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Chapter 1

Introduction

Logic has been called “the calculus of computer science”. The argument
is that logic plays a fundamental role in computer science. Indeed, logic plays
an important role in areas of computer science as disparate as architecture
(logic gates), software engineering (specification and verification), program-
ming languages (semantics, logic programming), databases (relational alge-
bra and SQL), artificial intelligence (automatic theorem proving), algorithms
(complexity and expressiveness), and theory of computation (general notions
of computability).

Finite Model Theory (FMT) is the study of logics on classes of finite
structures. FMT arose as an independent field of logic for consideration of
problems in theoretical computer science. Unfortunately, traditional Model
Theory (MT), which concentrates on infinite models, cannot help us with
finite structures. Most of the theorems that consist the base of MT do
not apply in the restriction to finite models. For example the Compactness
Theorem and in its wake most of the theorems of MT. Moreover other results
such as Lowenheim-Skolem Theorem are meaningless. Consequently FMT
has developed into a very different discipline from MT, with distinct methods,
themes and applications of its own.

The first basic result of FMT was found in 1950 by Trakhtenbrot [22]:
Validity over finite models is not recursively enumerable which means that
Completeness fails over finite models. In 1960 Biichi showed that regular
languages are precisely those definable in monadic second-order logic (MSO)
over strings [11]. Fagin proved in 1974 that NP=ESO (existential second-
order logic) which is remarkable since it is a characterization of the class NP
which does not invoke a model of computation such as a Turing Machine
[23].

The main sources of motivational examples for FMT are found in Database



Theory, Computational Complexity and Formal Languages.

Many of the problems of Database Theory can be formulated as problems
of mathematical logic, provided that we limit ourselves to finite structures.
While early database systems used rather ad hoc data models, from the early
70’s the world switched to the relational model. Since Codd [5], databases
have been modelled as first-order relational structures and database queries
as mappings from relational structures to relational structures. It is, hence,
not surprising that there is an intimate connection between database theory
and FMT. First order logic (FO) lies at the core of modern database systems
(the standard query languages such as SQL and QBE are syntactic variants
of FO). More powerful query languages are based on extensions of FO with
recursion (least fized-point logics, etc.). A central topic of FMT has always
been the expressive power of logics on finite relational structures. Thus a
typical application of FMT on databases has to deal with questions of this
kind: what can and what cannot be expressed in various query languages?

Another central issue in Finite Model Theory is the relationship between
logical definability and Computational Complexity. We want to understand
how the expressive power of a logical system, such as first-order or second-
order logic, least fixed-point logic, or a logic-based database query language
such as Datalog, is related to its algorithmic properties. Conversely, we want
to relate natural levels of Computational Complexity to the defining power
of logical languages. The aspects of Finite Model Theory that are related
to Computational Complexity are also referred to as Descriptive Complexity
Theory. Fagin’s theorem on NP and ESO is the prototypical result of the
field.

We can compare query languages by investigating the complexity of eval-
uating queries in these languages. There are three ways to measure the com-
plexity of evaluating queries in a specific language. First, one can fix a specific
query and study the complexity of applying it to arbitrarily databases. Fol-
lowing Vardi, we call this data complezity [32]. Alternatively, one can fix a
specific database and study the complexity of applying queries represented
by arbitrary expressions in the language (ezpression complezity). Finally,
one can study the complexity of applying queries represented by arbitrary
expressions in the language to arbitrary databases (combined complexity).

Many times languages with the same expressive power may differ a great
deal on their complexity on evaluating queries. For example monadic Datalog
and MSO have the same expressive power over trees but their combined
complexities are very different. Monadic datalog queries can be evaluated in
time linear both in the size of the datalog program and the size of the input
tree [14]. On the other hand the evaluation of MSO queries is PSPACE-
complete. The reason for this different behaviour is that in MSO we can



express queries much more succinctly.

Succinctness is a natural measure for comparing the strength of logics
that have the same expressive power. Essentially, it is a finer-grained way
of being able to say that one logic is “more expressive” than another: either
it can define properties not definable in the other logic or it can define the
same properties but with shorter formulae.

In this thesis, we study succinctness of logics on trees. Logics over
(unranked) trees —that is, trees in which nodes can have arbitrary many
children— have recently received much attention due to XML applications.
XML is a data format which has become the lingua franca for information
exchange on the World Wide Web. In particular, XML data is typically
modelled as labelled unranked trees [33] (a labelled tree is a tree in which
each node is given a unique label).

When restricting attention to labelled trees, MSO seems to be perfect: it
has been proposed as a yardstick for expressiveness of XML query languages
[14] and, due to its connection to finite automata, the data complexity of
MSO-queries on strings and labelled trees is in polynomial time. On finite
relational structures in general, however, MSO can express complete prob-
lems for all levels of the polynomial time hierarchy [15], i.e., MSO can express
queries that are believed to be far too difficult to allow efficient model check-
ng.

Monadic least fixed-point logic MLFP is a natural logic whose expres-
siveness lies between that of first-order logic and monadic second-order logic.
MLFP is an extension of first-order logic by a mechanism that allows to de-
fine unary relations by induction. On finite relational structures in general,
MLFP has the nice properties that:

1. The model-checking problem can be solved with polynomzial time and
linear space data complexity.

2. MLFP is suitable for the description of many important problems. For
example, the transitive closure of a binary relation, or the set of winning
positions in games on finite graphs [16] can be specified by MLFP-
formulae.

3. On strings and labelled trees, MLEFP even has exactly the same expres-
siveness as MSO [17].

In this dissertation I am bringing out representation of the proof of an in-
teresting theorem concerning succinctness of logics on trees. My purpose is
to illustrate as clearly as possible the tightness of the connection between
Finite Model Theory and Database Theory. I chose succinctness because it



combines all the central topics of Finite Model Theory: expressiveness, au-
tomata and computational complexity. XML was my motivation. The fact
that it became the lingua franca of data exchange on the web has drawn the
attention of many researchers.

In the beginning we provide the necessary background (from mathemati-
cal logic and Complexity Theory). We focus on the logics that we are going
to need which are MSO and MLFP. We also make an introduction to the
model checking problem. In Chapter 3 after we introduce trees, automata,
and XML we study the expressive power of logics on trees. In Chapter 4,
which is the main chapter, I present some results that Grohe and Schweikardt
have drawn by comparing succinctness of MSO and MLFP [1].



Chapter 2

Preliminaries

2.1 Logic

We do not attempt to give a fully comprehensive introduction to Finite Model
Theory. The various facts that are quoted without proof can be found in the
standard text books [3, 25]. We introduce some notation:
A vocabulary o is a finite nonempty set of constant and relational symbols
with associated arities.
o=(Ry,...,R™ c1,...,cp) .

) m

A o-structure 2 is a tuple consisting of a finite set A # (), the domain of 2,
together with an interpretation R* C A" for each relation symbol R in o (r
is the arity of R) and an interpretation c¢* € A for each constant symbol in
7. STRUCT(o] is the class of all o-structures.

A= (AR ..., RE & ... 2.

Typical examples of structures are graphs. If F is a symmetric irreflexive
binary relation and o = (F) then STRUCT|o] is the class of undirected simple
graphs. Moreover relational databases are just a finite relational structure
over some vocabulary and each table is a relation.

Relational Databases«— Relational Structures.

The main use of a database is to query its data. A query language is
language that allows retrieval and manipulation of data from a database.
Logical formulae can express queries.

Query Languages«— Logics.
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We assume that the reader is familiar with first-order logic (FO) [18] and
with the basics of Model Theory [7]. FO turned out to be very successful
as a query language. The main reason of that is that FO can be efficiently
implemented by using relational algebra, which provides a set of simple op-
erations on relations expressing all FO queries. Relational algebra as used
in the context of databases was introduced by Ted Codd [5]. His realization
that the algebra can be used to efficiently implement FO queries gave the
initial impetus to the birth of relational database systems.

Unfortunately FO is not the perfect query language. Useful queries, such
as connectivity of finite graphs, cannot be expressed in FO [3]. Such facts
have led to the introduction of a variety of query languages extending FO.

First Order lacks of any mechanism for performing iterations and cannot
make recursive definitions. The observation that an extension of FO allowing
iteration and recursion can express queries that cannot be expressed in FO
led to fized-point logics.

2.1.1 Fixed-Point Logics

Before we define fixed-point logics we first review the basics of fixed-point
theory. We deal only with finite sets although the basic results hold for
infinite sets, too.

Given a set S let P(S) be its powerset. An operator on a set S is a map

f:P(S) — P(S). An operator f is:
e monotone ift X CY = f(X) C f(Y), for all X, Y € P(S5),
e inflationary if X C f(X), for all X € P(95),
e inductive if X* C X*™! for all ; where where X° = () and X" = f(X").

If f is inductive we define

X = DX
1=0

As S is finite the sequence (X%);cy stabilizes after some finite number
of steps, so there is a number n such that X*>° = X" . It’s not hard to see
that if X™ = X! then X" = X™** for all £ > 0. Moreover the fact that
there are at most |S| subsets Si,...,S; € P(S) such that S; C S;q for
i€{l,...,k— 1} implies that if n = min{m | X" = X™ + 1} then n <|S|.

Definition 2.1 Given an operator f : P(S) — P(S), a set P C S is a
fized-point of f if f(P) = P. A fized-point X C S is a least fixed-point if
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X C R for every fixed point R of f. We write fpf for f’s least fixed-point,
if it has one.

Some of the results of fixed-point theory that we will need are the follow-
ing [19]:

Proposition 2.1
1. Every monotone operator is inductive.

2. Every monotone operator f has a least fixed-point which can be defined
as

p(f) ={Y [ f(Y) S Y}

(Every set Y such that f(Y) CY is called pre-fixed point of f).

8. If f is an inductive operator then Ifp(f) = X°°, for the sequence X*
that we defined earlier.

Least Fixed Point Logic (LFP)

Let o be a vocabulary and X a relation symbol of arity £ not in o.
Let (X, z1,...,2%) be a first-order formula of vocabulary o U {X}. X and
x1,...,x, are considered to be free in the formula. For any fixed o-structure
2l and any interpretation R C AF for X, ¢ defines the k-ary relation

P ={ae€ A" | (A, R,a) = o}
So for each 2 eSTRUCTo] the formula ¢ defines an operator
f2 o P(AY) — P(AF).

