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Abstract

In this thesis we examine the combinatorial discrepancy problem. We have a ground set of
elements Ω = {1, 2, ..., n} and a family of sets A and we prove that there exists a coloring
χ : Ω → {−1,+1} such that disc(A) is Θ(

√
n). To prove the upper bound of this result, we

use the well-known entropy method. Afterwards, since the proof is not constructive, we give an
algorithm that finds such a coloring with probability 1

logn . Finally, we prove the lower bound
using techniques from Linear Algebra and we also mention some modifications of the combina-
torial discrepancy based on the structure of A and the number of sets it contains.

Keywords Combinatorial Discrepancy, Partial Coloring, Entropy Method

PerÐlhyh

Sthn paroÔsa diplwmatik  ergasÐa exet�zoume to combinatorial discrepancy problem. 'Eqoume
èna sÔnolo Ω = {1, 2, ..., n} kai mÐa oikogeneia sunìlwn A kai apodeiknÔoume ìti up�rqei qrw-
matismìc χ : Ω → {−1,+1} tètoioc ¸ste disc(A) eÐnai Θ(

√
n). Gia na apodeÐxoume to �nw

fr�gma autoÔ tou apotelèsmatoc, qrhsimopoioÔme th entropy method. 'Epeita, afoÔ h apìdeixh
den eÐnai kataskeuastik , dinoume ènan algìrijmo pou brÐskei tètoio qrwmatismì me pijanìthta

1
logn . Tèloc, apodeiknÔoume to k�to fr�gma qrhsimopoi¸ntac teqnikèc apì grammik  �lgebra kai
epÐshc anafèroume k�poiec parallagec tou combinatorial discrepancy pou basÐzontai sth dom 
tou A kai sto plhjoc twn sunìlwn pou perièqei.

Lèxeic kleidi� Combinatorial Discrepancy, Partial Coloring, Entropy Method
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Chapter 0

Preliminaries

0.1 Introduction

In this thesis we examine the ”classical” versions of combinatorial discrepancy. Generally, we
are given a set Ω = {1, ...,m} of elements and also a family of n sets A = {A1, ..., An} where
Ai ⊆ Ω. A coloring is considered a function χ : Ω → {−1,+1} and discrepancy of a set Ai is
just discχ(Ai) = |

∑
s∈Ai χ(s)|. Discrepancy of A is defined as

disc(A) = min
χ

max
Ai∈A

discχ(Ai) (1)

This problem is very important and lots of researchers have focused on it. There is a branch
of mathematics that is called discrepancy theory that studies the inevitable irregularities of
distributions. Discrepancy has a lot of applications in different fields, such as communication
complexity, high-dimensional algorithms, computational geometry, etc. We are going to prove
lower and upper bounds for disc(A), using very powerful techniques such as entropy method,
SDP and Hadamard matrices. First of all, we will show the well-known result of Spencer [11]
where he proved that in case m = n it holds that disc(A) = O(

√
n) up to constant factors. In his

paper he proved that disc(A) ≤ 6
√
n. However, this kind of proof is not constructive. In words,

he shows the existence of a coloring χ, such that discχ(Ai) ≤ 6
√
n for 1 ≤ i ≤ n without finding

it, and his proof is based on properties of entropy as subadditivity and pigeonhole principle.
Twenty five years later, Bansal in his paper [3], gave an elegant randomized algorithm that
succeeds in finding a coloring that upper bounds the discrepancy from O(

√
n) with probability

at least 1
logn . Finally, it can be proven using techniques from Linear Algebra or Probabilistic

Methods that this bound is tight. Namely, we will construct sets Ai such that disc(A) = Ω(
√
n).

To begin with, we discuss below some basic definitions and theorems that are important for the
proofs that follow in the next chapters.

