of subsets
of V , each of which has exactly to elements. We call the elements of V
vertices and the elements of E edges. If we relax the restriction above, so
that an element of E is a not empty subset of the finite set V , than the pair
H = (V, E) defines a hypergraph; the elements of E are called, in that case,
hyperedges.

The vertex set of a graph G is denoted as V (G), its edge set as E(G).
Likewise for a hypergraph H , we have V (H) and E(H), respectively. The
cardinality of the vertex set is the size of the (hyper-)graph, also denoted as
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|G| (and |H|).
Note, that a graph is a hypergraph, but the opposite is not necessarily

true. For simplicity, we sometimes refer to graphs, including under the same
notation hypergraphs as well, when it is clear why we are allowed to do so.
Occasionally, when wishing to further stress that we exclude hypergraphs,
we can use the terms plain graph and trivial edge.

With this in mind, we say that a vertex v is an incident to an edge e, if
v ∈ e; then e lies on v and vice versa. The degree of a vertex is the number
of edges this vertex lies on. Two vertices are adjacent or neighbors, if there
is an edge e lying on both vertices. The arity of a hyperedge is the number
of the vertices lying on the hyperedge. Trivial edges have, thus, arity equal
to two. Vertices lying on a (hyper-)edge, are called its endvertices, and the
edge joins its endvertices.

Two hypergraphs (or plain graphs) H1, H2 are isomorphic, if there is a
bijection σ : V (H1)→ V (H2), such that a non-empty subset e of V (H1) is a
hyperedge in H1, if and only if the set {σ(v) : v ∈ e} is a hyperedge in H2.
We write, then, H1 ≃ H2.

Let H = (V, E) be a hypergraph. If V ′ ⊆ V and E ′ ⊆ E, then H ′ =
(V ′, E ′) is a subgraph of H , and we write H ′ ⊆ H . If in addition it holds
that, if e is an edge in E \E ′, then there exists a vertex v incident to e with
v ∈ V \ V ′, the subgraph is called induced, and we write H ′ = H [V ′]. We
also say, that V ′ induces the subgraph H ′ in H .

For the rest of the paragraph, we consider only plain graphs. For any
integer r ≥ 1, the graph Pr = ({v1, . . . , vr+1}, {{v1, v2}, . . . , {vr, vr+1}}) is
a path, and vertices v1, vr are its ends, linked by the path. For r ≥ 3,
the graph Cr = ({v1, . . . , vr}, {{v1, v2}, . . . , {vr−1, vr}, {vr, v1}}) is a cycle of
length equal to r. For r ≥ 1, the graph on r vertices is called complete and
denoted Kr, if all its vertices are pairwise adjacent. A forest is a acyclic
graph, namely containing no cycles.

A non-empty graph G is called connected, if its vertices are pairwise linked
by some path in G. Furthermore, G is k-connected for k ≥ 2, if |G| > k and
G[V(G)-X] is connected, for every set X ⊆ V (G) with |X| < k. A maximal
connected subgraph of G is called a component of G. If G[V (G)− S] for the
set S ⊆ V (G) is no more connected, S is called separator. If a single vertex is
a separator, it is also called cut-vertex. Each component of a forest is called
a tree; its vertices of degree one are its leaves.

Let G be a graph or a hypergraph. We say that a (hyper-)edge e of G is
contracted into a new vertex ve, when e and its endvertices are replaced by
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ve, which in turn becomes incident to all the (hyper-)edges, the endvertices
of e were incident before the contraction. If a (hyper-)graph G′ can occur
from a subgraph of G by a series of (hyper-)edge contractions, we call G′ a
minor of G, and we write G′ � G. If a (hyper-)graph G′′ can occur directly
by a series of (hyper-)edge contractions of G, we write G′′ �c G. (for more
on basic notation see [15])

2.2 Planarity

Let S0 be a sphere. ∆ ⊆ S0 is an open disc if it is homeomorphic to {(x, y) :
x2 + y2 < 1}. For a ∆ ⊆ S0, we call closed disk and denote as ∆ the closure

of ∆; the boundary of ∆ is ∆̂ = ∆ ∩ S0 −∆.
A simply-closed curve or Jordan curve is the open subset of the sphere

homeomorphic to the unit circle S1. By the known theorem, a Jordan curve
is the boundary of exactly two open discs.

An arc is the closed subset of S0 homeomorphic to the closed unit interval
[0, 1]. The images of 0 and 1 under such a homeomorphism are the endpoints
of the arc, which links them. Let γ be an arc with endpoints x, y; then its
interior is the set γ̊ = γ \ {x, y}. Let now O ⊆ S0 be an open set. Being
linked by an arc in O defines an equivalence relation in O. The corresponding
equivalence classes are the regions of O and are again open.

Let us define a flake Aρ as homeomorphic to the closed disc, minus ρ
(finite) points on its boundary (see also Figure 1.1):

Aρ = {(x, y) : x2 + y2 ≤ 1} − {(sin 2kπ

ρ
, cos

2kπ

ρ
) : k = 0, . . . , ρ− 1}

We are now ready to give a definition of a plane hypergraph:

Definition 2.2.1. A plane hypergraph G is a pair {V, E} of finite sets, (where
V = V (G) the vertex set and E = E(G) the edge set) with the following
properties:

1. V ⊆ S0 is a finite set of pairwise distinct points.

2. E ⊆ S0.

3. ∀e ∈ E, e is homeomorphic to Aρ, for some ρ ∈ {2, . . . , |V |}.
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Figure 2.1: Hyperedges (or flakes) for ρ = 2, 3 and 5.

4. ∀e ∈ E, bor∗(e) ⊆ V , where bor∗(e) = bor(e)− e.

5. ∀e1, e2 ∈ E : e1 ∩ e2 = ∅.

6. ∀v ∈ V, e ∈ E : v * e.

A trivial edge, as a hyperedge of arity two, is homeomorphic to a flake
Aρ with ρ = 2. Hence, the definition above contains the definition of a plane
graph. In addition, note that for a flake Aρ with ρ = 2, the surface S0 − Aρ

is homeomorphic to the surface S0 − γ̊ for an arc γ; this allows us to draw a
trivial edge as the interior of an arc, following thus the common convention.

For every plane hypergraph G, the set S0\G is open; its regions are the
faces of G. We denote the set of the faces by F (G). We say for a hyperedge
e that it is incident to a face f , if e ∩ f̄ 6= ∅ and for a vertex v if v ⊆ f̄ . We
call a face f degenerate, triangle or square if its boundary contains exactly
two, three or four vertices, respectively.

An embedding of a graph is a drawing of it on the sphere S0; graphs having
a plane embedding are called planar. We will not be strict in distinguishing
the terms “plane”and “planar”, when it is clear if we refer to topological or
combinatorial properties of a graph.

Let G be a plane graph and f be a face of G. We denote as face tiling
the operation, where a hyperedge ef is added in the face f , i.e. ef ⊆ f ,
with endvertices all vertices on the boundary of f . A graph G generates a
hypergraph H , whenever H is obtained from G by tiling faces and deleting
trivial edges that lie on the boundary of a already tiled face.

Closing the paragraph, let us stress that face tiling, as well as edge delet-
ing or contracting does not harm the planarity; therefore graphs generated
by planar graphs and minors of planar graphs are also planar.
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2.3 Duality

Let us consider a plane graph G drawn on the sphere S0. As mentioned
above, S0\G is a division of the sphere surface into a finite set of regions, the
faces of G. Suppose we aim to inspect the properties of the relative position
of these faces. We can start drawing a graph, placing a vertex to represent
each face of G and joining them by edges to include the information that
a face shares a common border with another one. Continuing this, has as
result a new graph, the dual graph of G denoted as G∗. Not surprisingly, G∗

is also plane and its faces correspond to the vertices of the original graph.
To make this formal:

Definition 2.3.1. Let G = (V, E) be a connected plane graph and G∗ =
(V ∗, E∗) be its dual. Let F := F (G) and F ∗ = F (G∗) be the sets of the faces
of the these two graphs. Then there exist bijections:

v∗ : F → V ∗ e∗ : E → E∗ f ∗ : V → F ∗

such that following conditions are satisfied:

(i) v∗(f) ∈ f for all f ∈ F (G) and v ∈ f ∗(v) for all v ∈ V (G)

(ii) ∀e ∈ E(G) : bor∗(e∗(e)) = {v∗
o ∈ V ∗ : fo ∩ e 6= ∅}, where fo =

[v∗]−1(v∗) ∈ F (G)

(iii) if e ∩ e∗(e) 6= ∅, then e∗ = e∗(e) for all e ∈ E(G), e∗ ∈ E∗(G)

Not all plane hypergraphs have plane duals according to the given defi-
nition of planarity. However, hypergraphs generated by 3-connected graphs
always do. In the whole study we are interested only in this kind of hyper-
graphs, and therefore we can extend the features of duality to these special
hypergraphs.

If we consider the dual graph of G∗, then by this definition we end up
with the original graph G = [G∗]∗ (which explains the naming “dual”) and
so we can refer to both G and G∗ as duals.

Trying to get an insight of the definition, the first condition assures that
a vertex corresponding to a face of his dual graph, actually lies in that face.
The second condition states that for every edge e of G, its dual edge e∗ in
G∗ has endvertices the dual of the faces of G on whose boundary the edge e
lies. By the last condition, edges that intersect on the sphere are bounded
to be dual of its other. In addition, one can assume that this intersection is
homeomorphic to a closed disc.
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2.4 Radial and Medial Graph

Two important notions in the theory of planar graphs, which turn also to
be powerful tools in argumentation, are the radial and the medial of a graph
(introduced in [45] and [46], respectively). They offer a thorough display of
the properties of a graph, revealing, often, the profound characteristics of
its structure. Also, as we will show, the radial and the medial of a graph
interplay with duality in fascinating ways, due exactly to their structural
nature.

At first, given a graph or a hypergraph we define its radial, a bipartite
plain graph on the vertices of the graph given and on new vertices lying in the
faces of the graph, and whose (trivial) edges join two vertices of the radial,
representing a face and a vertex on its boundary in the given graph. More
precise:

Definition 2.4.1. Let G be a connected plane hypergraph. We call the
bipartite plain graph (VR, ER) with bipartition VR = {V (G), V ∗} a radial
graph of G, and denote it RG = R(G), if there is a bijection v∗ : F (G)→ V ∗

satisfying the following conditions:

(i) v∗(f) ∈ f for all f ∈ F (G);

(ii) e′ ∩ e = ∅ for all e′ ∈ ER and e ∈ E(G);

(iii) vv∗(f) ∈ ER if and only if v lies on the boundary of f in G.

It is easy to see, that every edge of the graph G is mapped to a face of RG,
forming thus a bijection between E(G) and F (RG). Let us now consider the
radial of the dual of G. Clearly, both RG and RG∗ have the same vertex set,
namely V (G) ∪ V (G∗). Moreover, two vertices v1, v2 in RG∗ are joined, if v1

in G∗ lies on the corresponding face f2 of G∗, meaning, if the corresponding
face f1 in G has the vertex v2 of G on its boundary, or in other words if v1, v2

are joined in RG, which explains the following statement:

Proposition 2.4.2. Dual graphs have isomorphic radial graphs: RG ≃ RG∗ .