The idea of fixed-point logics is that we add formulae for computing fixed-
points of operators fg‘.
The next proposition is a consequence of Trakhtenbrot’s theorem [22].

Proposition 2.2 It is undecidable whether a first-order formula ¢(X,Z) is
monotone with respect to X.
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Because it is undecidable whether a first-order formula is monotone, we
cannot define a logic based on taking fixed points of monotone formulae, as
there is no algorithm to determine which strings are formulae. To rescue the
situation we replace the undecidable semantic restriction that we may only
write lfpg if ¢ is monotone with a decidable syntactic restriction on ¢. Given
a formula ¢ that may contain a relational symbol R, we say that an occur-
rence of R is negative if it is under the scope of an odd number of negations,
and is positive if it is under the scope of an even number of negations. We
say that a formula is positive in R if there are no negative occurrences of R
in it. Moreover if ¢ is monotone, there is a positive ¢ such that lfp¢ = lfpo
for every structure of the correct vocabulary. Therefore, making the change
from ‘monotone’ to ‘positive’ doesn’t decrease the expressive power of the
system defined.

Proposition 2.3 Let ¢(R,Z) € FO. If ¢ is positive in R then f(?[ is mono-
tone [3].

For any vocabulary o, LFP extends FO with the following formation rule:

e If ©(R,Z) is a formula positive in R, where R ¢ o is k-ary and ¢ is a
tuple of terms, where || = |t| = k, then [Ifpy ;¢(R, T)|(t) is a formula,
whose free variables are those of ¢.

The semantics is defined as follows:
A (fpg,0(R,7)(a) iff a € Up(f)).

Monadic least fixed-point logic (MLFP) is defined as the restriction of
LFP where we can only take fixed-points of unary relations.

Simultaneous MLFP (S-MLFP)

Let o be a vocabulary. Fori € {1,...,n}, let X; be a new unary relation
symbol and let ¢; be a formula with free second-order variables Xi,..., X,
and free first order variables z1, ..., z,.

(Iol(xlaXla s JXTZ)J

On (T, X1, .., Xp)

Each formula is positive in all the variables Xi,...,X,. On any o-
structure 2( each of the ¢; defines a monotone operator

ot (P(A)" — P(4).

Pi °
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given by

S(Ry,...,Ry) ={a€A| (A Ry,...,Ry,0) = pi}.

A tuple (Ry, ..., R,) is called a simultaneous fized-point of (¢y, ..., ¢,) in A
iff for all i < n, f(%(Rl, ..., R,) =R,
For all i <n and s € N we define

0 _
+1 A V4
LQ[,qoi - f ( Aypr ** LngDn)

As we said fgl is monotone so Lélso Léfr; for all ¢ € N and since A is

finite for some fy we have Léogo = Lzo+1 = Ly, for all © < n. We define

(Lgfm, .. Lgi%) to be the szmultaneous least fized-point of (¢1,...,¢,) in
2.

Let S-MLFP be the logic whose syntax is defined by extending the rules
for first order with the rule for forming simultaneous least fixed-point as
above, with the semantics given by

@a) = Upy, w0, x, (P15 0)lxi (9) & @ € Ly

2.1.2 Second Order Logic (SO)

Syntax
We assume that for every k > 0, there are infinitely many variables
Xk Xk .. ranging over k-ary relations. A formula of SO can have both

first-order and second-order free variables. We define SO terms, formulae
and their free variables over a vocabulary o as follows:

e Each FO variable z and each constant symbol of o are FO terms. The
only free variable of the term x is the variable x. The constant term ¢
has no free variables.

o There are three kinds of atomic formulae:

1. FO atomic formulae (¢t = t/, R(t), where t,¢' are terms, ¢ is a
tuple of terms, and R is a relational symbol of o, that has the
same arity as the length of #). The free first-order variables of the
formulae ¢t = ' and R(t) are the first-order variables of ¢,¢' and ¢
respectively.
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2. X(tq,...,t), where t1,...,t; are terms, and X is a second-order
variable of arity k. The free first-order variables of this formula
are the free first-order variables of t1, ..., f;. The free second-order
variable is X.

e The formulae of SO are closed under the Boolean connectives V, A, —
and first order quantification, with the usual rules for free variables.

o If o(z,Y,X) is a formula, then 3Yo(z,Y, X) and VY ¢(z,Y, X) are
formulae, whose free variables are Z and X.

Semantics

Suppose 2l €STRUCT|o]. For each formula ¢(7, X), we define the nota-
tion (A,b, B) | ¢(%, X) where b is a tuple of elements of A of the same
length as z and for X = (Xi,...,X,), with each X; being of arity n,,
B = (By,...,By), where each B; is a subset of A". We give the seman-
tics only for constructors that are different from those for FO:

o If ¢(7,X) is X(t1,...,%), where X is k-ary and t1,...,# are terms,
with free variables among z, then (1,0, B) = ¢(Z, X) iff the tuple
(t3(b), ..., t}(b)) is in B.

o If ¢(7, X) is Y Y(7, X,Y), where Y is k-ary, then

( 767
if for some C' C A* it is the case that (A, b, B,C) |= gb(
(A

= oz, X)
Y)

Y

= ¢z, X)
).

B)
, X
o If ¢(z,X) is VY (7, X,Y), where Y is k-ary, then (21,0, . B)
if for all C' C A¥, it is the case that (2, b, B,C) = (7, X,Y
Monadic second-order logic (MSO) is defined as the restriction of SO
where all second order variables have arity 1.
We will continue the analysis of MLFP and MSO in Chapter 3.

2.1.3 Rank-k Types

Before we continue we need a definition of quantifier rank and rank-k types
for MSO formulae. Informally quantifier rank counts the number of nested
quantifiers of a formula.

Definition 2.2 The quantifier rank of a formula ¢ is defined by induction
on the formula’s structure:

e qr(v)=0 if ¢ is atomic,
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o qr(—¢)=qr(p),

o qr(p NY)=qr(opV §)=max{qr(p), qr(})},

o gr(Brp)=qr(veg)=qr(3X¢)=qr(¥VXp)=1+qr(p).

Let MSO[k] be the set of all MSO-formulae of quantifier rank at most £.

Lemma 2.1 Given a vocabulary o and for every k, MSOIk| over o contains
only finitely many formulae in m variables, up to logical equivalence.

Proof. The proof is by induction on k.

e The base case is MSOI[0]. There are only finite many atomic formu-

lae, and hence only finitely many Boolean combination of those, up to
logical equivalence.

Suppose that it holds for k.

Each formula ¢(xy,...,2m, X1,...,X;) from MSOI[k + 1] is a Boolean
combination of 3x(xy,...,2m, X1,..., X;,x) where x is a first or sec-
ond order variable and ¢ € MSO[k]. By the inductive hypothesis the
number of MSO[k]| is finite (up to logical equivalence) and hence the
same can be concluded about MSO[k + 1] formulae with m FO free
variables and ¢ SO free variables. O

An MSO k,m, (-type is a set S C MSO[k] with m free first-order variables

and ¢ free second-order variables such that for every ¢(xy, ..., xm, X1, ..., X))
from MSOIk] either ¢ € S or ¢ € S. Given a structure 2, an m-tuple
a € A™ and an (-tuple V of subsets of A, we define the MSO rank-k type of
(a,V) in 2 be the set

mso-tpg (A, a, V) = {o(z, X) € MSO[K] | 2 = ¢(a,V)}.

When both @,V are empty, mso — tp,, () is the set of all MSO[k] sentences
that are true in 2.

Theorem 2.1 The following hold for any k,{, m:

1. There exists only finitely many MSO k, m, £-types.

2. LetTh,..., Ty enumerate all the MSO k,m, { types. There exist MSO[k]

formulae v;(z, X),i € {1,...,5s}, such that for every structure 2, every
m-tuple a of elements of A and every (-tuple V' of subsets of A, it the
case that
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A = vi(a, V) iff mso — tp, (A, a, V) =T;.

3. Each MSO[k] formula with m free first-order variables and ¢ free second-
order variables is equivalent to a disjunction of some of the y;’s.

Proof.

1. We know that up to logical equivalence MSOIk] is finite, for a fixed
number m of variables. Let (%, X),..., or(Z, X) enumerate all the
non-equivalent formulae in MSO[k] with free variables T = (z1,..., %)
and X = (X1,...,X,). Then an MSO k,m,I-type is uniquely deter-
mined by a subset of {1,..., L} specifying which of the ¢;’s belong to
it. But there are finitely many such subsets so the number of different
MSO k, m, (-types is finite.

2. Let K; C {1,...,L} be the set that determines T} and ag,(Z, X) be
the following formula

O{Ki(i‘,X)E /\ ®j N /\ TPk -

JEK; k¢K;

For every a € A™ and every V € (P(A))" if A |= ax, (@, V) then all the
@;’s with j € K; are satisfied by a, V" and the ¢;’s with j ¢ K; are not
satisfied by a, V. So

mso — tp(%,a,V) = {¢(z,X) € MSO[k] | A = ¢(a,V)}

= {(Pj(fv)?)aje{la"'al/}|Q[):§0j(da‘_/)}
= {¢;(z,X),j € Ki}
= T;.

3. Every MSO[k] formula is equivalent to some ¢;. We claim that

v (z,X) = \/ ax, -
JEK;
Indeed if 2 |= ¢;(a@, V) then ¢; € mso — tp, (A, @, V). But we've already
shown that mso — tp, (%, a, V) = Tk, for some i and as result A |=
O‘i(aa V)
Conversely, if 2 £ ¢; then ¢; € mso — tp,(,a,V) for any a,V so
j & K; for any 1. 0
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2.2 Computational Complexity

Computational Complexity is the theory of computer science that contem-
plates the reasons why some problems are so hard to solve by computers [24].
So it is the theory that tries to answer the question: “As the size of the input
to an algorithm increases, how do the running time and memory requirements
of the algorithm change and what are the implications and ramifications of
that change?”

Turing Machines (TM) are the most general computing devices. Despite
their simplicity they can simulate arbitrary algorithms with inconsequential
loss of efficiency. They were described in 1936 by Alan Turing [26]. The
concept of the TM is based on the idea of a machine executing a well-defined
procedure by changing the contents of an unlimited tape, which is divided
into squares that can contain one of a finite set of symbols. The machine
needs to remember one of a finite set of states and the procedure is formulated
in very basic steps in the form of “If your state is 42 and the symbol you
see is a “0” then replace this with a “1”, move one symbol to the right, and
move to state 17.”