0.1.1 An example - Discrepancy of lights and switches

Before starting with the basics for the combinatorial discrepancy problem and the techniques
we will need, we will give an example of discrepancy in matrices, to see how powerful technique
is the probabilistic method. However, as it will become clear later, probabilistic method is
not enough when we deal with combinatorial discrepancy as was defined in (1). The following
problem is called Discrepancy of matrix of lights and switches.

We are given a n × n matrix A = {aij = ±1} (these are the lights), row switches xi and
column switches yj (i, j = 1, ..., n). The objective is to find xi, yj ∈ {±1} so as to maximize

1
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|
∑

i,j aijxiyj |. We will prove that there exists a matrix A such that

max
xi,yj
|
∑
i,j

aijxiyj | < cn3/2

To prove this, assume that each entry aij of matrix A takes values uniformly at random from
{−1,+1}. We also consider that we know a priori the values of xi, yj (we suppose that are
fixed). Then, obviously Pr[Aijxiyj = −1] = Pr[aijxiyj = +1] = 1

2 (Aij is a random variable
that corresponds to the value of aij). Therefore Aijxiyj are independent random variables and
also E[Aijxiyj ] = 0. Hence from chernoff bounds, given that Sn2 =

∑
i,j Aijxiyj we have that

Pr[|Sn2 | > a] < 2e−
a2

2n2 (i)

Hence, using union bound we have that the probability some configuration of the switches gives

discrepancy more than a is upper bounded by 22n · 2e−
a2

2n2 (we have 22n possible configurations

for the switches). Letting 22n · 2e−
a2

2n2 = 1 (ii), it follows that there is a matrix A, such that for
each configuration of the switches, the discrepancy is less than a. Finally solving the equality ii,
we have that a2 = 2n2(2n+ 1) ln 2⇒ a = 2n

√
ln 2
√
n+ 1/2. By picking c = 2

√
ln 2 the result

follows.

0.1.2 Easy Bound

Before continuing with the definitions and techniqual points of the proofs, let’s examine an
easy upper bound which can be derived with the use of elementary ideas. It is rather common
in probabilistic methods, to color the elements independently and uniformly at random. So,
considering that χ takes values −1, 1 with probability 1

2 and independently for each element,
we get that E[χ(a)] = 0 for each a ∈ Ω, so using Chernoff Bounds it follows that

Pr[|χ(Ai)| > a] < 2e
− a2

2|Ai| ≤ 2e−
a2

2m

where χ(Ai) =
∑

s∈Ai χ(s). Finally, by choosing a2 = 2m ln 2n and using union bound it follows
that

Pr
χ

[disc(A) >
√

2m ln(2n)] ≤
n∑
i=1

Pr[|χ(Ai)| >
√

2m ln(2n)] < 1 (2)

Therefore, there exists coloring χ such that discχ(Ai) ≤
√

2m ln(2n) for every i and hence
disc(A) ≤

√
2m ln(2n).

It is remarkable that for m = n it occurs that disc(A) is O(
√

2n ln(2n)). On the other hand,
as we promised before, we will prove something slightly better. Another thing that we should
mention is that the standard deviation of the random variable discrepancy (we consider random
coloring) for each set Ai is

√
Ai and so O(

√
n) (assuming m = n) so we expect from discrepancy

to have lower upper bound, closer to the standard deviation. In a sense, it looks that uniform
the random coloring is far away from the best we can do (since Spencer [11] proved that disc(A)
is O(

√
n)). Trying to do a cleverer random coloring, for example splitting uniformly at random

Ω in disjoint pairs and give each pair opposite signs, we can improve
√

2m ln(2n) by a constant
factor, so even that it is not enough.

0.2 Properties of Entropy

For the purpose of this thesis, we use the notion of binary entropy, measure that was introduced
by Shannon [10]. Let X be a random variable and S be the range of X.
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Definition 0.1. Binary entropy is denoted by∑
i∈S

Pr[X = i] log
1

Pr[X = i]
(3)

Intuitively, the entropy of a random variable X measures the amount of information X encodes.
We recommend [2] for furher studying on entropy.