Let G be a 2-connected plain graph. Then, all faces of its radial RG are
squares and RG itself is 3-connected. We define the tiled radial graph R̃G as
the plane hypergraph generated from R, by tiling each face and removing
all the trivial edges. Note that R̃G has only degenerate faces and that its
hyperedges correspond to the edges of G.
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Before being able to proceed to a definition of the medial, we need an
intermediate graph called incidence graph. The definitions of both graphs,
which are again of trivial edges only, are as follows:

Definition 2.4.3. Let G be a connected hypergraph, then I(G), the inci-
dence graph of G, is the simple bipartite plain graph with vertex set V (G)∪
E(G), in which v ∈ V (G) is adjacent to e ∈ E(G) if and only if v is an end
of e in G.

Figure 2.2: A hypergraph with its incidence and medial graph.

Definition 2.4.4. Take a drawing of I(G) in a sphere. We define the medial
graph MG = M(G), as a graph with vertex set E(G) and circuits Cv (v ∈
V (G)), with the following properties:

• the circuits Cv are mutually edge-disjoint and have union MG,

if x1, ..., xt are the neighbors of each v ∈ V (G) in I(G), enumerated according
to the cyclic order of the edges vxl, ..., vxt in the drawing of I(G), then

• Cv has vertex set {x1, ..., xt} and x(i−1) is adjacent to xi (1 <= i <= t),
where x0 means xt.

The construction of the medial MG of a hypergraph G can be described
in an alternate manner: given G, first we stretch each vertex to become a
face having one vertex on its boundary to be joined to each edge the original
vertex of G was incident to, then we contract all edges to become the vertices
of MG. So, we have bijections between V (G)∪F (G) and F (MG), and between
E(G) and V (MG).
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By this second description, it gets obvious that the medial of a graph
G has to “types”of faces, those emanated from the vertices of G and those
emanated from the faces of G. Moreover, if we paint them using two colors,
we will see that there are no two faces of the same color sharing an edge.
In other words the set of the faces of the medial is bipartite: F (MG) =
(V (G), F (G)). If a face of the first type is lying next to one of the second, is
determined by the fact, that the origin vertex in G lies on the boundary of
the origin face in G or not. It is becoming apparent that:

Proposition 2.4.5. Given a graph G, its radial and medial are dual graphs:
RG ≃M∗

G.

The Propositions 2.4.2 and 2.4.5 directly implicate the next one, since
given a graph G, it suffices to take the radial of both G and G∗, resulting RG

and RG∗ , then take the dual of both of them, resulting MG and MG∗ , and as
RG and RG∗ where homeomorphic, we have again:

Proposition 2.4.6. Dual graphs have isomorphic medial graphs: MG ≃
MG∗.

It is not difficult, besides, to see why this must be true: both MG and
MG∗ have the same vertex set, the image of E(G), the same face set, the
image of V (G) ∪ F (G) and an edge joining two vertices, iff two edges of
E(G), or equivalently, iff the corresponding edges of E(G∗) are adjacent.
Remembering our two colors, one would observe that MG and MG∗ look the
same, but with complement colors on their faces: where a face is of color one
in MG, is of color two in MG∗ and likewise for the other combination.

With a given hypergraph G, taking its dual G∗, taking its radial RG

and taking its medial MG, can also be viewed as a transformation between
two hypergraphs G1 and G2, described by the projection of {V1, E1, F1} into
{V2, E2, F2}. These transformations would then be described by the as:

Dual : {V1, E1, F1} → {F2, E2, V2}
Radial : {V1, E1, F1} → {V2, F2, V2}
Medial : {V1, E1, F1} → {F2, V2, F2}

Of course, as one can clearly see, the radial and the medial graph are,
by this alone, not well defined, lacking information about their edge set. As
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Figure 2.3: Dual graphs have homeomorphic medial graphs.

we know, in the first case an edge represents the fact that a vertex lies on
the boundary of a face in G1 and in the second the fact, that two edges are
adjacent in G1.

It is now very interesting to examine from this point of view, the above
mentioned propositions, where a combination of two different projections
can be considered. One can see as example, how applying two times the
projection of duality to a graph, one receives at the end the same graph, or
how the way the projection is defined in the cases of the radial and medial
graph, enables them to be symmetric regarding the projection of duality
firstly, each to itself and secondly, each to another.

Also, one can proceed further in defining other types of transformations;
one of the most interesting amongst them is the case of the complement graph
CG, of a given hypergraph G, described as followed:

Complement : {V1, E1, F1} → {V2, F2, E2}
Using, as example, this transformation, one can define the incidence graph
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I(G) of a given graph G, as: Incidence(G) = Radial[Complement(G)].



Chapter 3

Graph Decompositions

Introduced by Robertson, Seymour and Thomas in their series of papers as a
tool for the ultimate objective of proving the Graph Minor Theorem, Graph
Decompositions have been since, the steam for the development of numerous
methods and proving techniques. In particular, in fields as the algorithm
design for graph-based (and not only) problems, their implementation can
be regarded as fundamental. In this chapter, we are going to describe three
different approaches of how to decompose a graph, each with its own benefi-
cial characteristics and finally prove a significant result, namely the existence
of an optimal sphere-cut decomposition.

3.1 Tree Decompositions

In terms of algorithm design, one would only wish that all graphs were as
simple as trees, enabling thus the use of powerful tools like dynamic pro-
gramming. However, it is reasonable to expect, that such techniques can
be implemented on graphs other than trees, as long as we can keep track of
a structure to guide us through the graph. The idea is, to have this tree-
like structure so we can move fast enough to reach smaller sections of the
graph, in which it would not matter any more, if they had to be traversed
exhaustedly. Not so far away, from the manner the street system of a city
is organized, where a spine of runways connects the different districts with
their smaller streets. The structure, which gives us this ability, is called
tree-decomposition and defined as follows (see also [15]):

21
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Definition 3.1.1. Let G be a graph, T a tree, and let V = (Vt), t ∈ T be
a family of vertex sets Vt ⊆ V (G) indexed by the vertices t of T . The pair
(T ,V) is called a tree-decomposition of G, if it satisfies the following three
conditions:

• V (G) =
⋃

t∈T Vt

• for every edge e ∈ G, there exists a t ∈ T , such that both ends of e lie
in Vt

• Vt1 ∩ Vt3 ⊆ Vt2 , whenever t1, t2, t3 ∈ T satisfy t2 ∈ t1T t3.

So, the tree of the decomposition is defined upon subsets of the vertex set
of the graph, informally referred to as ‘bags’. The conditions above assure,
that the union of the subgraphs induced by these subsets covers the whole
graph and that the tree follows the structure of the graph.

Figure 3.1: A plane graph and its decomposition in subgraphs.

Let G be a graph, and (T ,V) a tree decomposition of G. Removing
a vertex t of T , leaves a collection of at least two disconnected subtrees.
The critical feature of tree decompositions is that, by the third condition,
the vertices Vt in the bag of t are a separator in the graph; the components
remaining after removing these vertices are exactly the subgraphs induced by
the mentioned subtrees. This is exactly what allows for routines as dynamic
programming to work ([4]).
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To be precise, a stronger property of separation holds: Deleting any edge
in the tree T of a decomposition of a graph G, leaves two disconnected
subtrees. These induce two subgraphs, whose union is G. By the definition,
their cut is a separator in G.

Figure 3.2: The Tree-Decomposition of the previous graph.

Naturally, one would wish to refine as much as possible the partition of
the vertex set into subsets, as this resolves to a structure better resembling
a tree; recall that to associate the whole vertex set of a graph to a single
vertex of the tree is still an acceptable decomposition. In these terms, we
can measure the effectiveness of an decomposition by the number of the
vertices of the heaviest subset corresponding to a vertex of the tree. Thus,
we define its tree-width:

Definition 3.1.2. Let G be a graph and (T ,V) be a tree-decomposition of
G. The width of (T ,V) is the number

max{|Vt| − 1 : t ∈ T }

and the tree-width tw(G) of G is defined as the minimum width over all
tree-decompositions of G.
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The sole purpose of subtracting one in this definition, is because of the
reasonable request, of forests to have tree-width equal to 1. It is easy to find
one that satisfies this. Placing the endvertices of each edge of the tree in
a different bag, leads to an acceptable tree-decomposition, with all its bags
containing exactly two vertices, implicating that its width is equal to 1.

v

T

Cn

Figure 3.3: A tree-decomposition of Cn.

Notice that tree-width is a property of a graph and whether one can find a
tree-decomposition of this width, for the graph in question, is task of its own.
Any tree-decomposition of a given graph of width equal to the tree-width of
the graph, will be denoted as optimal.

Clearly, deleting or contracting an edge cannot increase the tree-width of
a graph, implicating that the following property is true:

Proposition 3.1.3. Let G, H be graphs. If H � G, then tw(H) ≤ tw(G).

We already saw, that the forests have tree-width equal to 1. Furthermore,
these are the only graphs that do so, as the existence of a cycle in a graph
forces it to have tree-width of at least 2. In fact, the graph Cn has tree-width
equal to 2 for any integer n ≥ 3:

Choosing a vertex v at random we form a vertex subset with v and the
first and second vertex on its left. Next bag will include v, the second and
third vertices on its left, and continuing like this until we pack the right
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neighbor of v, we have a tree-decomposition where the tree is a chain and
each bag has three vertices; hence of width equal to 2.

On the other side, the complete graph Kn, has tree-width n−1, for n ≥ 2,
as it can be showed that a bag must contain the whole graph. This gives
us a certificate of large tree-width – if we can find a complete subgraph in
a graph, then we know the total tree-width is at least that large. Are there
other certificates, to look for? The most typical is the grid:

Definition 3.1.4. The m × m grid is the graph on {1, 2, . . . , m2} vertices
{(i, j) : 1 ≤ i, j ≤ m} with the edge set

{(i, j)(i′, j′) : |i− i′|+ |j − j′| = 1}.

Figure 3.4: The 13× 13-grid.

For i ∈ {1, 2, . . . , m} the vertex set (i, j), j ∈ {1, 2, . . . , m}, is referred as
the ith row and the vertex set (j, i), j ∈ {1, 2, . . . , m}, is referred to as the
ith column of the m × m grid. The vertices (i, j) of the m × m grid with
i ∈ {1, m} or j ∈ {1, m} are called boundary vertices and the rest of the
vertices are called non-boundary vertices.

With a careful look, one can show that the m × m-grid has a tree-
decomposition of width equal to m: Put the first row into a bag together
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with the first one vertex of the second row. The second bag contains the
first row, except its first vertex and the first two vertices of the second row.
Letting one out, putting one in and so on, again we have a decomposition
where the tree is a chain, with all bags having m + 1 vertices.

But even more interesting and a lot more difficult to prove, is the other
direction, namely that this is the best we can do, which we will frame into
the following proposition:

Proposition 3.1.5. The m ×m grid has tree-width equal to m, where m a
positive integer.

And with this stated, we leave the study of tree-decompositions, only to
turn to its next to kin, branch-decompositions. (for more on tree-width see
the survey [5])

3.2 Branch Decompositions

Similar to a tree decomposition, a branch decomposition of a graph consists
of a tree and a relation between this tree and the graph. This time, it is
subsets of the edge set of the graph that will be mapped to vertices of the
tree. However, only leaves of the tree correspond to edges of the graph (see
also [44]:

Definition 3.2.1. A branch decomposition of a graph G is a pair (T , τ),
where T is a tree whose vertices are either leaves or have degree three, and
τ a bijection from the edge set of G to the set of the leaves of T .