Definition 2.3 A (deterministic) TM is a quadruple M = (K, X, 8, s) where
e K is a finite set of states.

e Y is a finite set of symbols, (it is also called alphabet). X contains the
blank (U) and the first (>) symbol.

e 0: KxXY — (KU{h, “yes”, “no”})xX x {«—,—,—}. We assume that
h (the halting state), “yes” (the accepting state), “no” (the rejecting
state) and the cursor directions « for “left”, — for “right” and — for
“stay”, are not elements of ¥ U K.

e s ¢ K is the initial state.

Let M be a TM. The input of M is the initial contents of the tape. It
is always of the form >w where w € (X — {U})*. Other than the finite word
w, the remainder of the tape is blank. Initially the state is s and the cursor
is pointing to the first symbol (>). Then the machine takes a step according
to 6, changing its state, printing a symbol and moving the cursor; then it
takes another step,...etc. We say that the TM halts if one of the three states
“yes”, “no”, h is reached. At the first case we say that the machine accepts
its input (M (w) = “yes”), at the second that it rejects (M (w) = “no”) and
at the third that the output on input bw is w’ where w’ is the string of the
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tape at the time of halting (M (w) = w’). If none of the above states are
reached we say that M diverges and we write M (x) = .

A nondeterministic Turing Machine is defined as a normal (deterministic)
TM N = (K, X, A, s) with the the only difference that A is not a function
but a relation A C K x ¥ x [(K U {h, “yes”, “no” })x X x {«,—, —}]. So if
the machine is in state ¢ and sees symbol a, it may be thought of as moving to
any state ¢/, writing any character a’ and moving the head in any direction d
such that (¢,a,q’,d’,d) € A. We say that the machine accepts if at least one
possible computation path accepts (regardless of whether the others reject or
even terminate), rejects if every path rejects (and, in particular, none accept
and none diverge) and otherwise diverges.

Definition 2.4 Let L C (¥ — {U})* be a language (a set of strings of sym-
bols). Let M be a TM such that for any x € (¥ — {U})*

if x € L then M(x) = “yes” and
if v ¢ L then M(x) = “no”.

Then we say that M decides L.
We say that M accepts L whenever for any x € (¥ — {U})*

if x € L then M(x) = “yes” and
if v ¢ L then M(z) ="

If L is decided by some MT it is called recursive and if it is accepted by one
it 1s called recursively enumerable.

Let L be a language decided by a Turing Machine M and f : N — N. We
say that the machine M operate within time f(n) if the number of transitions
M makes before accepting or rejecting an input of size |w| is f(Jw|). If M
is deterministic we write L € TIME(f), if M is nondeterministic then we
write L € NTIME(f).

Similarly SPACE(f(n)) (respectively NSPACE(f(n))) is the set of lan-
guages that are accepted by deterministic (respectively nondeterministic)
Turing Machines such as the length of the string at every stage of the com-
putation, appart from the infinite sequence of blanks at the end, is at most
Is| + f(|s|) where s is the input. In the case of nondeterministic Turing
Machines the bound is on the amount of space used at every stage of every
possible computation.

We call the above sets complexity classes. The best-known of them are
the following:

L = [ J SPACE(logn")

k>=0
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NL = | J NSPACE(logn")
k>=0

P = | J TIME(n)
k>=0

NP = | ] NTIME(n")
k>=0

PSPACE = | J SPACE(n").

k>=0

Finally we assume that the reader is familiar with asymptotic notation (O, (2,
O, 0 and w-notation) [6].

2.2.1 The Model checking problem

Complexity Theory defines its main concepts via acceptance of string lan-
guages by computational devices such as Turing Machines. So if we want
to talk about computational complexity of evaluating formulae (or queries)
on relational structures we must first encode finite structures and logical
formulae as strings.

There are several ways to encode a structure. For each vocabulary o,
we will define a coding enc, : STRUCT[o] — {0,1}*. Suppose we have
a structure A eSTRUCT[o] where A = {a4,...,a,}. To code 2 we must
assume a linear order on its universe. The order has no effect on the result
of queries, but we need it to represent the encoding of a structure on the
tape of a Turing Machine. Let a; < ... < a, enumerate A according to the
chosen order. Each k-ary relation R* will be encoded by an n*-bit string
ency(R*) as follows. Consider an enumeration of all k-tuples over A, in the
lezicographic order (i.e., (a1,...,a,) < (b1,...,b,) if, and only if, there is
some j < n such that a; = b; for all i < j and a; < b;). Let a; be the jth
tuple in this enumeration, then the jth bit of enc,(R?) is 1 if a; € R* and 0
if a; ¢ R*. Constants are encoded as unary relations containing one element.

The universe A is coded as the binary string 1”0, where n = |A|. A Turing
Machine must know || in order to use the encoding of a structure. We

assume, without loss of generality, that ¢ contains only relational symbols,
o ={Ri,...,Rn}. The encoding of a structure 2 eSTRUCT[o] is

ence(A) = 170 enc,(RY) ... enco(R2).

The complexity is usually measured in terms of |A|, not in terms of the
length of its encoding, but this distinction makes little theoretical difference
since it only introduces a polynomial factor.
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Since the length of 170 is n + 1 and the length of enc,(RY) is n?* where
pi is the arity of R;, so the length of enc,(2), denoted by |enc, ()| is

p
lenco(A)| = (n+1)+ Y _nP.
i=1

Let 0 = (Ry,...,R,), to encode a formula we represent its syntax tree
as a structure of the vocabulary o = (VAR, EXISTS, AND,NOT, EQUALS,
Si,...,S,) and we code that structure as a string. The above relations are
defined as follows

e VAR(a) iff a is a variable,

e EXISTS(a,b, ¢) iff a codes Fx¢, where x is the variable coded by b and
@ is the formula coded by e,

e AND(a,b,c) iff a codes ¢ A ¢, where ¢ and ¢ are the formulae coded
by b and c respectively,

e NOT(a,b) iff a codes —¢, where ¢ is the formula coded by b,
e EQUALS(a,b,c) iff a codes b = ¢, where b and ¢ are variables,
e Si(a,b,..., c)iff a codes R;(b,...,c).

The model checking problem asks, given a model 2 and a formula ¢ of
a logic £, whether 20 = ¢. Depending on which of the two parameters (the
formula and the structure) are considered fixed, we get the three definitions
of complexity for a logic that we also defined in the introduction.

Definition 2.5 Let C be a complexity class and L a logic. We say that

e the combined complezity of L is C if the language {(enc,(A), enc(¢)) |
pe L and A= ¢} isinC,

o the data complexity of L is C if, for every sentence ¢ € L, the language
{enc,(A) | A = ¢} is in C. Moreover if every class of structures that
is computable in C is definable in L, we say that L captures C,

o the expression complexity L is C if, for every structure A of appropriate
vocabulary, the language {enc,(¢) | A = ¢} is in C.

Proposition 2.4 The data complezity of FO is in L.
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Proof.

We fix an FO-formula ¢. To prove the proposition we need to construct
a deterministic logarithmic space Turing Machine, M, that decides the lan-
guage L, = {enc,(A) | A }= ¢}. M, first computes £ = [logn]| and writes ¢
zeroes to its work tape for each variable in ¢ (we assume that every quantifier
in ¢ binds a fresh variable). These ¢-bit strings will store the current inter-
pretation of the variables. The construction of the machine is by induction
on qr(e).

If qr(¢)=0 then ¢ is a finite Boolean combination of atomic formulae.
The machines uses the tape (where the encoding of the structure is stored)
to determine the truth of these atomic formulae in turn and to compute the
Boolean combination. None of the calculations requires more than logarith-
mic amount of storage.

Assume that we have machines for all formulae of quantifier rank n. If
qr(g) = n+ 1 then ¢ is a finite Boolean combination of formulae Jz¢ with
qr(¢) = n. For each of these in turn the machine loops through all possible
(-bit strings representing the value of variable x and simulates the machine
for ¢ for each until it either finds a value for x that satisfies ¢ or finds that
none do. It also remembers the truth value for each subformula in its states

and computes the relevant Boolean combination in its state to give the result.
O

Theorem 2.2 The data complexity of MLFP is in P.

Proof.

Because of the previous theorem it suffices to show that formulae of the
form lfpy ¢ can be evaluated in polynomial time. We observe that if f :
P(A) — P(A) is a P-computable monotone operator, then lfp(f) can be
computed in polynomial time in |A|. Indeed we know that the fixed-point
computation stops after at most |A| iterations of which can be evaluated in
polynomial time. []



Chapter 3

Logic on Trees

The purpose of this chapter is to explore the connection between trees, au-
tomata and XML. We start by making an introduction to tree structures
and XML. We then define XPath, a popular query language for XML and
show that every XPath-definable query is MSO-definable. Furthermore, we
define tree automata and we study their relation to MSO. Finally, we use
automata to prove that, over finite labelled trees, MSO and MLFP has the
same expressive power.

3.1 Trees

Trees arise everywhere in computer science, and there are numerous for-
malisms in the literature for describing and manipulating trees. Some of
these formalisms are declarative and based on logical specifications: for ex-
ample, first-order logic, monadic second-order logic, and various temporal
and fixed-point logics over trees. Others are procedural formalisms such as
various flavours of tree automata, or tree transducers. All these formalisms
have found numerous applications in verification, program analysis, logic
programming, constraint programming, linguistics, and databases.

A tree may be ranked, if every node which is not a leaf has the same num-
ber of children, or unranked, if different nodes can have a different number
of children. We call the ranked trees binary when they have the property
that every node either has exactly two children or is a leaf. Moreover a
tree is called ordered when the children of any node are ordered by a sibling
ordering. We will focus on the class of ordered unranked trees.

Nodes in ordered unranked trees are elements of N* that is, finite strings
whose letters are natural numbers. A string s = ngn; ... defines a path from
the root to a given node: one goes to the ngth child of the root, then to the
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nith child of that element, etc. We shall write s; o s for the concatenation
of strings s; and sq, and ¢ for the empty string.
We now define some basic binary relations on N*. The child relation is

5§ =<ep 8 & s =so0i for somei € N.