The function ω : E(T ) → 2V (G) of a branch-decomposition maps every
edge e of T to a subset of vertices ω(e) ⊆ V (G) as follows: The set ω(e),
called middle set, consists of all vertices v ∈ V (G), such that there exist
edges f1, f2 ∈ E(G) with v ∈ f1 ∩ f2, and such that the leaves τ(f1), τ(f2)
are in different components of T \ {e}.
Definition 3.2.2. Given a graph G and a branch-decomposition (T , τ), the
width of (T , τ) is equal to the number

max{|ω(e)| : e ∈ E(T )}.

We define the branch-width of the graph G, bw(G), is the minimum width
over all branch-decompositions of G.
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As one would expect, the values tw(G) of the tree-width and bw(G) of
the branch-width of any given graph G, can never diverge too much from
each other. Specifically, they obey to the following relation:

bw(G) ≤ tw(G) + 1 ≤ 3

2
bw(G),

and thus, whenever one of these parameters is bounded, so is the other.

Same as for tree decompositions, edge deleting or contracting does not
increase the branchwidth of a graph, and thus:

Lemma 3.2.3. Let G be a plane graph and let G′ be a minor of G. Then
bw(G′) ≤ bw(G).

Recall now the definition of the branch decomposition. Note that exactly
as it is, stands for hypergraphs as well. Consequently, hypergraphs have also
branch decompositions, and branchwidth is defined for hypergraphs. The
following lemma, relates the branchwidth of a graph and of any hypergraph
generated by it:

Lemma 3.2.4. Let G be a plane graph and let H be a hypergraph generated
by G. Then bw(G) ≤ bw(H).

The last lemma is useful for gluing together branch decompositions of
hypergraphs.

Lemma 3.2.5 ([35, Lemma 3.1]). Let H1 and H2 be hypergraphs with one
hyperedge in common, i.e. V (H1) ∩ V (H2) = e and {e} = E(H1) ∩ E(H2).
Then, it holds that: bw(H1 ∪H2) ≤ max{bw(H1),bw(H2), |e|}. Moreover,
if every vertex v ∈ f has degree ≥ 2 in at least one of the hypergraphs, (i.e.
v is contained in at least two edges in G1 or in at least two edges in G2), then
bw(G1 ∪ G2) = max{bw(G1),bw(G2)}.

Although computing the branchwidth of a general graph is NP-complete,
when restricted to planar graphs, Seymour and Thomas proved it being in P,
suggesting an O(n4) step algorithm [46] (this algorithm has been improved
later to an O(n3) step algorithm [40]).
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3.3 Carvings

A third way of decomposing a graph is attained by carvings (introduced
in [46]. This approach is in fact more abstract, as it does not necessarily
address a graph.

Definition 3.3.1. Let V be a finite set with |V | ≥ 2. Two subsets A, B ⊆ V
cross if A∩B, A−B, B−A, V − (A∪B) are all non-empty. A carving in V
is a set C of subsets of V such that:

1. ∅, V /∈ C

2. no two members of C cross, and

3. C is maximal subject to 1. and 2.

A branch decomposition can be seen as a carving on the edge set of a
graph. More precise, let V be a finite set with |V | ≥ 2, let T be a tree in
which every vertex has degree 1 or 3, and let τ be a bijection from V onto the
set of leaves of T . For each edge e of T , let T1(e), T2(e) be the two components
of T \ e and let C = {{v ∈ V : τ(v) ∈ V (Ti(e))} : e ∈ E(T ), i = 1, 2}. Then
C is a carving in V . Conversely, every carving in V arises from some tree T
and bijection τ in this way.

Definition 3.3.2. Let G be a graph. For A ⊆ V (G), we denote by δ(A) the
set of all edges with an end in A and an end in V (G) − A. If |V (G)| ≥ 2
we define the carving-width of G to be the minimum, over all carvings C in
V (G), of the maximum, over all A ∈ C , of |δ(A)|.

We will prove the next lemma, associating the branchwidth of a graph
with the carving-width of its medial:

Lemma 3.3.3. Let G be a connected planar graph with |E(G)| ≥ 2 and MG

its medial graph. Then, bw(G) ≤ 1/2 · cw(MG).

Proof. Put 2m = cw(MG). We will show that bw(G) ≤ m. By definition,
there exists a carving C of the vertex set of MG, such that |δ(A)| ≤ 2m for
any set A in C . Due to the bijection between the vertex set of MG and the
edge set of G, C is also a carving on E(G). Considering the observation
that followed the Definition 3.3.1, the carving C on E(G) yields a branch
decomposition in G, let it be named (T , τ).
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Now let us calculate its width. Let e be an edge of T . Its middle set
ω(e) consists of all vertices incident to edges mapped to leaves in different
components of T . These vertices of G correspond, as we have seen, to faces
of MG not sharing any edges, which means that each face contributes at least
two edges to |δ(A)|, where A ⊆ V (MG) is the image of the edges of E(G)
mapped to leaves of one component of T \ {e}. In other words, we have:

|ω(e)| ≤ 1

2
|δ(A)| ≤ m.

And since we chose e arbitrary, the same holds for the middle set of any edge
of T and thus the width of (T , τ) is at most m. This places an upper bound
for the branch-width of G as well, concluding the proof.

The opposite direction seems to be a lot more complicated to prove. A
long proof involving slopes and antipodalities has been given by Seymour and
Thomas (Theorem 7.2 [45, 46]). Hence, we have that the branchwidth of a
graph is half the carvingwidth of its medial:

Theorem 3.3.4. Let G be a connected planar hypergraph with |E(G)| > 2,
and let M be the medial graph of G. Then bw(G) = 1/2 · cw(MG).

We are in particular interested, in a carving of a specific structure, such
that any set contained in the carving induces a non-empty connected graph.
Therefore we define:

Definition 3.3.5. If a graph G is connected, and X, Y ⊆ V (G) are disjoint
with union V (G), and G[X], G[Y ] are both non-null and connected, we call
δ(X) a bond of G.

Definition 3.3.6. Let G be a connected graph. A carving C in V (G) is a
bond carving if δ(X) is a bond for all X ∈ C .

The next theorem is one deep result, which assures us that given any
graph, a bond carving of no greater width than the carving-width of the
graph does always exist (Theorem (5.1) in [46]):

Theorem 3.3.7 ([46]). Let G be a 2-connected graph with |V (G)| ≥ 2 and
carving-width < k. Then there is a bond carving C in V (G) such that
|δ(X)| < k for all X ∈ C .
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3.4 Sphere-Cut Decompositions

We already commented that a branch decomposition is a carving on the
edge set of a graph. If this carving is in addition a bond carving, then the
associated branch decomposition bears special properties. We denote it as a
sphere-cut decomposition (see also [18]):

Definition 3.4.1. A branch-decomposition (T , τ) is called a sphere-cut de-
composition, if for every hyperedge e of T , there exists a noose Oe, such
that:

• Gi ⊆ ∆i∪Oe for i = 1, 2, where Gi the subgraph induced by the vertices
mapped to the leaves of the component Ti(e) of T \ e and ∆i the open
disc bounded by Oe,

• for every face f of G, Oe∩ f is homeomorphic to the interior of exactly
one arc on S0, linking two vertices of the boundary of f .

As Theorem 3.3.7 assures that there always exists a bond carving, we can
expect that so does an optimal sphere-cut decomposition (one of minimum
width):

Theorem 3.4.2. Let G be a 2-connected planar hypergraph with bw(G) ≤ k
and |E(G)| ≥ 2. Then, there exists a sphere-cut decomposition of G of width
at most k.

Proof. Let us consider the graph G and its medial graph MG, both drawn on
the S0-sphere. Note that, by definition, all edges of MG are trivial. Further-
more, by Theorem 3.3.4 and Theorem 3.3.7, we know that MG has a bond
carving C of width at most 2k.

Let T be the tree associated with the carving C and η the bijection
between the leaves of T and the vertex set of MG. For each edge e ∈ T , let
T1(e), T2(e) be the two components of T \e and Vi = η(“leaves of Ti(e)”) for
(i = 1, 2). We remind, that V1 ∪ V2 = V (MG), V1 ∩ V2 = ∅ and the induced
subgraphs MG|V1, MG|V2 are both connected, since C is a bond carving.

Let
⋃

j ∆j
i , for i = 1, 2 and j ∈ N, be the union of open discs on S0, so

that MG|Vi lies in
⋃

j ∆j
i . Since the two subgraphs are connected, each union

of the open discs is again an open disc, ∆′
i :=

⋃
j ∆j

i , (i = 1, 2). And because
the subgraphs are induced and share no vertex in common, there is a jordan
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curve on S0 that bounds two discs ∆1, ∆2, so that ∆′
i ⊆ ∆i for i = 1, 2. We

call this jordan curve a sphere cut related to e and denote it as Φe.
Recalling the drawing of MG on S0, one can observe that Φe passes

through no vertex (all vertices lie in some of the two open discs) and crosses
exactly those edges of MG, whose endvertices are mapped in different com-
ponents of T \ e. With no loss of generality, we can assume that it crosses
these edges exactly once.

Furthermore, the intersection of Φe and each face of MG it passes through,
is a homeomorphic to an arc. To see this, contract all vertices of MG that lie
on the same disc bounded by Φe into two vertices; all faces, now, are clearly
crossed by Φe exactly once. Note, also, that the number of these faces (and
hence of their corresponding faces before the contraction) is equal to the
number of the edges crossed by Φe.

Observe that (T , η) is a sphere-cut decomposition of G. First of all,
recall that MG has as vertex set the edge set of G; so now η naturally maps
the leaves of T to the edges of G. Furthermore, that each vertex v of G
corresponds to the circuit Cv together with the face it bounds in MG, while
the rest of the faces of MG are mapped to the faces of G. Two faces of different
“type”(see also Paragraph 2.4), can share no common edge, because no two
circuits can neither.

Thus, the property A of a sphere-cut Φe, implicates that Φe crosses equal
number of faces, say β, of each of the two “types”, in an alternating manner
and nothing but those. And due to the bijections mentioned above, the
sphere-cut Φe for MG yields a noose Be for G, that passes through β vertices,
exactly two boundary vertices of each of the β faces of G it crosses. And
as Φe bounded two open discs, in which the vertices of MG mapped to the
leaves of the two different components of T \ e lay, same holds for the two
open discs bounded by Be and the edges of G. This concludes that (T , η) is
a sphere-cut branch-decomposition of G.

Let us, finally, calculate its branch-width. For every edge e of T the edges
that contribute to the calculation of the carving-width, are these that have
one end in V1 and one in V2, i.e. these that are crossed by the sphere-cut Φe.
As we already confirmed, the number of these edges is equal to the number
of the faces crossed by Φe. And as showed, if Φe crosses 2β faces, then the
noose Be passes through β vertices. This is true for every edge e of T and,
thus, the branch-width of (T , η) is half the carving-width of C , i.e. equal to
k, which concludes the proof.
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Corollary 3.4.3. For any planar hypergraph G (generated by a 3-connected
graph), the branchwidth of G is equal to the branchwidth of its dual.