The next-sibling relation is given by:
§ <ps 8 & s=3sp0iand s =sgo(i+1) for some sy € N* and i € N.

That is, s and s’ are both children of the same sy € N*, and s’ is next
after s in the natural ordering of siblings.

We shall use the superscript * to denote the reflexive-transitive closure of
a relation. Thus, <7, is the descendant relation (including self): s <*, s iff
s is a prefix of s or s = s’. The transitive closure of the next-sibling relation,
<. is a linear ordering on the children of each node: soi <y sojiff i <j.
We shall be referring to younger/older siblings with respect to this ordering
(the one of the form s o1 is the oldest).

A set D C N* is called prefiz-closed if whenever s € D and s’ is a prefix
of s (that is, s’ <%, s, then s’ € D).

Definition 3.1 A tree domain D is a finite prefir-closed subset of N* such
that soi € D implies so j € D for all j < 1.

Let X be a finite alphabet. We define Y-trees as structures that consist of a
universe and a number of relations on the universe.

Definition 3.2 (X-tree) An ordered, unranked X-tree T is a structure
T = <Dv '<zhv '<;kzsa (Pa)a€2>7

where D is a tree domain, <7, and <. are the descendant relation and the
sibling ordering, and the P,’s are interpreted as disjoint sets whose union is
the entire domain D. We let Trees(X) be the set of all X-trees.

An unordered unranked tree is defined as a structure (D, <%, (Py)acx),
where D, <7,, and P,’s are as above.

Thus, a tree consists of a tree domain together with a labelling on its
nodes, which is captured by the P, predicates: if s € P,, then the label of s
is a. In this case we write Ap(s) = a (the labelling function). Finally we will
define binary trees and definable tree languages.
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Definition 3.3 A binary tree domain is a set B C {1,2}* that is prefiz-
closed. For every s € D either both so1 and so2 are in D or none of them
is in D. A X-tree is a pair (D,A) where D is a tree domain and A is the
labelling function (from D to X).

We represent a tree T = (D, f) as a structure

My = (D, <, (P,)aes, SUCCT, SUCC).

The binary relation < is interpreted as the prefir relation on D, P, is inter-
preted as {s € D | f(s) = a}, and succ;(s182) < s3 = 51 0.

The following standard representation of ordered unranked trees, that was
introduced by Gottlob and Koch in [14], helps us translate ordered unranked
trees into binary trees.

firstchild
)
@ nextsibling
@
(a) unranked tree firstchild nextsibling
(%)
nextsiblin @

(b) binary tree

Figure 3.1: Example of translation

An unranked ordered tree can be considered as the structure
Tur = (T, root, leaf, (label, ) 4e s, firstchild, nextsibling, lastsibling),

where T is the set of nodes in the tree, “root”, “leaf”, “lastsibling”, and the
“label,” relations are unary, and “firstchild” and “nextsibling” relations are
binary. Most relations are defined according to their intuitive meanings or
were defined earlier so we just focus on two of them. “firstchild(ny,ns)” is
true iff ny is the oldest child of n;, “nextsibling(ny, ny)” is true iff, for some
i, ny and ng are the i-th and (7 4+ 1)-th children of a common parent node,
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respectively, counting from the left. Finally, “lastsibling” contains the set of
youngest children of nodes. Figure 1 makes the translation clear.

Let ¢ be a sentence of a logic £ and let 9y be the tree structure of the
tree T. ¢ defines the set of trees (tree language) given by

L(g) ={T | Mr = ¢}.

Definition 3.4 A tree language L is definable in a logic L, or is L-definable,
if there exists an L-sentence ¢ such that L = L(¢).

We will finally define a representation of strings and we will show that
we can identify a string with a tree. A string w = wyq,...,w,_ 1 of length
|w| = n over an alphabet ¥ can be considered as the structure

w=({0....,n —1},succ, (P,)sex) ,

where succ denotes the binary successor relation on {0,...,n — 1} and P, =
{i | w; = a}.
Let

Tw = <{€7 17 117 T 1n71}, Succy, (PaTw>a€E> .
It is easy to see that T, is a unary tree —every node either has exactly one

child or is a leaf— and that T, and w are isomorphic.

3.2 XML

Databases and the Web are connected at many levels. Web pages are in-
creasingly powered by databases. Because of the Web some of the basic
assumptions of Database Theory should be revisited. A classical (relational)
database is a coherently designed system. The system imposes rigid struc-
ture and provides queries in a controlled environment. The Web escapes any
such control as it is a free-evolving, ever-changing collection of data sources
of various forms, interacting according to a flexible protocol. So the necessity
of a database model that would provide a flexible format for data exchange
between different types of databases arose [31]. During the last years the
World Wide Web Consortium (W3C) has adopted XML (eXtensible Markup
Language) as the standard for data exchange on the Web. Hence XML has
become a central component of modern data management. Unlike the re-
lational model, whose birth was preceded by solid theoretical foundations,
XML is the fruit of an often chaotic design process [30].

A new data model requires new tools and new techniques. As in the
cross-fertilization between logic and databases, XML imposes new challenges
on the area of automata and logic, while the latter area can provide new
tools and techniques for the benefit of XML research.
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3.2.1 XML Documents and Schemas

XML is an augmentation of HTML [27, 28]. HTML, short for HyperText
Markup Language, is the predominant markup language for the creation of
web pages; markup is the process of taking ordinary text and adding extra
symbols. An XML document consists of nested elements with ordered sub-
elements. Each element has a name (a tag or a label).

<film title= "The Fountain">
<editor>
Darren Aronofsky
</editor>
<year>
2006
</year>
<runtime>
97 min
</runtime>
</film>

It can be easily seen that XML data can be modelled as an ordered,
labelled, unranked tree.

Editor

with:

e )r(e) = “The Fountain”

“Darren Aronofsky”

o Ar(21) = “2006”

(

o Ar(11)
(
(

“97 min”

L4 )\T 31)
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where Ar is the labelling function.

An XML schema is a description of a type of XML document, typically
expressed in terms of constraints on the structure and content of documents
of that type, above and beyond the basic constraints imposed by XML itself.
A number of standard and proprietary XML schema languages have emerged
for the purpose of formally expressing such schemas, and some of these lan-
guages are XML-based, themselves. The basic schema mechanism for XML
is provided by Data Type Definitions (DTDs). This defines the elements
that may be included in an XML document, what attributes these elements
have, and the ordering and nesting of the elements. A newer XML schema
language, described by the W3C as the successor of DTDs, is XML Schema,
or more informally referred to by the initialism for XML Schema instances,
XSD (XML Schema Definition) [29]. While DTD provides a basic grammar
for defining an XML Document in terms of the metadata that comprise the
shape of the document, an XML Schema provides this, plus a detailed way
to define what the data can and cannot contain. As a result XSDs are far
more powerful than DTDs in describing XML languages.

3.2.2 XPath

XPath is a simple language for querying an XML tree and returning a set
of nodes [8]. Tt is increasingly popular due to its expressive power and its
compact syntax. These two advantages have given XPath a central role both
in other key XML specifications and XML applications. It has been intro-
duced by the W3C as the standard query language for retrieving information
in XML documents. The current version of the language is XPath 2.0, but
version 1.0 is still the more widely-used version.

In their simplest form XPath expressions look like “directory navigation
paths”. For example, the XPath

/director/genre/film

navigates from the root of a document (designated by the leading slash “/”)
through the top-level “director” element to its “genre” child elements and
on to its “film” child elements. The result of the evaluation of the entire
expression is the set of all the “film” elements that can be reached in this
manner, returned in the order they occurred in the document. At each
step in the navigation the selected nodes for that step can be filtered using
qualifiers. A qualifier is a boolean expression between brackets that can test
path existence. So if we ask for
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/director/genre/film[year]

then the result is all “film” elements that have a least one child element
named “year”. The situation becomes more interesting when combined with
XPath’s capability of searching along axes other than the shown children of
axis. Indeed the above XPath is a shorthand for

/child::director /child::genre /child::film[child::year],

where it is made explicit that each path step is meant to search the child axis
containing all children of the previous context node. If we instead asked for

/child::director /descendant::*[child::year],

then the last step selects nodes of any kind that are among the descendants
of the top element “director” and have a “year” sub-element.

Let’s introduce the syntax of XPath. The primary syntactic construct in
XPath is the expression.

Expression e = /p | p.

Path p=pi/p2 | plg] | exUea | exNex | (p) | an.

Qualifier g=qand q | gorq |notq | e.

Axis a= child | descendant | self | descendant-or-self | parent | ancestor |
ancestor-or-self | following-sibling | following | preceding-sibling | preceding.
Node Test n = t | * where tis an element of the alphabet of the
XML-document.

The formal semantics functions S, and S, define the set of nodes returned
by expressions and paths, starting from a context node z in the tree. The
function S, defines the semantics of qualifiers that basically state the exis-
tence or absence of one or more paths from a context node x. The semantics
of paths uses the navigational semantics of axes S,. First we will define the
following functions:

root() returns the root of the tree,

children(z) returns the set of nodes which are children of the node =z,

e parent(x) returns the set {y | x € children(y)},

the relation < defines the ordering;:

x < y iff the node x is before the node y in the depth-first traversal
order of the n-ary XML tree,
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e name(z) returns the XML labelling of the node x in a tree.

Sp [pr/p2lx =A{z2 [ 1 € Sy [p]w A wy € Sy [pa] 71}
Sy plall # = {1 | 21 € Sy [l A S, la) o}

Spler Ues)x = Se[er] x U S, [ea] .
SplerNes]x ={x; |21 € Seler]x ANy €S, [ea] ).
Sy ()7 = Sy bl

Spla sz ={z1 |z € Syla]x Aname(x;) = s}.
Spla o ={x |z, € S,lalx}.

Selq1 and o]z = Sy (1] © A Sy [g2] -
Sqlqror golr = Sy lq1]x V Sy [ge) = .
Sqnot glz = =S, [q] = .

Syle]x = Sele]x #0.

Sg[child]z = children(x) .

Sa[parent|x =parent(z) .

Sqa[descendant|z =children™(z) .

Salancestor|z =parent™ ().

Saselflx = {z}.

Sa[descendant-or-self]lz = S, [descendant|x U S, [self]x .
Salancestor-or-self|x = S, [ancestor]z U S, [self]z .
Sa[preceding|r = {y | y < x} — S,[ancestor|z .

Selfollowing]z = {y | # < y} — S,[descendant|z .
Sa[following-sibling]z = {y | parent(y) = parent(z) Az < y}.
Sa[preceding-sibling]x = {y | parent(y) = parent(z) Ay < z}.

As we have already said an XML-document can be seen as an ordered,
labelled, unranked tree. We will show that every expression of XPath can
be translated into MSO over trees. First we observe that all navigational
primitives of XPath are MSO-definable. For example x is a descendant or
self of y in an XML tree T iff T |= y <%, x. For every axis a of an XML tree
T we define the MSO-formula « with the property: x is “a” of y iff a(z,y)
holds in 7'. Finally any XPath query of contex x and result y is translated
into an MSO formula using the next figure
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Wel/pli = Fz(Vw(z <" w)) AW,[pl?. (3.1)
Welpli = Walpli. (3.2)
Walp/polf = F2(Wplpi]z A Wylpal?) - (3.3)
Walplally = Whlpli A Woldly - (3.4)
Wyler Uesl? = Weler]? Vv Welea] . (3.5)
Wylen Nea)? = Weler]y A Weles] (3.6)
Wil(p)l = Wylpli- (3.7)
Wpla 1] = a(z,y) Ay € P (3-8)
Wpla = #[f a(z,y) . (3.9)
Wolarand ga]. = Wylai]e A Welge]e (3.10)
Wolaiorgale = Wela]o V Wolao]w (3.11)
Wynotql, = —W,[ql.- (3.12)
[e]m = Hy(We[e]g) . (3'13)

For example to translate the expression
child::director/descendant::year[parent::film],

we follow the next steps (at the end of each step we give the rule that we
used):

o W [child . director /descendant :: year[parent :: lem]} ,

o Iz (W[child i director])? A W[descendcmt ;1 year|parent :: film]} ,
(3.3)

o 2z (Child(l‘, 21) A2 € Pirector \€W [descendant :: year]y AW [[parent :
film]} ) . (3.8),(34)
y

o I (child(x,zl) A 21 € Pirector N\ descendant(zy,y) Ny € Pyear) A
3z (Wiparent = film];?), (3.8),(3.13)

e Jz; (child(x,zl) A 21 € Pirector N descendant(zy,y) Ny € Pyea,u) A
zo(parent(y, z2) A z2 € Prim) . (3.8)
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3.3 Tree Automata

The goal of this section is to study tree automata and their links with logic.
We start with a definition of binary tree automata. We then introduce rank-
k types of MSO formulae and we finish by proving Thatcher and Wright’s
theorem that the languages accepted by tree automata are exactly the lan-
guages defined by MSO formulae. An automaton is a mathematical model
for a finite state machine (FSM). An FSM is a machine that, given an in-
put of symbols, “jumps” through a series of states according to a transition
function.

The connection between automata and logic goes back to work of Biichi
9] and Elgot [10] who showed that finite automata and monadic second-
order logic (interpreted over finite words) have the same expressive power
and that the transformations from formulae to automata and vice versa are
effective, since the translations can be computed by a Turing Machine. Later,
in work of Biichi [11], McNaughton [12] and Rabin [13], such an equivalence
was shown also between finite automata and monadic second-order logic over
infinite words and trees.

Tree automata deal with tree structures, rather than the strings of more
conventional state machines. According to how the automata run on the
input tree, finite tree automata can be of two types: (a) bottom-up, (b)
top-down. This is an important issue, as although non-deterministic top-
down and bottom-up tree automata are equivalent, deterministic top-down
automata are strictly less powerful than their deterministic bottom-up coun-
terparts. We will only deal with bottom-up tree automata.

3.3.1 Binary Tree Automata

Definition 3.5 (Tree automata and regular tree languages) A nonde-
terministic tree automaton is a tuple A = (Q, 8, F,qo), where Q) is a finite
set of states, qo € Q is the initial state, FF C Q is the set of final (accepting)
states, and 5 : @ X Q x X — P(Q) is the transition function.

Given a tree T with domain D a run of A on T is a function r: D — Q
such that:

e if s is a leaf labelled a, then r(s) € 8(qo, qo, @),

e ifr(sol) =g¢q, r(so2) = ¢ and s is a node labelled a, then r(s) €
6(q,4',a).

A run is accepting if r(e) € F, that is, the root is in an accepting state. A

tree T is accepted by A if there exists an accepting run. We let L(A) denote
the set of all trees accepted by A. Such sets of trees will be called regular.
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The definition of a deterministic tree automaton is the same with the
restriction that |8(¢,¢’,a)| = 1 for all ¢,¢' € @ and for all @ € ¥. So, in the
deterministic case, we will treat d as a function () X ) x ¥ — Q.

3.3.2 MSO and Tree Automata

We now show the link between monadic second-order logic and tree automata.

Theorem 3.1 (Thatcher and Wright [34]) A tree language is reqular iff
it 1s MSO-definable.

Proof.

Let L be a regular set of Y-trees. Then there is a finite tree automaton
A that accepts exactly those trees that are elements of L. Assume that
Q ={qo,--.,qn_1} is the set of states of A, g is the initial state, F' C ) the
set of accepting states and § the transition function. We will construct an
MSO-formula that defines L. Let ¢ be the sentence

@ = ElXoXl...Xm,1 [(PP/\(Pg/\(Pt/\QDa].
Suppose that T'= (D, 1) is a labelled binary tree and
My = (D, <, (P,)aes, SUCCT, SUCC) |

is its tree structure. The sets Xy, X1,..., X,,—1 code some run r of A on T
in the sense that, for all n € D, we want n € X; < r(n) = ¢;.
The FO-formulae ¢,, ¢, @1, ¢, are defined as follows:

e ¢, asserts that X, ..., X, is a partition of D. An easy way to express
that in FO is

o = \/ (Xu() \ ~X,(2)
i=0 i

e ¢, asserts that if s is a leaf labelled a then r(s) € 6(qo, g0, a).
w=ve| (=@ <y) — \V (P@ AV X@)].
aey 7€3(qo,q0,0)

e o, asserts that if r(so 1) = ¢, r(so2) = ¢ and A(s) = a then r(s) €
(¢, ¢, a).
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oy = Yayz[(sucey(z,y) A suces(z, 2)) —

V V& AX) A\ X))

0<i,j<m a€X a1€0(gi,95,0)
e ¢, asserts that the root is one of the accepting states.

b = Va((Vy=(y <) — \/ Xi(2)).

¢ EF

It is easy to see that My =9 < T € L so L(p) = L.

Conversely, let ¢ € MSO be a sentence of quantifier rank r in the vocab-
ulary oy for Y-trees. We construct an automaton A, = (@, qo, 5, F') that
accepts the binary tree T iff My = ¢.

Let t1,..., T be an enumeration of the finite number of rank-r MSO-
types of Y-trees (more precisely, r, 0, O-types or, in other words, sentences).
Let ¢; be an MSO sentence of quantifier rank 7 defining the type t;. Then

Mr ): (]bz @mso—tpk(SﬁT) =T;.

Since ¢ is a sentence of quantifier rank 7 it must be a disjunction of some
subset of the 7 g =\/,.; ;. Put @ = {t,..., %} and let F = {7; | i € I}.

We further assume that t; is the empty type of 91, where ¢ denotes the
empty tree. That is, this is the only type among the t;’s that is consistent
with =3z(x = z). Let ¢o = 1.

. /@\T2

The transition function 8 : Q x Q x X — 29 is defined as,




3.4. EXPRESSIVE POWER OF LOGICS ON TREES 31

T € 8(1j, 1, a) if, and only if, there are trees 77 and 75 such that
mso-tpg (M, ) = 1; and mso-tp,(M7,) = 7
and if T is the tree obtained by “hanging”
T, and T5 as children of a root node
labelled a (as above) then mso-tp,(IMr) = 1;

Using Ehrenfeucht-Fraissé games [20, 21] it can be easily shown that
if Ty, Ty, T3, Ty are trees with mso-tpg(9My) =mso-tpg(Mr,) and mso-
tpr (Mp,) =mso-tp(Mr,) then mso-tpg(Mr) =mso-tpy (M) where T, 7"
are the trees obtained by hanging 77,7, and T3, Ty respectively as children
of a root node labelled a. As a result A, is deterministic.

We will prove, by induction that if 7§ is the binary subtree that consists
of s and every s’ such that s < &', then r(s) =mso-tpy(9Mr,). If s = ¢ then
r(s) = 7, the initial state. But 71 is the MSO-type of the empty tree as
required. Otherwise, s is a node with children s; and s,. For i € {1,2},
let T; be the subtree rooted at s; (T = T, = ¢ in the case that s is a
leaf). By the inductive hypothesis, r(s;) =mso-tp,(T;) and, by definition of
8, r(s) =mso-tpy(T), where T is the subtree rooted at s as required. [

3.4 Expressive power of logics on trees

In this section we will prove that, over finite labelled trees, MSO has the same
expressive power as MLFP. First, we will show that for every MLFP-formula
there is an equivalent MSO-formula. Conversely, since we have already shown
that every MSO-formula can be translated into a tree automaton, we just
need to prove that every regular language is MLFP-definable. To do that
we will prove that every tree automaton can be translated into an S-MLFP-
formula and that

Proposition 3.1 Owver finite structures MLFP =S — MLFP.

Proof.

Let o be a vocabulary, n € N and let for each i < n, ¢;(z1,X1,...,X,)
be an MLFP-formula positive in Xq,...,X,,. We will show that for every
i < n there is an MLFP-formula ¢, (z) such that for all A € STRUCT]o],

A = Ve (dxi(2) < [UPs, x, o0, x, (P15 00)]x, (2)-
The proof is by induction on n.

e For n =1 there is nothing to prove.

e Suppose that it holds for any k& < n.
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e Fix an i < n. By the induction hypothesis for every j € {1,...,n}\{i}
there is an MLFP-formula ¢y in vocabulary o U{X;} such that for all
S € STRUCT[o U {X;}],

& b= Vo (9, (v)

[]‘fp.’tl,Xl,...,:Ei_1,Xi_1,:Ei+1,Xi+1,...,.’tn,Xn((P17 Tty (107;_17 (Pi+1’ R (Pn)]Xz (l‘)> :

Let ¢l(z;,4) be the MLEP-formula obtained from ¢;(z;, X1,...,X,) by
replacing every atom of the form X;(z), for j # 4, with the formula
¢, (x). We will prove that [Ifp,, x,(#;)]() is the formula we are looking
for.