Proof. Since the hypergraph G and its dual G∗ have isomorphic medial
graphs MG ≃ MG∗ (Proposition 2.4.6), applying Theorem 3.4.2 will deliver
an optimal sphere-cut decomposition for each of the two hypergraphs, of
equal branchwidth.

In the case of plain graphs, the Corollary 3.4.3 holds for any graph that
is not a forest.

Recall now the definition of the tiled radial R̃G of a graph G. With the
use of sphere-cut decompositions, we can relate the branchwidth of the two
graphs. It follows that the branchwidth of a graph is at least half of the
branchwidth of its radial graph.

Lemma 3.4.4. For any 2-connected plane graph G, it holds that bw(R̃G) ≤
2 · bw(G).

Proof. By Theorem 3.4.2, any plane graph G of bw(G) ≤ k has a sphere-
cut decomposition (T, µ) of width ≤ k. By the definition of a sphere-cut
decomposition, the middle set of e in (T, µ) is equal to Ne ∩ V (G) and thus
|Ne| ≤ k. Observe also that the noose Ne can be seen as a cycle Ce of the
radial graph GR of length twice the length of Ne.

Recall now that the definitions of RG and R̃G implies the existence of a
bijection ρ : E(G) → E(R̃G) between the edges of G and the hyperedges of
R̃G. This permits us consider the branch decomposition (T, σ) of R̃G where
σ = ρ ◦ µ is the composition of the bijections µ and ρ. Observe that for any
e ∈ E(T ), the middle set of e in (T, σ) consists of the vertex set of the cycle
Ce. Therefore, (T, σ) of R̃G has width at most twice the width of (T, µ) and
the lemma follows.

Theorem 3.4.5. Let G be a plane graph with |E(G)| ≥ 2 and RG its radial,
then bw(RG) ≤ 2 · bw(G).

Proof. If G is 2-connected, then by Lemma 3.4.4 its tiled radial R̃G is of
branchwidth at most twice the branchwidth of G. Recall now that R̃G is
generated by RG, and therefore by Lemma 3.2.4 we have that bw(RG) ≤
bw(R̃G). Combining the two inequalities, we derive that bw(G) ≤ 2·bw(RG)
as wanted.
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Assume that G is maximal not 2-connected. Since G has at least two
edges, the branchwidth of G cannot be equal to zero. If bw(G) = 1, it
follows trivially by the definition of the radial graph, that bw(RG) = 2. Let
us then assume that bw(G) ≥ 2.

Let v be the only cut vertex in G and G1, G2 the subgraphs joined by
v. One of the two subgraphs is forced to have at least two edges, so by
Lemma 3.2.5 it is bw(G) = max{bw(G1),bw(G2)}. The two radial graphs
RG1

and RG2
share exactly one edge, let it be e. Consider two optimal branch

decompositions of RG1
and RG2

, join the leaves corresponding to e by an edge,
subdivide it, and hang on this vertex the double edge e and e′ associated with
the cut vertex v. The resulting branch decomposition describes RG and has
width equal to the heaviest of RG1

and RG2
. Graphs G1, G2 are 2-connected,

so we conclude again that bw(G) ≤ 2 · bw(RG).
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Chapter 4

Bidimensionality

The theory of bidimensionality, developed recently in the work of Demaine,
Fomin, Hajiaghayi and Thilikos ( [14, 11, 12, 10]), provides general tech-
niques for designing efficient fixed-parameter algorithms and approximation
algorithms for NP-hard graph problems in broad classes of graphs, namely
all generalizations of planar graphs. Here, we are going to focus on its use
in planar graphs. The theory can be applied to a series of well-known graph
problems, such as vertex cover, feedback vertex set, face cover and dominat-
ing set, only to name a few. In the next paragraphs we proceed to a report
of the main aspects of the bidimensionality theory.

4.1 General

We define parameters as an alternative view on optimization problems. A
parameter p is any function mapping graphs to nonnegative integers. For a
minimization (maximization) problem associated with p, the decision prob-
lem asks, for a given graph G and nonnegative integer k, whether p(G) ≤ k
(respetively p(G) ≥ k). Many optimization problems can be phrased as such
decision problems about a graph parameter. Let us see some examples:

(p1) : “The maximum vertex degree of the given graph G”

(p2) : “The tree-width of the given graph G”

(p3) : “The minimum cardinality of a set of vertices in G, such that

any vertex is in this set or adjacent to a vertex in it. ”

35
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We say that a parameter p is closed under taking of minors, if for every
graph H , H � G, implies that p(H) ≤ p(G). Similar, P is closed under
contractions, if for every graph H , H �c G, implies that p(H) ≤ p(G).
As we already have seen, the second follows directly from the first, but the
opposite is not generally true.

Returning to our example it easy to see, that p1 is neither, p2 is closed
under taking minors (see also Prop. 3.1.3), while p3 is closed under contrac-
tions, but not under taking minors, since deleting an edge can prevent a
vertex from having an adjacent vertex in the selected set.

Now let us consider an arbitrary, large enough planar graph G. We want
to examine the relation between the value of parameters p1, p2, p3 and the
surface on which the graph expands. What effect has the a differentiation of
the second to the parameters value? Moreover, where do we have to look to
be convinced about the value of one parameter?

One can observe, that the behavior of the parameter p1 is totally de-
pending in local characteristics of the graph. The overall size of the graph is
completely irrelevant, as arbitrary large graphs can have smaller maximum
degree than a small graph. In addition, for a certificate of the value of p1

it suffices to take a look at the neighborhood of the vertex with maximum
degree.

Now let us continue with the second parameter, the treewidth of the
graph. In general, its value highly depends on the structure of the graph;
however by constant structure it does have the tendency to grow as the graph
expands. And this is done in a linear manner, proportional to the diameter
of the graph; by Proposition 3.1.5 as example, the treepwidth of an m ×m
grid is equal to m.

Finally, we discuss the third parameter, the dominating set as it is best
known. As the graph expands to cover bigger part of the surface, the value
of p3 is bound to increase: since the graph is plane, not all of the new vertices
can afford to be joined to vertices previously forming the dominating set. In
fact, the growth of p3 is proportional to the growth of the vertex set of the
graph, as the vertices of the dominating set spread to the whole surface of
the graph, following its surface.

There is a number of parameters that behave similarly, sharing interesting
properties, which allow them to be approached, in terms of algorithm design,
in a distinct manner. Due to their characteristic span over the surface of a
graph, discussed above, they have been named bidimensional. More precise,
we define:
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Definition 4.1.1. A parameter p is minor bidimensional with density δp if:

• p is closed under taking minors

• for the r × r grid R, p(R) = (δpr)2 + o((δpr)2).

A parameter p is contraction bidimensional with density δp if:

• p is closed under contractions

• for any partially triangulated the r× r grid R, p(R) = (δr)2 + o[(δr)2]

• δP is the smallest δ among all partially triangulated r × r grids.

In either case, p is called bidimensional. The density δp of p is the mini-
mum of the two possible densities (when both definitions are applicable) and
generally holds 0 < δp ≤ 1.

4.2 Bidimensional Parameters

Let us introduce, next, a selection of important and well known graph prob-
lems, that have rightful place amongst the numerous examples of bidimen-
sional parameters and discuss their properties:

Vertex Cover (vc). A Vertex Cover of a graph is a set of vertices, such
that every edge of G has at least one endpoint in the vertex cover. The vertex
cover number of a graph G, denoted as vc(G), is the size of a minimum vertex
cover of G. The p-Planar Vertex Cover problem is to decide, given a
planar graph G and a positive integer k, whether G has a vertex cover of
size at most k. Let us note that vertex cover has density δvc = 1/

√
2 and

is closed under taking minors, i.e. if a graph G has a vertex cover of size k,
then each of its minors has a vertex cover of size at most k.

Feedback Vertex Set (fvs). A Feedback Vertex Set of a graph G is a set of
vertices, such that the subgraph induced by the vertices of G not belonging
to the feedback vertex set, has no cycles. The feedback vertex set number of
a graph G, denoted as fvs(G), is the minimum size of a feedback vertex set
of G. The p-Planar Feedback Vertex Set problem is to decide, given
a planar graph G and a positive integer k, whether G has a feedback vertex
set of size at most k. Feedback vertex set has density δfvs ∈ [1/2, 1/

√
2] and

is closed under taking minors.
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Face Cover (fc). A Face Cover of a plane graph G is a set of faces, such
that all vertices of G are lying on the boundary of one of the faces in the face
cover. The face cover number of a graph G, denoted as fc(G) is the size of a
minimum face cover of G. The p-Face Cover problem is to decide, given a
graph G and a positive integer k, whether G has a face cover of size at most
k. The parameter face cover has density δfc = 1/2 and is closed under taking
minors.

Dominating Set (ds). A Dominating Set of a graph G is a set of vertices,
such that every vertex outside the dominating set is adjacent to a vertex in it.
The dominating set number of a graph G, denoted as ds(G), is the size of a
minimum dominating set of G. The p-Planar Dominating Set problem
is to decide, given a planar graph G and a positive integer k, whether G
has a dominating set of size k. This parameter is previously discussed; it has
density δis = 1/3 and is closed under edge contractions, but not under taking
minors.

Longest path (lp).. A Longest Path of a graph G is a path of maximum
length and the longest path number, denoted as lp(G), is this length. The p-
Longest Path problem is to decide, given a graph G and a positive integer
k, whether G contains a path of length at least k. The parameter longest
path is closed under taking minors and has density δlp = 1.

Cycle Packing (cp). The cycle packing number of a graph G, denoted as
cp(G), is the maximum number of disjoint cycles in G. The p-Planar Cycle
Packing problem is to decide, given a planar graph G and a positive integer
k, wether cp(G) ≤ k.

4.3 The Win/Win Approach

The standard technique for the design of subexponential parameterized algo-
rithms for graph parameters on planar graphs, relies on two conditions: the
existence of a sublinear combinatorial bound for the branchwidth in terms of
the parameter and dynamic programming on branch decompositions.

Roughly speaking, the idea of the Win/Win approach is the following:
Goal is an algorithm to answer the question, wether the value of a parameter
for a planar graph is greater or less than a given integer. We will try to
acquire a function of the parameter which upper bounds the branchwidth,
and an algorithm that can solve the problem for “small” branchwidth. Then,
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we compute the branchwidth of the given graph (recall that this is tractable,
since the graph is planar); if the branchwidth is very large, we can immedi-
ately deduce, that the value of the parameter is also accordingly big, else we
have small branchwidth and we can proceed in calculating the value of the
parameter (see also [10]).

To make this precise, we refer to any graph parameter p, for which there
exist two positive real numbers α and β, such that:

(A) For any planar graph G, bw(G) ≤ α ·
√

p(G) + O(1).

(B) For every graph planar G and given an optimal branch decomposition
of G, p(G) can be computed in O(2β·bw(G) · n) steps.

The following theorem ensures the existence of an algorithm deriving
from these two conditions, to which we will refer for the rest of the study
without further notice as Condition (A) and Condition (B), formalizing thus
the discussion preceded.

Theorem 4.3.1. Let p be a parameter and suppose that Conditions (A)
and (B) are satisfied for some constants α and β, respectively. Given an
input (G, k) and an optimal branch decomposition of G, one can solve the

associated with p parameterized problem in O(2α·β·
√

kn) steps.