For every V' C A and every j # i let

K;(V) = {aeA[@V) | ¢k (a)}.
Li = {acA|AE [p,, v (¢)](a)}.
M; = {ae Al U, x, o, (915 ¢n)lxi(a)}

Since L; is a fixed-point of ¢] and from the definition of ¢ we have

Li = {CL €A | A ): @z(Kl(Lz)a .. .,Kifl(Li>,Li,Ki+1(Li), . ;Kn(Lz>} .

Moreover from the definition of ¢y we have
Ki(L;))={a€ A|UAE= @j(Ki(Li), ..., Ki1(Li), Li, Kip1(Ls), ..., Ko (Li) }

SO (Kl(Lz), ceey Ki—l(Li)a LZ', Ki—i—l(Li)a ceey Kn(Lz)) is a simultaneous
fixed-point of (¢1,...,¢,) in A. But (My,...,M,) is the least fixed-
point of (¢y,...,¢,) in A so M; C L;.

On the other hand (M, ..., M; 1, M; .1, ..., M,) is a simultaneous fixed-
point of (¢1,..., ®i—1, @it1, ..., ¢n) in (A, M;) which least simultaneous
ﬁxed—point is (Kl(Mz)a Ceey Kifl(Mi), Ki+1(Mi), caeey Kn(Mz)) SO K](Mz>
C M;, for all 7 # j. We will show that M; is a pre fixed-point of ¢;
{aeA| (A M) gi(a)} =
{CL €A ‘ 2 ): (Pl(Kl(M1>7 sy Kifl(Mi% Mi; Ki+1(Mi>7 sy Kn(Mz)} -
{ac Al A= (M, ..., Mi_y, Mj, Mii, ..., My} = M;.

By Proposition 2.1 we know that the least fixed-point of an operator is
the intersection of all pre fixed-points, as a result L; C M;.
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Since Lz = Mz
A= Vadx, (2) < [Py, w0 x, (015 0n)lxi (2),
where dx, (x) = [Ifp,, x,¢!)(x) =

Theorem 3.2 Quver finite labelled trees MSO = MLFP.

Proof. Easily every formula of the form [Ifp, yo(z, X,7,Y)](2) is equivalent
to VX (Vm((p(x, X,5,Y) — X(x)) = X(z)) .

For the converse it suffices to prove that regular tree languages are S-
MLFP definable. Let L be a regular tree language accepted by an automaton
A. Assume that Q@ = {qo,...,qm-1} is the set of states of A, qo is the
initial state, F' C @ the set of accepting states and § the transition function.
Similarly to the proof of Theorem 3.2 we construct an S-MLFP formula that
defines L. Suppose that "= (D, f) is a labelled binary tree and

My = (D, <, (P,)aes, SUCCT, SUCCH)

its tree structure. For ¢ € {0,...,m — 1}, the set X; will be the set of nodes
v of the tree such that there is a run r of A on T with r(v) = ¢;. Let

s(z) = (Wy-(z <y) A\ Pule),

a€S s.t. q;€58(qo,q0,a)

Bi(xz) = Jyz <succl(x, y) Asuccy(z, 2) A \/ (Pa(x)/\Xj(y)/\Xk(z))> .

(a,q5,q1) s-t. ¢i€8(qj,qr,a)

Let also

vi(x) = oi(z) V Bi(z)
o(y) = Ju(Va-(z < 2) A \/ Xi(x)).

¢ EeF

Formula ; says that x is a leaf of the tree and it is labelled with a symbol
a such that the automaton can move into state ¢; when it reads a at a leaf.
Bi says that x has left child y and right child z and the states ¢; of y and g,
of z are such that, when the character a is read at x, the machine can move
into state g;. Finally ¢ says that there is a position in the word that is the
last position and that the automaton can be in an accepting state when it
reaches that node.
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It is easy to see that ¢;(z)’s, ¢ are positive. The simultaneous fixed-point
of the above formulae computes the relations: X;°(a) holds iff there is a run
r such that r(a) = ¢;. Thus

.....



Chapter 4

Succinctness

Succinctness is a natural measure for comparing the strength of logics that
have the same expressive power. Intuitively, a logic L; is more succinct than
another logic L, if all properties that can be expressed in Ly can be expressed
in L; by formulae of approximately the same size, but some properties can
be expressed in L; by significantly smaller formulae.

In a natural way, we view formulae as their syntax trees, where leaves
correspond to the atoms of the formulae, and inner vertices correspond to
Boolean connectives, quantifiers and fixed-point operators. We define the
size (or, length) ||¢|| of a formula ¢ as the number of vertices in the syntax
tree of ¢.

For example the syntax tree of

Mu,v) = B, Blx,y) v 32(E(z, 2) A R(z,y))(u,v)

is the following
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So gl = 7.

Data complexity can be used as a measure of expressiveness as it replies
to the question: “how difficult are the individual questions asked in this
language?” Combined complexity, on the other hand, is a measure of suc-
cinctness of the language because it answers to the question: “How difficult
is answering different questions asked in this language?”

Definition 4.1 Let L; and Ly be logics, let F' be a class of functions from N
to N, and let C be a class of structures. We say that L, is F-succinct in Lo
on C' iff there is a function f € F such that for every L,-sentence ¢, there
is an Lo-sentence @ of size ||@2|| < f(||¢1]]) which is equivalent to ¢, on all
structures in C.

Succinctness has received little attention so far. Most known results are
about temporal and modal logics [35, 36, 37]. The motivations for these
results has come from automated verification and model-checking.

4.1 MSO vs MLFP

We have already shown that, over finite trees, MSO and MLFP has the same
expressive power. In this section we will compare their succinctness. After we
define some functions that we will need in our proofs, we use the translation
from MSO to tree automata, which we introduced in the previous chapter,
to prove that MSO is Tower(O(m))-succinct in MLFP. Afterwards we show
that we cannot do essentially better by proving that (under a complexity

theoretic assumption) there is no translation from MSO to MLFP of size
Tower(o(m)).

Definition 4.2 Let Tower : N — N be the function defined via

Tower(0) = 1
Tower(n +1) = 2Tewer(),

Let T : N x N — N be the function defined via

T0,n) = n
T(h+1,n) = 2Thn)
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Let also

log (k) = &k
log™ (k) = log(log™ (k).

Finally let log” : N — N be the function with the following property:
Tower(log*(n) — 1) < n < Tower(log*(n)) .
In other words log™ is the inverse function of Tower.

Theorem 4.1 MSO-sentences are Tower(O(m))-succinct in MLEP on the
class of all labelled trees.

Proof. 'We have to prove that there is a function f : N — N, with bound
f(m) < Tower(O(m)) such that for every MSO-formula ¢, there is an equiv-
alent MLFP-formula ¢, of size ||ga|| < f(||¢1]])-

In the previous chapter we showed that we can translate an MSO-formula,
¢1, of quantifier rank & into an automaton A, = (Q, qo, 6, F) where |Q| is
equal to the number of MSO/[k]-sentences.

We claim that there are Tower(O(k)) MSOIk]-sentences. By Lemma 3.1
we know that there are finitely many MSO[0]-formulae. Let ¢ = |[MSO[0]|.
We assume that there are T'(n, /) MSO[n| types. Each formula ¢(zy,...,x,
Xi,...,Xy) from MSO[n + 1] is a Boolean combination of formulae of the
form Jxd(xy, ..., x5, X1, ..., Xy, ) where x is a first- or-second order variable
and ¢ € MSO[n]. So there are 279 = T(n + 1,¢) MSO[n + 1] types and
our claim is proved.

Using the method that we used in the proof of Theorem 3.3 we can
translate an automaton with Tower(O(k)) states into an S-MLFP-formula
@3, where ||@3|| < Tower(O(k)). Finally, by Proposition 3.1, ¢3 is equivalent
to an MLFP-formula ¢, of length ||¢s| < Tower(O(k)).

The function that specifies the length of the above translation has the
desired properties so the proof is completed. [

A formula is in conjunctive normal form (CNF) if it is a conjunction
of clauses, where a clause is a disjunction of literals. We write CNF(n) to
denote the class of all CNF-formulae the propositional variables of which are
among Xo,..., X, 1.

The following theorem is due to Grohe and Schweikardt [1].

Theorem 4.2 Let y € CNF(n), unless SAT is solvable by a determinis-

tic algorithm that has, for every i € N time bound ||Y||log(i)(n) MSO is not
Tower(o(m))-succinct in MLFP on the class of all finite trees.
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To prove the above theorem we will show that if MSO is Tower(o(m))-
succinct in MLFP then we can construct a deterministic algorithm solving

SAT that has, for every i € N, time bound || Y||1°g(i)(n). It is generally thought
that there is no SAT-solver with such time bounds. The following figure
shows the main steps of the algorithm.

YLwAQGMSOingMLFPiYeS/NO.

The SAT-instance y is the input. In (1) we construct a string w that
represents y. The algorithm in (2) computes an MSO-formula ¢(x) such
that ¢ specifies (when evaluated in w) a canonical satisfying assignment for
y. Let f be the function that specifies the size of the translation from MSO
to MLFP. In step (3) we check for all MLFP-formulae ¢ where ||| < f(||¢]])
whether ¢ specifies a satisfying assignment for y. If it does the algorithm
accepts its input otherwise it rejects.

It is obvious that ||¢|| should be as short as possible so that the compu-
tation can proceed within the stated total time bounds. To achieve that we
will use an encoding that Frick and Grohe introduced in [2].

4.1.1 Succinct Encodings

First of all we will give, for every h > 0, an encoding of natural numbers such
that for every n there is a first order formula of length (of the binary encoding
of the formula) O(n) stating that two words encode the same number k where
k <T(h,n). We will define a sequence of encodings uy, for h > 1, of natural
numbers by words over certain finite alphabets.

Forall h > 1 welet ¥ ={0,1,<1> < /1>,...,<h></h>}. The
tags < i >, < /i > represent single letters of the alphabet and are just chosen
to improve readability. Let L : N — N such that L(n) is the length of the
binary representation n — 1. So L(0) =0, L(1) = 1, L(n) = [log(n — 1)] + 1
for n > 2. By bit(i,n) we denote the i-th bit of the binary representation of
n.

We encode every number n € N by a string u,(n), so y, is a function
from natural numbers to finite strings of alphabet Y, which is inductively
defined as follows:

w(0) = <1>< /1>,
ui(n) = <1>bit(0,n—1)bit(l,n—1)... bit(L(n) —1,n—1) < /1>,

forn > 1. For h > 2, we let

u(0) = <h></h>,



4.1. MSO VS MLFP 39

un(n) = <h>
un—1(0)bit(0,n — 1)
U (Dbit(1,n — 1)

l;1,1,1(Ij(n) — Dbit(L(n) —1,n—1) < /h > .

Lemma 4.1

a) |un(n)| € O(hlog®n).
b) There is an algorithm that, given h,n € N, computes un(n) in time

O(lun(n)])-

Proof.

a) We define functions L; : N — N as follows: Ly(n) = L(n), for all
n € N and L;(n) = L;—1(L(n)) for all i,n € N with ¢ > 2. We also define
P, : N — N for ¢ > 1 where

It is easy to see that for all i > 2 and n > 0 we have P;(n) = L(n)P;_1(L(n)).
We first prove, by induction on h > 1, that for all n > 0,

un(n)| < 4h - Py(n). (4.1)
e For h =1 we have u1(n) =2+ L(n) < 4L(n) = 4P (n).
e Suppose that (4.1) holds for h — 1, where h > 2.

e We need to show that (4.1) holds for h:

L(n)
lun(n)| = 2+ L(n) + Z |un—1(2)]

L(n)

= 2+ Ln)+2+ Z |n—1(3)]

L(n)
4+ L(n)+ > A(h—1)Pyy(i)

=1

IN
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A L) + A(L(n) — )(h — )P (L(n)
L(n) +4(h —1)L(n)Py_1(L(n))

L(n) 4+ 4(h — 1)Py(n)

4hPy(n).

(VAN VAN VANVAN

As we know L(n) € O(logn) so to complete the proof of the lemma it
suffices to show that there is a constant ¢ such that for all h > 1,n > 0 we
have P,(n) < cL(n)?. Since L(L(n)) € O(loglogn) and L(n) € 2(logn),
there is an ng such that for all n > ng we have

(L) < L(n).

Let P = {P,(m) | m < ng,h > 1}. For h > log*(ng) we have that
Ly(m) < Lp(ng) = 0 and as a result L,(m) = P,(m) = 0. So there are only
finitely many values of m < ng and h for which P,(m) > 0. Since P is a
finite set we can define ¢ = max(P). We prove that P,(n) < c¢- L(n)? by
induction on h > 1:

e P (n) = L(n), so this it is true for h = 1.
e Suppose that it also holds for h — 1, where h > 2.

e We have Py,(n) = L(n)Py—1(L(n)). If L(n) < ng, then P,_1(L(n)) <c¢
and thus P,(n) < ¢L(n). On the other hand if L(n) > ng, we have
L(L(n))? < L(n). By induction hypothesis, P, 1(L(n)) < cL(L(n))?
SO

Py(n) = L(n)P,_1(L(n)) < L(n)cL(L(n))* < cL(n)*.

b) The algorithm computes u,(n) in a straightforward recursive manner.
We get the following recurrence for the running time R(h,n):

L(n)
R(h,n) < O(L(n)) + > R(h—1,L(i)).
i=0
This recurrence is very similar to the one we used earlier and can easily
be solved using the same methods. [

Lemma 4.2 Let h > 1, { > 0. There is an FO(<)-formula yne(x,y) of size
O(hlogh+ () such that for all words W, a,b, and m,n € {0,...,T(h,{)} the
following holds: If a is the first position of a subwordUd T W withU = uy(m)
and b is the first position of a subword V T W with V = u,(n), then
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W, a,b) = xnelz,y) & m=n.

Furthermore, the formula y,, can be computed from h and ¢ in time

O(hlogh + 0).

Proof.

The proof is by induction on h. Let h = 1. Recall that the u;-encoding of
an integer p > 1 is just the binary encoding of p — 1 enclosed in <1>, </1>.
Hence to say that = and y are the first positions of the u;-encodings of the
same numbers, we have to say that if xq,...,x; are the positions between
<1>and </1>and ¥, ...,y are the positions between <1> and </1> then
z; and y; should be both 1s or 0s. For numbers p € {0, ...,7(1,¢)}, there are
at most L(p) < ¢ positions to be investigated. To express this, we let be the
following formula:

we(T,y) =3z xeyr Ly

1

(succ(x, x1) A /\ ((P</1>(xi) ANxi=xip1) V. (2P<jis(2;) Asuce(x;, xiﬂ))) A

i=1
-1

succ(y, y1) A /\ <(P</1>(yi) ANyi =Yiy1) V. (0P<jis(yi) Asuce(y;, Z/z'+1))> A
i=1

£
Pers() A Peas () 1\ () = Pulid) A (Pioi) = Pr()) ).

Suppose that we have already defined y;_; (2, ).
First we define the following formulae

Xﬁlt(l‘,y) =P ()N (z <y)A Vz((m <zANz<y)— —|P</h>(z)> )

Hhs (29) = Pes (DA < 9)AP< s (A2 (2 < 22 < ) = —Pepns(2))

The first formula says that y is in the interior of the subword of the form w,(p)
starting at x and the second one that y is the last position of the subword of
the form uy(p) starting at =, provided such a subword indeed starts at .
To say that the subwords starting at x and y are u,-encodings of the
same numbers, we have to say that for all positions w between x and the
next closing </h> and all positions z between y and the next closing </h>, if
w and z are first positions of subwords isomorphic to y,_1(g) for some ¢ € N,
then the positions following these two subwords are either both 1s or both
0s. For all subwords of u,(p) of the form w,—1(q) we have ¢ € {0,..., L(p)}.
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In order to apply the formula y;_1, to test equality of such subwords, we
must have ¢ < L(p) <T(h — 1,¢). Observe that for all h,¢ > 1 we have

T(h,t) =max{n € N | L(n) <t(h—1,0)} .

So the last inequality holds for all p < T'(h,¢). Thus for such p we can use
the formula y,,_1, ¢ to test equality of subwords of uy(p) of the form w,—1(q).
As a first approximation to our formula yj, ¢, we let y} ,(z,y) be the following

0 (il 00 Pt 0)) = 322D P () Agca a0, 2)) )
o (a2 Pt 2)) = 30 (gl 0) A Parc10) A1) )
oz (i 0) A P 0) A a02) A Peaet () A g, 2)
= 302 (o (w0, 0) A g (2 2) A (Prlsuce(s)) H(succ(w')))) .

The first line of this formula says that every subword of the form u,_1(q)
in the subword of the form uy(p) starting at = also occurs in the subword of
the form y,(p) starting at y. The second line says that every subword of the
form up—1(¢q) in the subword of the form uy(p) starting at y also occurs in
the subword of the form u,(p) starting at x. The third and fourth line say
that if w and z are the first positions of isomorphic subwords of the form
un-1(q), then they are either both followed by a 1 or both by a 0 (since the
only two letters that can appear immediately after a subword u,_1(¢) in a
word up,(p) are 0 and 1). This formula says what we want, but unfortunately
it is too large to achieve the desired bounds. The problem is that there are
three occurrences of the subformula yj;,_1 ¢(w, ). We we can easily overcome
this problem. We let

2w, 2) = 3w’ (g (w, w') A g (2, #) A P(suce()) = Pifsuce(w'))) and
i) =032 (sl 0) = ial,2))
A(ea ) = i (,2)) A (Peno1(w) = Pan15(2)
A (Ol () V g, 0)) A P () ) —
Hrosalw,2) A, ) )

Observing that ||y1,¢|| € O(¢) and that ||[yn.el| = || xn-1.|| + clogh for some
constant ¢, we obtain the desired bound on the size of the formulae. To see
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why we need the factor log h here, recall that ||y || is the length of a binary
encoding of ¢, . The vocabulary of the formula ¢y, o is of size O(h), thus the
binary encoding of the symbols in this vocabulary will require O(log h) bits.
The fact that y;, can be computed in time linear in the size of the output
is immediate from the construction. [

Our goal is to encode a SAT instance or in other words a CNF formula so
why do we care so much about encodings of natural numbers? We will show
that we can use the encoding we defined to introduce an encoding of CNF-
formulae where the numbers we code are used as the names of the variables
in codings of formulae.

To encode a CNF-formula y by a string we use the alphabet

Y =Y, U{<asn >, < /asn >, < val > < [val > +, —, < lit >, < /lit >,
< clause >, < /clause >, < enf >, < /enf >, x}.

The literals X;, =X;, 7 € N, are encoded by the strings

un(X;) =< 1it > wp(4)+ < /lit > .
un(—XG) =< lit > up(0)— < /lit > .

A clause C' =¥y V...V {,,, where {; are literals, is encoded by the string

un(C) =< clause > u,(¢1) . .. un (b)) < /clause >.

A CNF-formula y = Cy A ... A C} is encoded by
up(y) =< cenf > up(Ch) ... up(Cr) < Jenf >.

Finally to make the manipulation of the encoding easier, we add the
following string to it.

un(Xoy ...y Xpno1) = < asn >
< val > u(0)* < /val >
<val > uu(n — 1)* < /val >
< Jasn >.

So we encode a formula y € CNF(n) by the string

un(y) = W (v)un(Xo, - -, Xp1) .

We call any function a : {Xy,..., X,,—1} — {TRUE, FALSE} an assignment.
Let P be a set of positions that carry the letter x in u,(y). We will call p; the
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*-position directly after the substring u,(i). It is easy to see that P specifies
an assignment:
a"(X;) =TRUE < p; € P.

Moreover any assignment « specifies a set:
P* ={p; | 2(X;) = TRUE}.

First we will show that our encoding is succinct and that it can be com-
puted by a “fast” algorithm. By the definition of u(¢) and yy (o) and using
Lemma 4.1 we can easily prove the following

Lemma 4.3 Let h € N and y € CNF(n) then |ux(y)| = O(hlog® n(||y|| +
n)). Moreover there is an algorithm that computes uy(y) in time O(hlog®n
(llell + n)) (that is, linear in the size of the output).