Proof. Given the optimal branch decomposition of G, we first check whether
bw(G) > α ·

√
k. If this is true, then by Condition (A) we have equivalently

α ·
√

p(G) > α ·
√

k, i.e. p(G) > k. Hence, the answer to the according
minimization problem is “yes”(to the maximization problem “no”). Else, by
Condition (B), using the given branch decomposition we can calculate p(G)

in O(2α·β·
√

kn) steps.

Recall that an optimal branch decomposition of any planar graph can be
computed in O(n3) steps (see also Paragraph 3.2). Therefore, whenever we
apply Theorem 4.3.1 without assuming the existence of an optimal branch
decomposition, we should add an additive overhead of O(n3) steps to the
complexity of the algorithm.

Thus, the existence of an efficient algorithm for a parameterized problem
associated to a parameter p, depends on wether the fulfillment of Conditions
(A) and (B) can be guaranteed, for some constants α and β, respectively. If
that is the case for a parameter p, we denote as αp, βp the minimum values
of α, β for which the two conditions hold. The objective of the next two
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paragraphs is to present how Conditions (A) and (B) can be satisfied, and
how the values of the constants can be determined.

4.4 Dynamic Programming

One established technique for attacking NP-hard problems is dynamic pro-
gramming. We already saw in Chapter 3, that graph decompositions may
come useful when attempting to apply dynamic programming. The separa-
tion properties of the decompositions allow addressing a subdivision of the
problem in question. As known, dynamic programming takes advantage of
recurrent structure in overlapping subproblems to optimize the running time
of the algorithm.

Similar procedures can be implemented often to different kind of graph
decompositions ([4, 17, 19]). Here, we are mainly interested in using branch
decompositions.

We present, as example, a sketch of an algorithm computing the vertex
cover of a planar graph of bounded branchwidth. We assume that an opti-
mal branch decomposition (T ′, µ) of the input graph G of m edges is given.
(Recall that, otherwise, one can be constructed in O(n3) steps [46, 40]). Let
ω′ : E(T ′)→ 2V (G) be the order function of (T ′, µ).

We choose arbitrarily an edge {x, y} in T ′, and subdivide it by inserting
a new vertex q on this edge; we add a new vertex r and an edge ẽ joining
r and q. We denote the resulting tree as T , and by choosing r as a root, T
is now considered rooted. The order function ω associated with the tree T ,
is defined as follows: ω({x, v}) = ω({v, y}) = ω′({x, y}), ω({r, v}) = ∅ and
ω(e) = ω′(e) for every other edge of T . The pair (T, µ) remains a branch
decomposition of G of minimum width.

The root r imposes an ordering of the edges of T , according to which each
edge e ∈ T has two “descendent” edges; we denote them as e1 and e2. The
subset of the edge set E(T ) containing e and all its descendent edges, induces
a connected subtree of T , which we denote as Te. The leaves of the subtree
Te are mapped by µ−1 to edges of the graph, which induce a subgraph of G,
denoted as Ge. Observe, that Te = Te1

∪ Te2
∪ e and Ge = Ge1

∪Ge2
.

For each edge of e of T , we define the evaluation function Be on a subset
of the vertex set of the input graph G and a positive integer, as follows:
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Be(S, k) =

{
1 ∃R : R is a V C in Ge & |R| = k & R ∩ ω(e) = S

0 otherwise

Let now e be an arbitrary edge of T . The value of Be is passed on from
the values Be1

and Be2
of the descendent edges of e, obeying to the following

rule:

Be(S, k) = 1⇔ ∃k1, k2 ≤ k, ∃S ′ ⊆ (ω(e1) ∪ ω(e2)− ω(e)) :

Be1
(S ′ ∪ (S ∩ ω(e1), k1) = 1 ∧ Be2

(S ′ ∪ (S ∩ ω(e2), k2) = 1

∧ k1 + k2 − |S ′| − |ω(e) ∩ ω(e1) ∩ ω(e2)| = k

Therefore, to reply whether the input graph G has a vertex cover of size
at most k, we calculate the value Bẽ(∅, k) (recall that ẽ = {r, q} where r the
root of T ).

The algorithm requires k · 2|ω(e)| steps for the evaluation of Be for each of
the k · 2|ω(e)| possible selections of vertices in ω(e) that belong to the vertex
cover of Ge; and that for each edge e of T . Hence, we have an O(m·(bw(G))2·
4bw(G)) step algorithm deciding the problem.

In general, the running time of an algorithm of similar structure, comput-
ing a bidimensional parameter given a planar graph G of bounded branch-
width, is of the form O(2O(bw(G)) · n), meeting thus the demands of Condi-
tion (B). The constants depend on the specific parameter, but also highly
on choice for the encoding of the middle sets, which may affect the process-
ing time significantly. Algorithms based on dynamic programming have been
studied extensively on a number of bidimensional parameters by Dorn in [16].
By implementation of a non-trivial technique involving fast matrix multipli-
cation, it is concluded among other, that for any n-vertex planar graph G,
given an optimal branch decomposition:
p-Planar Vertex Cover, p-Planar Dominating Set, p-Planar Feed-

back Vertex Set and p-Planar Cycle Packing can be solved in
O(21.19·bw(G) · n), O(21.89·bw(G) · n), O(23.56·bw(G) · n) and O(22.78·bw(G) · n)
steps, respectively.

It follows immediately that, Condition (B) is satisfied for the parameters
of vertex cover, dominating set and feedback vertex set for βvc ≤ 1.19, βds ≤
1.89, βfvs ≤ 3.56 and βcp ≤ 2.76, respectively.
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To estimate βfc, we use the well known reduction of the Face Cover

problem to the Planar Blue-Red Dominating Set problem. The later
asks, given a planar bipartite graph H = (B ∪ R, E) and a non-negative
integer k, if there is a D ⊆ R, |D| ≤ k, such that every vertex in B has
a neighbour in D. In fact it is easy to verify (for example, see [31]) that
fc(G) ≤ k, if and only if (RG, k) is a yes-instance of the Planar Blue-Red

Dominating Set (just set B ← V (G) and R← F (G)).
From [16, Theorem 2.3.2], Planar Blue-Red Dominating Set can

be solved in O(21.19·bw(H) · |V (H)|) steps, provided that an optimal branch
decomposition is given. Combining this fact with Lemma 3.4.5, we have that
Condition (b) holds for βfc ≤ 2.38.

It has became clear by now, that using dynamic programming on the
structure a graph decomposition provides, can deliver fast algorithms for a
variety of planar graph problems, as long we can come up with satisfactory
bounds for the width of the decomposition. Indeed, for most practical ap-
plications, the bounds must be significantly compact (since the dependence
is exponential), placing the challenge of this approach on the chase towards
tighter bounds.

For that task, we are aiming to benefit from the features of the bidimen-
sionality theory. To this goal we are dedicating the last paragraph of this
chapter analyzing a generic method and the next chapter for a more thorough
examination.

4.5 Grid Theorem for Planar Graphs

As we have seen in the previous paragraph, being able to bound the branch-
width in instances of the previously mentioned problems is a big step in
designing an efficient algorithm. Here, we see how employing results from
the Graph Minor theory of Robertson and Seymour can deliver such upper
bounds.

A pivotal theorem of the Graph Minor theory, states that any graph (not
necessarily planar) of large enough branch-width has an arbitrary large grid
as a minor. How large would be “large enough”, depends of course on the
size of the wanted grid minor, but is in fact so much more, that the result is
of pure theoretical significance. If we restrain in dealing with planar graphs
on the other hand, the theorem becomes very interesting in terms of practical
use, as well. The Grid Theorem for planar graphs, as it is known, states:
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Theorem 4.5.1. Let ℓ ≥ 1 be an integer. Every (planar) graph of branch-
width more than 4ℓ− 3 has a ℓ× ℓ grid minor.

But how can this contribute to finding upper bounds of the branch-width?
Let us assume, that we are given a graph, together with the value of one
bidimensional parameter of the graph. Now, we have seen that the certificate
of the solution to all problems related to bidimensional parameters, is spread
over the grid. The idea is to examine in which way this is done and by doing
so determine the density δ. Then we can calculate the relative size of a grid
that would be too big to fit as a minor in our graph and thus, by applying
the grid theorem, forcing the graph to have bounded branch-width.

To make this clear, let us demonstrate this method to produce an upper
bound for a graph, in relation to the size of its dominating set, as example
of a bidimensional parameter. We will show:

Proposition 4.5.2. Let G be a (planar) graph with a dominating set D of
size at most k. Then bw(G) ≤ 12

√
k + 9.

Proof. First remember that the dominating set parameter is not closed under
taking minors, but only closed under contraction of edges. So, to the biggest
ρ× ρ grid that can be a minor of our graph, we need to add all the edges of
G that have been deleted; we call this (partially triangulated grid) graph H .
By a sequence of decontracting edges we get the original G, so we have that
H �c G and thus H has also a dominating set D′ of size at most k.

So, how many vertices of H can be dominated by one vertex v in D′?
Clearly, if v is a non-boundary vertex of the grid, the answer is at most 9:
vertex v itself, plus the eight rest vertices of H that belong to the four cells
of the grid to which also v belongs. This justifies, besides, the density of
the parameter δds = 1/

√
9 = 1/3 (see also Paragraph 4.2). That means that

(ρ− 2)2 ≤ 9k, i.e. ρ ≤ 3
√

k + 2.

And since G cannot have a (ρ + 1)× (ρ + 1) grid and by applying The-
orem 4.5.1 for k = 3

√
k + 3 we get that G has branch-width of at most

4k − 3 = 12
√

k + 9.

From Proposition 4.5.2 follows directly that Condition (A) is satisfied for
the parameter of dominating set for α = 12. In other words, it holds that
αds ≤ 12. Similar, the Grid Theorem for planar graphs (4.5.1) implies in
general:
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Lemma 4.5.3. If a parameter p is bidimensional with density δP , then P
satisfies property for α = 4/δP , on planar graphs.

Recalling the density values described in Paragraph 4.2, we derive as
example, that αvc ≤ 4

√
2, αfc ≤ 8 and αfvs ≤ 8.



Chapter 5

Improving the Upper Bounds

In the last paragraph we witnessed a generic method for producing upper
bounds for the branchwidth of a graph, according to the value of one of its
bidimensional parameters, based on a result of the Grid Minor theory. Its
wide range of application, though, is unavoidably followed by the incompe-
tence to take advantage of the characteristics of a specific problem. Exam-
ining the structure of a graph with a given property, and comprehending in
depth its features, enables us the to determine far better bounds for most of
the cases. This has been done for the cases of the parameters of the vertex
set and the dominating set. The derived bounds are bw(G) ≤ 3.675

√
vc(G)

([13]) and bw(G) ≤ 6.364
√

ds(G) ([35]), respectively, where G is any pla-
nar graph. In this chapter, we focus in proving upper bounds relations for
the branchwidth of planar graphs in terms of the parameters of face cover,
feedback vertex set and cycle packing, which lead to the improvement of the
algorithmic analysis of the corresponding problems.

5.1 A “Tailor Made” Technique

The idea is, based to the structure a graph can have, regarding a specified
bidimensional parameter, to construct a far more simpler graph, one that we
will be calling reduced graph, that encapsulates though the whole structural
properties of the original graph. And exactly because of this fact, the branch-
width of the reduced graph will only differ by a small factor from the branch-
width of the original graph.