Lemma 4.4 For all h,l € N there is a FO(<)-formula ¢, o(P), where P is a
free second-order variable, of size O(hlog h+ () such that for alln < T(h,{),
y € CNF(n)

un(v) E dne(P) & o is a satisfying assignment for y.

Furthermore, the formula ¢ can be computed in time O(hlogh + ().

Proof.

Let yne(z,y) be the formula defined in Lemma 4.2. We are going to
use it to check if two subwords of yy(y, @) that represent variables actually
represent the same variable.

Also recall the formula y! . (x,y), defined in the proof of Lemma 4.2,
which says that y is the last position of the subword of the form w,(n)
starting at x.

We first define a formula gb};te(x, P) such that the subword of ¢ starting
at x is the encoding of the literal with the following property: If the literal is
of the form X; the x-position p that occurs exactly after the substring uy,(7)
belongs to P, otherwise if the literal is of the form = X;, p ¢ P. So }Lif,_,(x, P)
is true if the literal that starts at position x evaluates to true under the

assignment P.
We let

}Lifé(x, P) = 3yz’y (P<va1> (y) A xne(suce(z),succ(y)) A X{;st(succ(x), ') A

. (suce(y), y') A <P+(succ(x’)) — P(succ(y’)))).
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}Lifé(x, P) says that there are positions z’, y and ¢’ in the input such that the
segment x ...z defines a literal and y ...y is the part of the assignment that
gives a value to the variable in the literal z...z" and that this value makes
the literal true. In both formulae, succ is used as an abbreviation; we could
rewrite them without it.

Next, we define a formula ¢§'3"*(z, P) such that if the subword of ¢
starting at x is the encoding of a clause, then it contains a y that satisfies

y}lifg, in other words the clause contains a satisfied literal. We let

;:zl,%use(fa P) = Pcause> () A <E|y(Vz((x <zANz<y)—
_'P</clause> (Z)) A P<lit>(y) A (P}Llfg(y, P))

Finally, we let

¢h,4(P) = vy(P<clause> (y) - (;b;il,%use(y, P))

It is easy to see that if there is a set of positions P that satisfies ¢, , then

the assignment of satisfies y and that if o is a satisfying assignment for y
then the set P = P* satisfies ¢, 0. [

Lemma 4.5 There is an algorithm that given h,{ € N computes (the binary
representation of ) an MSO-formula @y, ¢(z) in time O(hlogh), such that for
all n < Tower(h), for all @ € CNF(n) and for all positions p of un(y) we
have

in the lexicographically
smallest satisfying assignment for ¢,
the propositional variable corresponding
to position p is assigned the value true.

un(y) B n(p) iff

The (binary representation of the) formula @, (z) has size || @] = O(hlogh).

Proof.

As we proved in the previous lemma we can construct an FO(<) formula
dn.o(P) which holds in w,(y) iff o is a satisfying assignment for y. Before
we construct @ we have to define the relation <j.,. We let

Z <iex W= NVaZ(z) - W(x))V

ay(ﬂz<y>w<y> A w(x<ye<z<x>~w<x>>)).
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The following formula has the desired properties of &y,
@ (2) = 32(Ya(Z(0) = Plw) A Z(2) Al 2) A

W (Vo(W(2) = P() A tha(Z)) = Z Siex W)
To get rid of the atoms =z < y in &} (z) we replace them by the formula

Y (Y(y) A=Y (x) AVz129 (succ(zl, 29) NY(21) — Y(Zz)) .

The resulting formula is &,(z). O

4.1.2 Proof of Theorem 4.2

As we said our goal is to construct a fast SAT-solving algorithm. So far we
know that the time we need for step 1 is O(hlog? n(||o|| +n)), and for step
2 O(hlogh).

y#wigoeMSOigbeMLFPiYes/No.

Let f be a function such that for every MSO-formula ¢ there is an equiv-
alent MLFP-formula ¢ of size < f(]|¢||). As we said in step 3 we check for
all ¢ where ||¢| < f(||¢||) whether it specifies a satisfying assignment for y.
But how many MLFP-formulae of length less than or equal to f(]|¢||) are
there? Assume that our vocabulary has ¢; symbols. First and second order
variables can’t be more than f(]|¢||). So each letter of our string can be filled

with ¢; + f(] [|¢]|) ways. Therefore the number of such formulae is less than

or equal to (c1 +f (I!@!Dy(”gﬂ”) < g2 lpl) tog(F (1),

We must also know how much time we need to find out whether ¢ specifies
a satisfying assignment. For each MLFP-formula ¢ where ||| < f(]|¢]|) we
construct an assignment. For all x-positions p; in y,(y) we check whether

un(y) = ¢(pi), if so we set «(X;) = TRUE. Finally we check whether « is a
satisfying assignment for y.

Lemma 4.6 There is an algorithm that, given an MLFP-formula ¥(2), a
string w, a position p in w, decides in time |w|CW¥) whether w = (p).

Proof.
We will prove that given an MLFP-formula ¥(xq,..., 2, X1,..., X)), a
string w, a sequence py, ..., pg of positions in w, and sets Py, ..., P, of posi-

tions in w we can decide in time \w|O(W”) whether w = ¥ (py,...,pk, P, ...,
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Py;). The algorithm operates by recursion on the construction of ¥. We omit
the trivial cases to examine the case when ¥ = [ifp, , V'(y,Y,71,..., 2y,
Xi,..., Xp)]y(z;). The algorithm computes the stages of ¥’s least fixed-
point:

o IV =10.
e For s =1 to |w| do

1. Ls=0.
2. For ¢ =0 to |w| —1 do

check whether w = ¥'(q, L* Y, py,...,pp, P1, ..., P). if so, then
insert ¢ into L°.

e Check whether p; € LI*l . if so, then “yes”, otherwise “no”.

O(IIW/H)) ol

Easily this computation takes O(|w|* |w| = |w| steps. J
So it will take |y (v)|“Y U0 steps to check whether uy () = ¢(p;). Since
steps 1 and 2 can be performed within a number of steps polynomial in ||y||,

the total number of steps will be

lup () [V gezf(llel) og(r Al

which, by Lemmata 4.3 and 4.5, is less than or equal to
(03 k- (logn)? - (||y] + n))  geaf(em)os(F(em) < [|y|bS e o)

b-f(c-h)log(f(e-h)) ”YHlog”)(n)

So if we prove that ||v|| we are done.

Lemma 4.7 Let f: N — N such that f(¢) < Tower(o({)), let also ¢,d € N.
For every i € N there is an ng € N such that for all n > ng

d- f<c . log*(n)) -log (f(c : log*(n))> < log®(n).

Proof.

We know that since f(¢) < Tower(o(¢)) there is an my € N and a function
g: N — Nwith g € w(1) such that f(m) < Tower(ﬁ), for all m > my. So,
for t = ¢ -log"(n) we have

d-f(t)-log(f(t) < d- Tower(ﬁ) ~Tower<£ - 1)

< Tower(ﬁ + 1) . (1)
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We will show that log'?(n) > Tower(log*(n) — (i +1)) (2). By induction
on i:

e For 7 =0 it holds by the definition of log™.
e Suppose that it holds for 7 = k.

e By induction hypothesis
log®)(n) > Tower(log*(n) —(k+ 1)) =
log(log®)(n) > log (Tower(log*(n) —(k+ 1))) =

log® ) (n) > Tower(log*(n) —((k+1)+ 1)) :

Moreover since g € w(1) there is some kg > my such that g(m) > ¢-(i+3),
for all m > kq. So

c-log*(n) 1= C'<10g*(”)_(i+3)> ¢ (i+3) o
g(c-log"(n)) g(c-log"(n)) g(c-log"(n))
< login) = (i+1). (3)
Finally
(1), (2). (3) = d- f(c-1og"(n)) - 1og  f(c - log"(n)) ) < log®(n). =
We proved that the following algorithm can solve SAT in time O(|| y”log(i)(”))

which contradicts to our hypothesis.

e Input:y (a SAT-instance).
e Set n =the number of variables occurring in y.

e Rename the variables of y such that only the variables X,..., X,
occur in it.

Set h = log™(n).

Construct the string up(y).

Construct the MSO-formula ¢}, (Lemma 4.5).
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e For all MLFP-formulae ¢ where ||| < f(||onll)-

1. o =0.

2. check whether u,(y) = ¢(pi). If so set a(X;) = TRUE else set
2(X;) = FALSE.

3. check whether o satisfies y. If so Output: “o satisfies y”.
e Output: “y is not satisfiable.

We have proven that, unless there is a deterministic SAT-solver that deter-
mines the satisfiability of a sentence v in time ||7||1°g(1)” for all 7 (and it is
generally thought that there isn’t), then MSO is not Tower(o(m))-succinct
in MLEFP on trees.



Chapter 5

Conclusion

We studied succinctness of MSO and MLFP on trees and tried to make clear
the link between Databases and logic. The reason that we restricted our
attention on trees was because of XML. Moreover we chose studing MSO
and MLFP because they both have very interesting properties over finite
trees.

Our main result was that MSO is non-elementarily more succinct than
MLFP. To prove that theorem we made a complexity theoretic assumption
about the SAT problem. But how arbitrary was the assumption that we
made? Finding a deterministic algorithm solving SAT, with worst case com-
plexity less that or equal to n'°5™ although not answering the P=NP would
be a surprising and unexpected breakthrough. The question whether there
is a proof without such assumption remains open.

We close this dissertation with the following interesting results concerning
logics over finite trees [1] together with some open questions:

1. MLFP is non-elementary more succinct than its 2-variable fragment
MLFP2. The question of what happens with the k-variable fragments,
for k£ > 3 remains open.

2. MLFP? is exponentially more succinct than the full modal u-calculus,
that is, the modal u-calculus with future and past modalities.

3. The full modal u-calculus is at most exponentially more succinct than
stratified monadic datalog. Conversely, stratified monadic datalog is
at most exponentially more succinct than the full modal u-calculus.
Finally, stratified monadic datalog is at most exponentially more suc-
cinct than monadic datalog. The exact relationship between these three
languages remains open.
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