To get more precise, given a planar graph G and considering a bidimen-

45
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sional parameter, we know by the very same essence of bidimensionality, that
the certificate S ⊆ V (G) of the value of this parameter is scattered over the
whole graph. If we study the meaning of parameter carefully, we start to un-
derstand the characteristics of the structure of the graph around the vertices
in S.

We then can hope to construct a graph mostly (if not only) on the vertices
of S, we call reduced graph of G and denote as red(G), which continues to
carry all the information about the structure of G. If we succeed this, then
the branchwidth, which also almost entirely depends on the structure rather
than the size of a graph, is bound to be similar for both G and red(G).

But the task of founding an upper bound for the reduced graph is not
difficult, regarding its small size. It will, actually, suffice to bound it by a
function on the size of its vertex set, namely |S|. In deed, we can easily attain
a function of sublinear dependence to the vertex of a planar graph bounding
its branchwidth.

In particular, an upper bound can be delivered directly from the grid
theorem for planar graphs (Theorem 4.5.1): any planar graph G is either
a grid itself, or contains a grid of size at most ⌊

√
|V (G)|⌋; either way it

holds bw(G) ≤ 4
√
|V (G)| − 3. However, this inequality can be improved.

According to the tightest bound known so far ([36]):

Theorem 5.1.1. For any planar graph G, bw(G) ≤
√

4.5 ·
√
|V (G)|.

This non-trivial proof is based on a relation between slopes and majori-
ties, the two notions introduced by Robertson & Seymour in [44] and Alon,
Seymour & Thomas in [2], respectively.

5.2 Face Cover

Following the technique discussed above, we are now going to closely examine
the parameter Face Cover. After studying the structure that this parameter
enforces to a graph, we will take advantage of notions described in previous
chapters, to prove one of the main results of this work, namely that the
branch-width of any (planar) graph with a face cover of size at most k, is at
most 2 ·

√
4.5k.

Let us recall, that a face cover of a plane graph G is a set SG ⊆ F (G)
of faces, such that all vertices of G are lying on the boundary of some face
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in SG and that the value of the respective parameter, fc(G), is equal to the
minimum size of a face cover of G (see also paragraph 4.2).

Given a plane graph G and a face cover SG of it, we will refer to the faces
in SG ⊆ F (G), as FC-faces. We say that two FC-faces f1 and f2 touch, if

f̂1∩ f̂2 = ∅. Two vertices will be called a pair, if they are adjacent and lie on
the same FC-face. We call a face of G triangle, if it has exactly three vertices
on its boundary. We call an edge e in G bridge, if there are two FC-faces f1

and f2, such that e is the unique edge, having one endpoint in the boundary
of f1 and the other in the boundary of f2.

Let f1, f2 be two FC-faces and let x1, x2, y1, y2 be four vertices such that
xi, yi ∈ f̂i, for i = 1, 2; a noose of the form x1y1x2y2x1, will be called a
4-noose. As a Jordan curve, a 4-noose N bounds two open discs. If one of
them contains exactly one hyperedge, whose endpoints are the four vertices
on N , then we refer to such a 4-noose as trivial.

Normalization. The first task is to normalize the input graph; that is,
after applying a series of transformations, to bring it into a stable form,
which exposes the structure of the graph and at the same time, enables us to
process it in the steps to follow. This involves adding of edges and vertices,
so that at the end, the input graph is a minor of the resulting one.

Let us, first, define an operation we will to need, where a vertex is replaced
by two new vertices and its incident edges are distributed among them two.
So, let G be a plane graph, and x ∈ V (G) a given vertex, with at least
four incident edges. We denote as e1, e2, . . . , en the edges incident to x, listed
according their cyclic order in the drawing of G. For some indices ℓ < m < n,
we say that eℓ, eℓ+1 and em, em+1 split x into x1, x2, to denote the following
operation:

We label as vi the other (besides x) endpoint of ei in G, for i = 1, . . . , n.
We fix an open disc ∆x containing x, whose boundary intersects all incident
edges to x and nothing else. Then, remove x (and all its incident edges),
and add two new vertices x1 and x2 in ∆x. Finally, we add without creating
crossings (note that this is doable) a new edge joining x1 and x2, as well as
following edges:

e′i =






x1vi , 1 ≤ i ≤ ℓ

x2vi , ℓ < i ≤ m

x1vi , m < i ≤ n

We can, now, proceed to the first lemma, which assures us, that we
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can built up the input graph into another, carrying the desired structural
properties:

Lemma 5.2.1. Let G be a 3-connected simple plane graph such that fc(G) ≤
k. Then, there exists a plane graph G′ and a face cover SG′ of G′, such that:

(a) G ≤ G′.

(b) |SG′| ≤ k.

(c) G′ is simple and 3-connected.

(d) No two different FC-faces touch.

(e) G′ does not contain any bridge.

(f) A face of G′ is either a FC-face, or a square whose boundary contains
two pairs of two different FC-faces or a triangle incident to three dif-
ferent vertices that in turn are incident to three different FC-faces.

Proof. Let SG be a face cover of G, with |SG| ≤ k. Note that fc(G) is at
least 2, as otherwise G would not be 3-connected, and that all faces have at
least three vertices on their boundary, due to the assumption of no multiple
edges. We will consecutively apply a number of transformations forming the
graph G′, that has the desired properties. At each step, our purpose is that
the resulting graph can inherit the face cover of the preceded graph.

• Face detachment. i) Until no two FC-faces share an edge: let e be an

edge, such that f̂1 ∩ f̂2 = e for two FC-faces f1, f2, and that an endpoint
x of e lies on no FC-face other than these two; then duplicate e into e1, e2,
and let e1, e2 and ẽ′1, e

′
1 split x into x1, x2 (where e′1 is the other edge on the

boundary of f1 incident to x and ẽ′1 the next incident edge according to the
cyclic order).
ii) While two FC-faces f1, f2 share a vertex y: label as e, e′ the two edges on
the boundary of f1 incident to y and as ẽ, ẽ′ the next, incident to y, edges of
e, e′ respectively (according to the cyclic order); let e, ẽ and e′, ẽ′ split x into
y1, y2.

First of all, notice that if two FC-faces f1 and f2 of G touch, then the set
f̂1 ∩ f̂2 is either an edge or a vertex of G, as otherwise, G cannot be simple
and 3-connected, and that in the first case there always exist such an edge,
that enables us to apply the transformation.
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Figure 5.1: The transformations of the proof of Lemma 5.2.1.

Consider, now, somewhere in this process, a vertex v on the boundary of
the FC-face f1, f2 is about to be split into v1, v2. By the definition of this
operation, after the splitting, a face f#

1 will have on its boundary the same
vertices as f1 with the exemption that v is replaced by either v1 (similar for
f#

2 ). Then, let the existing face cover of the graph before the split, be passed
on to the resulting graph, where f1 is replaced by its corresponding face f#

1 ,
and f2 by f#

2 . This forms a chain, so that the resulting graph at the end
of the process, G1, has a face cover S1 inherited in this way by SG; there is
therefore a bijection SG → S1 and hence, (b) holds for the graph G1.

Furthermore, each repetition of this transformation, as the opposite of an
contraction, could not harm the 3-connectivity anywhere else, but among the
new vertices produced by splittings of a vertex; since these vertices still lie on
a cycle - the boundary of an FC-face and are joined to neighbors of the old
vertex (which were surely pairwise linked by paths disjoint to this FC-face,
because the preceded graph was 3-connected), there is no set of two vertices
separating the graph. In addition the graph remains after each repetition
simple, due to the splitting of the vertex in question. Thus, G1 satisfies (c).

The transformation ends, when the boundaries of the FC-faces in G1 are
pairwise distinct, so we can conclude that (d) is also true. Note, that G is a
minor of G1.

• Partial triangulation. We add edges in the faces that don’t belong in
the face cover, without creating crossings, until all faces are either triangles
or FC-faces.

Let G2 be the resulting graph. Since all we did was adding edges, G1 is
a minor of G2, the 3-connectivity cannot be harmed and S2 = S1 is a face
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cover of G2, as well. All other faces are triangles with their boundary vertices
either on two or on three FC-faces (a triangle with all its boundary vertices
on the boundary of one FC-face, would imply that two of them separate the
third one). Now, if G2 has a double edge, then it forms a closed line that
bounds two open discs; none of them is a face, so at least one vertex lies
in each, which contradicts that G1 is 3-connected. So (b), (c) and (d) are
satisfied for the graph G2.

• Bridge widening. While there exist a bridge e: label as x one endpoint of
e, as f the FC-face, for which x ∈ f̂ and as e1, e2 the two edges in f̂ incident
to x; duplicate by e adding the edge e′, and let e, e′ and e1, e2 split x into
x1, x2.

Let G3 be the resulting graph. Similar as in the first transformation, G3

inherits a face cover S3 of size at most k, is simple and 3-connected, and has
still no touching FC-faces. Hence, conditions (b), (c) and (d) are true for
G3. By the end of this transformation, G3 satisfies also (e). In addition the
graph G3 is a minor of G3.

In the place of each bridge we create a triangle face, since the one endpoint
of the bridge is split into two vertices, both joined to the vertex, that was
the other endpoint of the bridge before the operation. Furthermore, the two
faces on the boundary of whose the bridge lay, where triangles; after the
transformation they still are. Finally, all other faces not in the face cover
remain unaffected. These facts imply, that every face of the graph G3 is
either a FC-face, or a triangle with its boundary vertices on two or three
FC-faces.

• Triangle widening. While there exists a triangle face with boundary
vertices x1, x2, y lying on exactly two disks (x1, x2 being a pair): label as
e1, e2 the edges, incident to y, on the boundary of the FC-face that contains
y; then, let x1y, x2y and e1, e2 split y into y1, y2.

Let G′ be the resulting graph. The graph G3 is a minor of G′ and by
the transitivity of the minor relation G is a minor of G′, yielding that (a) is
true. Similar as before, G′ inherits a face cover SG′ of size at most k, remains
simple and 3-connected, without touching faces or bridges, satisfying thus
(b), (c), (d) and (e). Faces that were triangles with their boundary vertices
on two FC-faces, are transformed into squares, whose boundary contains two
pairs on the boundary of these two FC-faces. The argumentation analyzed at
the end of the last transform, implies that all faces that were triangles with
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their boundary vertices on different FC-faces, remain as such. We conclude,
that G′ satifies (f), which completes the proof.

Our next lemma clarifies the situation, delivering a hypergraph contain-
ing no more trivial edges. In fact, all hyperedges are of a distinctive type,
allowing us to comprehend in bigger depth the structure of the input graph:

Lemma 5.2.2. Let G be a 3-connected simple plane graph such that fc(G) ≤
k. Then, there exists a plane hypergraph H and a face cover SH of H, such
that:

(i) bw(G) ≤ bw(H).

(ii) |SH | ≤ k.

(iii) No two different FC-faces touch.

(iv) H contains no edges, and each hyperedge of H has arity four, containing
two disjoint pairs that are incident to two different FC-faces.

(v) A face of H is either a FC-face, or a degenerate one, or a triangle
incident to three different vertices that in turn are incident to three
different FC-faces.

Proof. Since the given plane graph G is simple and 3-connected, the require-
ments of Lemma 5.2.1 are satisfied; by applying it, we obtain a plane graph
G′ carrying the properties (a)–(f). We will construct a hypergraph H on the
vertices of G′, satisfying conditions (i)–(v):

Let f be a square face of G′. By the last property, its boundary
contains four vertices, namely two pairs on two FC-faces, say x1,
y1 and x2, y2. We add a hyperedge e, so that e ⊆ f and bor∗(e) =
{x1, x2, y1, y2}. We carry out this procedure for every square face

f in G′ and complete the construction, by removing all edges.

Let us, then, check that H is as desired. First of all, note that by construc-
tion, condition (iv) is satisfied. Next, recall that, since every hyperedge of
H is drawn in a different face of G′, and takes the place of the edges on the
boundary of the corresponding face of G′, the hypergraph H is generated
by G′, and thus plane with branchwidth not less than this of G′ (see also
Paragraph 3.2). Combined with property (a), this yields that (i) is true.
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Consider, now, an FC-face f in G′: By (f), each edge on the boundary of
f (joining a pair), lay also in the boundary of a square face. By construction
of H , the pair joined by this edge, is among the endvertices of a hyperedge
h in H , and thus is joined in H by an arc γ ⊆ bor(h). This applies to any
edge of G′ on the boundary of f , implying a correspondence between an
edge e ⊆ f̂ and an arc γe ⊂ bor(he). In this way, the vertices and edges
in the boundary of f correspond to a boundary of a face fH in H . We fix
this bijection σFC between a face f in SG′ and a face fH in H . We can now
choose:

SH = {fH ∈ F (H) : ∃f ∈ SG′ ⊆ F (G′) : fH = σFC(f)}

As every vertex in G′ lay in the boundary of an FC-face, all vertices in H
lie on the boundary of a face in SH , the last set is indeed a face cover of H .
Moreover, its size is equal to the size of SG′, and hence at most k as condition
(ii) demands. In addition, bijection σFC implies that any two FC-faces in H
have no vertex in common, and (iii) is also true.

Now consider a triangle face in G′. Each of the three edges on its bound-
ary, belongs also to the boundary of a square face, as by (f) the boundary of
the triangle contains three vertices on the boundary of three different FC-
faces, and by (e) the graph G′ has no bridges. Continuing as before, we can
fix a bijection σTR between a triangle face in G′ and the corresponding face
in H , denoted again as triangle.

These two bijections σFC and σTR, combined with the fact, that all square
faces of G′ have been, virtually, replaced by hyperedges in H , implicates that
a face in H is either a FC-face, or a face bounded by two hyperedges (a
degenerate one), or a triangle incident to three vertices, each on a different
FC-face; thus condition (v) is satisfied, which completes the proof.

A plane hypergraph H with a face cover SH , satisfying properties (iii)–(v)
of Lemma 5.2.2, will be characterized, from now on, as normalized.

Lemma 5.2.3. Let H be a normalized hypergraph with face cover SH and
let N be a non-trivial 4-noose bounding the closed discs ∆1, ∆2. Let also Hi,
(i = 1, 2) be the subgraph of H containing all vertices and edges included
in ∆i, plus the edge ẽ with endpoints the four vertices the 4-noose passes
through. Then Hi (for i = 1, 2) is a normalized graph with fc(Hi) ≤ fc(H)
and less vertices than H.



5.2. FACE COVER 53

Proof. Let us label the noose N as x1y1y2x2x1, where xj, yj ∈ dj (for j =
1, 2) and d1, d2 two FC-faces. Note that none of the xj , yj can be a pair,
as otherwise they would both be pairs and all four vertices would lie on a
hyperedge, contradicting that N is non-trivial. Let wj, zj be two vertices of
fj , that keep xj and yj from being a pair; they lie, then, in different open
discs bounded by N , which implies that Gi (for i = 1, 2) has less vertices
than G, as wanted.

Notice that fj (j = 1, 2) is divided by N into two faces f i
j := fj ∩∆i for

i = 1, 2, j = 1, 2. The faces f1, f2 are the only FC-faces crossed by N and
hence, we can choose the face cover Si of Hi (i = 1, 2) as follows:

Si = {f i
1, f

i
2} ∪ {f ∈ SH : f ⊆ ∆i}, i = 1, 2.

This guaranties, that fc(Hi) ≤ fc(H) for i = 1, 2. It remains now to verify
that conditions (iii)–(v) of Lemma 5.2.2 stay invariant in both H1, H2. First,
since all faces of Hi, (i = 1, 2) are subsets of the corresponding faces in H ,
we can deduce that (iii) is true.

Observe that no edges are added to H1, H2. All hyperedges of the two
graphs except ẽ, already existed in H and so, they comply with the demands
of (iv); the newly added hyperedge ẽ contains the pairs x1, y1 and x2, y2,
which are in turn incident to the new faces f i

1, f
i
2 (for i = 1, 2). Combining

these facts, we conclude that condition (iv) holds.
All faces of H , not in the face cover, where either degenerate or triangles;

thus, a part of a noose outside an FC-face, can cross either a degenerate
face creating two degenerate faces, one in each subgraph Hi, (i = 1, 2), or a
triangle, creating a triangle in the one subgraph and a degenerate face in the
other. In any case, a face of Hi, (i = 1, 2) that is not in the corresponding face
cover, can be either a degenerate one or a triangle with boundary vertices on
the boundary of three different FC-faces, as desired; i.e. (v) is satisfied and
the proof completed.

Prime Hypergraphs. A normalized hypergraph H will be denoted as
prime, if every 4-noose is trivial. Let H be a prime hypergraph and SH a
face cover of H with |SH | ≥ 3 . We define its reduced graph red(H) as
follows: There is a bijection φv : SG → V (red(H)) and a bijection φe :
E(H)→ E(red(H)), such that two vertices in x, y ∈ V (red(H)) are joined
by an edge in E(red(H)), if and only if there is a hyperedge with vertices
lying on the faces φ−1

v (x) and φ−1
v (y).
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Lemma 5.2.4. Let H be a prime hypergraph with fc(H) ≥ 3. Then, the
graphs H∗ and R̃red(H) are isomorphic.

Proof. Notice that in a prime hypergraph all faces are either triangles or
FC-faces. This implies that the vertices of H∗ can be partitioned to those,
that correspond to FC-faces and those that correspond to trinagles of H . We
denote these two vertex sets of H∗ as VFC(H

∗) and VT R(H∗). On the other
hand, the FC-faces of H correspond to vertices of red(H) and the triangles
of H correspond to the faces of red(H). Moreover the sets V (red(H)) and
F (red(H)) correspond to the two parts of the vertex set of Rred(H) and thus

to a bipartition V1(R̃red(H)), V2(R̃red(H)) of the vertices of R̃red(H). We now
have a chain of bijections that merge into a bijection σ between VFC(H

∗) ∪
VT R(H∗) and V1(R̃red(H)) ∪ V2(R̃red(H)). We claim that σ is a isomorphism

from H∗ to R̃red(H). To see this, observe that any hyperedge e of H∗ has four
endpoints containing two anti-diametrical pairs: two corresponding to FC-
faces and two corresponding to triangles of H . Notice that these FC-faces
and triangles of H correspond to vertices and faces of red(G) and therefore
to the vertices of the hyperedge σ(e) of R̃red(H).

To gain an insight into the course of the proof, let us take a step back and
reflect on the work done so far. Given a plane graph of a known face cover
size, we formed a chain of transitions, relating the input graph gradually to
other, of more evident structure. Stripping systematically the graph down
to the bone, we progressed to a concrete version of the graph, that generated
the hypergraph we denoted normalized, which in turn led us to the prime
hypergraph. Through the portal of duality, and then by employing a powerful
tool, namely the radial graph, we succeeded in relating the prime hypergraph
to a very simple triangulated plain graph, we referred to as reduced.

We now, find ourselves at the doorway of the labyrinth’s center. The
reduced graph, carrying the whole structure of the input graph, and relieved
of excess or unwanted components, enables us to estimate an upper bound of
its branchwidth. This is accomplished in the following Corollary. Afterwards,
all we have to do is pick up the Ariadne’s thread, that we carefully laid behind
us, so we can pass on this bound back to our input graph; this is completed
by the next two lemmas, winding up the proof.

Corollary 5.2.5. If H is a prime hypergraph, then bw(H) ≤ 2·
√

4.5 · fc(H).

Proof. If fc(H) = 2, then H is the graph of 6 vertices - three on each disk
- with 3 edges of arity of four between these vertices. It is bw(H) = 4 ≤
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2·
√

4.5 · 2. Suppose now that SH is a face cover of H where 3 ≤ |SH | = fc(H)
and notice that red(H) contains |SH | vertices. From the main result in [36],
any n-vertex plane graph has branchwidth bounded by

√
4.5 · n. Applying

this result on red(H) we have that bw(red(H)) ≤
√

4.5 · fc(H). Recall
that the hypergraph H is generated by a 3-connected graph, namely the
normalized graph; thus by Corollary 3.4.3 it follows that bw(H) = bw(H∗).
Combining this with Lemmata 3.4.5 and 5.2.4, we obtain that :

bw(H) = bw(H∗) = bw(R̃red(H)) ≤ 2 · bw(red(H)) ≤ 2 ·
√

4.5 · fc(H)

. and the desired inequality follows directly.

Lemma 5.2.6. Let H be a normalized graph. Then bw(H) ≤ 2·
√

4.5 · fc(H).

Proof. We use induction on the number of vertices of H . In case |V (H)| = 6,
G has two FC-faces, three vertices on each of them, and three hyperedges.
So, indeed bw(H) ≤ 4 ≤ 2 ·

√
4.5 · 2.

We now assume, that for any normalized hypergraph H , where 6 ≤
|V (H)| < n, it holds that bw(H) ≤ 2 ·

√
4.5 · fc(H) and we will show

that the same upper bound holds for any normalized hypergraph H with n
vertices.

If H is prime, then the result follows directly from Corollary 5.2.5. Sup-
pose, then that H is not prime, and therefore contains a non-trivial 4-noose
N . As N bounds two discs ∆1, ∆2, Lemma 5.2.3 implies that for i = 1, 2
the graph Hi is a normalized graph with fc(Hi) ≤ k and |Hi| < n. By the
induction hypothesis, we obtain bw(Hi) ≤ 2 ·

√
4.5 · ki, (i = 1, 2). Finally,

using Lemma 3.2.5, we conclude that bw(H) = max{bw(H1),bw(H2)}, i.e.
bw(H) ≤ 2 ·

√
4.5 · k.

Theorem 5.2.7. For any planar graph G, bw(G) ≤ 2 ·
√

4.5 ·
√

fc(G).

Proof. We can assume that fc(G) ≥ 2, as otherwise G is either a forest or an
outerplanar graph, implicating that bw(G) ≤ 2 yielding trivially the result.
Also, we can assume that G is simple as the removal of loops or multiples
edges may reduce the branchwidth of a graph by at most 2 and this only in
the case where the resulting graph is a forest.

We will use induction on |V (G)|. For the smallest graph with fc(G) at
least two, namely the K4, the upper bound is true. We assume the same for
any graph with less than n > 4 vertices and we will show that it holds also
for any n-vertex graph.
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If the graph G is 3-connected, then by Lemmata 5.2.1 and 5.2.2, there is
a hypergraph H , with fc(H) ≤ fc(G) and bw(G) ≤ bw(H), and the result
follows directly from Lemma 5.2.6.

So, let us assume that G is not 3-connected. Then, it has a separator of
at most two vertices. We have the following cases:

• The minimum separator has two vertices.

Let C be some of the connected components of G[V (G) − {x, y}]. We set
G1 = G[V (C) ∪ {x, y}] and G2 = G[V (G) − V (C)] and we add in both
G1 and G2 the edge e = {x, y} (if its does not already exists). Notice
that Gi ≤ G and therefore fc(Gi) ≤ fc(G). From the induction hypothesis
bw(Gi) ≤ 2 ·

√
4.5 · fc(Gi) and the result follows by applying 3.2.5 for G1

and G2.

• The minimum separator is a cut vertex.

Two non-empty subgraphs, say G1 and G2, are joined by this vertex. For
i = 1, 2 we have |V (Gi)| < N and hence, by the induction hypothesis
bw(Gi) ≤ 2 ·

√
4.5 · fc(Gi). In addition, fc(Gi) ≤ fc(G) for i = 1, 2,

since Gi ≤ G. Applying Lemma 3.2.5 for the graph G = G1 ∪ G2 we
obtain bw(G) = max{bw(G1),bw(G2)}. Combining these facts, we have
bw(G) ≤ 2 ·

√
4.5 · fc(G) and again the desired relation holds.

• The graph is disconnected.

Again, we have two subgraphs G1 and G2 and the proof continues similar to
the previous case, completing the induction.

5.3 Feedback Vertex Set

We turn now on one of the most famous graph problems, the Feedback Vertex
Set (see e.g. [32]). Flow diagrams are being used in different fields of science,
like economics, since long time. It soon arose the question, if someone could
avoid circling in the diagrams, blocking thus unwanted feedback. Turning
to mathematics to provide an answer, it became apparent that the problem
was not simple. On the contrary, it was proved to be NP-hard, being as a
matter of fact one of the first problems to be characterized so.

Recall that a Feedback Vertex Set of a plane graph G is a set of vertices
S ⊆ V , such that the induced subgraph G[V \S] has no cycles. The feedback
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vertex set number of a graph G, denoted as fvs(G), is defined as the minimum
size of a feedback vertex set in G (see also Paragraph 4.2).

Figure 5.2: A graph with a Feedback Vertex Set.

We observe that a feedback vertex set of a planar graph, is related to a
face cover of the graph: the first is a set of vertices hitting each cycle and
thereby, the boundary of each face, and the second a set of faces on the
boundary of whose all vertices lie. In deed, face cover and planar feedback
vertex set are closely related in dual graphs. Informally speaking, the “dual”
version of the face cover number is upper bounded by the vertex feedback
set number:

Lemma 5.3.1. Let G and G∗ be dual plane graphs that are not forests. Then,
fc(G∗) ≤ fvs(G).

Proof. Let S ⊆ V (G) be a feedback vertex set in G, with |S| ≤ k. As the
boundary of any face f ∈ F (G) contains a cycle of G, it also contains a vertex
v ∈ S. This implies that any vertex f ∗ ∈ V (G∗) of G∗ is in the boundary of
some face v∗ of S∗, where S∗ ⊆ F (G∗) is the set of the duals of the vertices
in S. Therefore S∗ is a face cover of G∗.
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Figure 5.3: The previous graph with a Feedback Vertex Set and its dual with
the corresponding Face Cover.

Therefore, the task of bounding the the branchwidth of a planar graph
in relation to its feeback vertex set number can be reduced to the bound
associated with the face cover number. In particular, utilizing the upper
bound that we proved for the branchwidth of a planar graph G in relation
to its face cover number fc(G), we prove the following:

Theorem 5.3.2. Let G be a plane graph with fvs(G) ≥ 1. Then its branch-
width is at most bw(G) ≤ 2 ·

√
4.5 · fvs(G).

Proof. Let us consider plane graphs G and its dual graph G∗. Since fvs(G) ≥
1, none of the two graphs can be a forest. Hence, the requirement of
Lemma 5.3.1 is satisfied. Combining this with Theorem 5.2.7 and the fact
that dual graphs have the same branchwidth (see also Corollary 3.4.3), the
following inequality is formed:

bw(G) = bw(G∗) ≤ 2 ·
√

4.5 ·
√

fc(G∗) ≤ 2 ·
√

4.5 ·
√

fvs(G),
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which implies that the desired upper bound for the branchwidth of graph G
holds.
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Chapter 6

Algorithmic Consequences

6.1 Previous Results

We are interested in the parameterized version of the three well-known prob-
lems, namely p-Feedback Vertex Set, p-Cycle Packing and p-Face

Cover, as they are defined in Paragraph 4.2.
Many FPT-algorithms were proposed for p-Feedback Vertex Set.

The best current results in this direction are the O(4kkn) step probabilis-
tic algorithm in [3] and the O(5kkn2) step algorithm in [8].

When restricted to planar graphs, p-Planar Feedback Vertex Set,
p-Face Cover and p-Planar Cycle Packing are solvable by subexpo-
nential FPT-algorithms. The first results of this kind were given by Kloks et
al. in [41]. Furthermore, Fernau and Juedes proved that Face Cover can

be solved in O(224.551
√

k · n) steps (see [31]).

6.2 Our Contribution

The theory of bidimensionality, as discussed in Chapter 4, provides the con-
text for our analysis of the algorithms. In particular, we set in motion
the Win/Win technique (see Paragraph 4.3) to derive algorithms for the
p-Planar Feedback Vertex Set problem and the p-Face Cover prob-
lem. Recall that by the Win/Win approach, the existence of a fast sub-
exponential algorithm, depends on determining tight upper bounds for the
constants, so that Conditions (A) and (B) hold.

In Paragraph 4.4, we witnessed the existence of dynamic programming

61
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based algorithms on graphs of bounded branchwidth for the problems of
Planar Feedback Vertex Set and Planar Blue Red Dominating

Set, among others. In combination with the reduction of Face Cover

to the second, we then concluded that Condition (B) is satisfied for the
parameters of feedback vertex set fvs, and of face cover fc, for βfvs ≤ 3.56
and βfc ≤ 1.19, respectively.

By applying the Grid Theorem for planar graphs, we can relate the den-
sity of a parameter to a bound of the branchwidth of a planar graph (see
also Paragraph 4.5). According to our presentation of bidimensional param-
eters in Paragraph 4.2, the density of the feedback vertex set parameter is
δfvs = [1/2, 1/

√
2] and of the face cover parameter δfc = 1/2. Hence, by

Lemma 4.5.3, we derive that Condition (A) holds for αfvs ≤ 8 and αfc ≤ 8
for the two parameters, respectively.

Applying Theorem 4.3.1 implies the existence of an O(228.48·
√

k · n + n3)
algorithm for the p-Planar Feedback Vertex Set problem, and the
existence of an O(219.04·

√
k · n + n3) algorithm for the Face Cover problem

(already improving the constants of previous results). Recall that the n3

additive in the complexity of the algorithms is due to the demand of an
optimal branch decomposition of the input graph.

The above estimations for αfvs and αfc can be easily further improved
using known results. Kloks et al. [41] proved that for any planar graph G,
there is a planar graph H containing G as a subgraph such that ds(H) ≤
fvs(G) (here by ds(H) we denote the minimum size of a dominating set of
H). Moreover it holds that for any planar graph H , bw(H) ≤ 6.364

√
ds(H)

[35]. As bw(G) ≤ bw(H), we obtain that bw(G) ≤ 6.364
√

fvs(G) and this
yelds Condition (a) for αfvs ≤ 6.364. For αfc, we need to make the following
observation: Suppose that a plane graph G has a face cover U ⊆ F (G) of
size ≤ k. Let H be the graph obtained from G, if for each f ∈ U we draw a
vertex vf inside f and connect it with the vertices incident to f . Notice that
the new vertices constitute a dominating set of H , of size at most k. Again,
from the result of [35], we conclude that bw(G) ≤ bw(H) ≤ 6.364 ·

√
k, thus

αfc ≤ 6.364.

According to the above, there is a O(222.66·
√

k · n + n3) step algorithm for

the Planar Feedback Vertex Set problem and a O(215.15·
√

k · n + n3)
step algorithm for the Face Cover problem.

Finally, the main combinatorial results of this study proved in Chapter 5,
namely Theorems 5.2.7 and 5.3.2, imply that Condition (A) is satisfied for the
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parameters of feedback vertex set fvs, and of face cover fc, for αfvs ≤ 4.243
and αfc ≤ 4.243, respectively. Applying Theorem 4.3.1 for these values and
for the mentioned values of βfvs and βfc, yields to the fastest algorithms, as
far as we know, for the two problems:

Theorem 6.2.1. The p-Planar Feedback Vertex Set problem and the
p-Face Cover problem can be solved in O(215.11·

√
k ·n + n3) and O(210.1·

√
k ·

n + n3) steps, respectively.

We stress, that according to Bodlaender [6] (see also [7]) there exists a
polynomial algorithm producing a O(k3) size kernel for the p-Feedback

Vertex Set problem, when parameterized by k (i.e. an equivalent instance
of the problem where the input graph has at most O(k3) vertices). Combining

this fact with Theorem 6.2.1, we derive the existence of an O(215.11·
√

k)+nO(1)

algorithm for p-Planar Feedback Vertex Set. For the p-Face Cover,
a O(k2) kernel has been reported in [41]. Therefore, p-Face Cover can be

solved in O(210.1·
√

k) + nO(1) steps.

Another parameter, the algorithmic analysis of which our combinatorial
results improve, is cycle packing. In paragraph 4.4 we witnessed that solving
Cycle Packing in planar graphs can be done in O(22.78·bw(G) ·n) steps, i.e.
Condition (B) holds for βcp ≤ 2.78. According to Kloks et al. in [41], for
any planar graph G, it holds that fvs(G) ≤ 5 · cp(G). Combining this with
Theorem 5.3.2 yields that for any planar G, bw(G) ≤ 2 ·

√
4.5 · 5 · cp(G) and

thus, Condition (A) holds for α ≤ 9.49. By Theorem 4.3.1, the p-Planar

Cycle Packing can be solved in O(226.347·
√

k · n + n3) steps.

6.3 Open Problems

According to the Win/win approach, the algorithmic analysis of all problems
examined in this paper is reduced to the problem of bounding the decompos-
ability of a planar graph (i.e. the branchwidth) by a sublinear function of the
parameter. While such general (but not optimal) upper bounds are provided
by bidimensionality theory [11] better constants (and thus faster algorithms)
have been achieved by a “tailor made” analysis of the parameter in the cases
of vertex cover, edge dominating set, and dominating set (see [13, 35]). Our
results for feedback vertex set, face cover, and cycle packing offer to the same
line of research. Furthermore, specific combinatorial similarities between our
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proofs in Chapter 5 and the proofs in [13, 35], make us believe, that a generic
technique for wider families of problems may exist.

The upper bounds of the constants for the branchwidth of planar graphs
in relation to the value of the previously listed parameters, as well as for the
algorithms of the dynamic programming in graphs of bounded branchwidth,
emerge from a thorough inspection and they are believed to be optimized.
However, any improvement to the general bound of the branchwidth in planar
graphs (main result of [36], see also Theorem 5.1.1), would instantly improve
the algorithmic analysis of all mentioned results.
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