0.2.1 Good chance and Uniformity optimal

Lemma 0.1. (Good chance) Let X be a (discrete) random variable such that H(X) ≤ K for
some K. Then there exists a value x in the range of X such that Pr[X = x] ≥ 2−K

Proof. Assume that Pr[X = x] < 2−K for all x, then Pr[X = x] log 1
Pr[X=x] > K Pr[X = x] and

hence H(X) >
∑

xK Pr[X = x] = K (contradiction)

Lemma 0.1 is very useful for proving Spencer’s Result, because in order to prove that a random
variable X takes a value with sufficient probability p, it suffices to prove that H(X) ≤ log 1

p .

Lemma 0.2. (Uniformity optimal) Let X be a (discrete) random variable which takes at most
k distinct values. Then H(X) ≤ log2 k.

Proof. Let f(x) = log2 x. Then f ′′(x) < 0 and hence f is concave. From Jensen’s Inequality we
get that

∑
x

Pr[X = x] log2

(
1

Pr[X = x]

)
≤ log2

(∑
x

Pr[X = x]

Pr[X = x]

)
≤ log2 k

0.2.2 Subadditivity

Theorem 0.1. Let X1, ..., Xn be random variables and X = (X1, ..., Xn) be a random variable
which is the cartesian product. The following holds:

H(X) ≤
n∑
i=1

H(Xi) (4)

Proof. We prove the following claim and then it comes from induction on n.

Claim: Let X,Y random variables. Then H(X,Y ) ≤ H(X) +H(Y ).

Let S, T be the range of X,Y respectively. Then we get that

H(X) =
∑
i∈S

Pr[X = i] log
1

Pr[X = i]
=
∑
i∈S

∑
j∈T

Pr[X = i, Y = j] log
1

Pr[X = i]

H(Y ) =
∑
j∈T

Pr[Y = j] log
1

Pr[Y = j]
=
∑
j∈T

∑
i∈S

Pr[X = i, Y = j] log
1

Pr[Y = j]

H(X,Y ) =
∑
i∈S

∑
j∈T

Pr[X = i, Y = j] log
1

Pr[X = i, Y = j]



4 CHAPTER 0. PRELIMINARIES

Therefore, H(X) + X(Y ) −H(X,Y ) =
∑

i∈S
∑

j∈T Pr[X = i, Y = j] log Pr[X=i,Y=j]
Pr[X=i] Pr[Y=j] . Using

the fact that f(x) = x log x is convex (it comes from (x log x)′′ = 1
x > 0), from Jensen’s

inequality it follows that

H(X) +H(Y )−H(X,Y )

=
∑
i∈S

∑
j∈T

Pr[X = i] Pr[Y = j]
Pr[X = i, Y = j]

Pr[X = i] Pr[Y = j]
log

Pr[X = i, Y = j]

Pr[X = i] Pr[Y = j]

≥ 1 log 1 = 0

0.3 Entropy Method and Pigeonhole Principle

0.3.1 Partial Coloring

A very powerful method for achieving lower bounds on discrepancy is the partial coloring
method. In almost every result is used as one of the basic ideas.

Definition 0.2. Partial coloring of a set Ω is a function χ : Ω→ {−1, 0,+1}. An element x is
colored if χ(x) 6= 0 else it is uncolored.

For example, in Spencer’s proof, the idea is to find a partial coloring χ such that the number of
uncolored elements is bounded by a constant percentage of the number of elements and also the
discrepancy of A for the given χ to be as small as possible. This kind of procedure is repeated
(find a new partial coloring χ′ with again the same properties, for the uncolored elements instead
of dealing with all the elements etc, for the proof see chapter 1).

Theorem 0.2. (Partial Coloring Lemma) Let B and C be disjoint subsets of A such that |Ci| ≤ s
for every Ci ∈ C and ∏

Bi∈B
(|Bi|+ 1) ≤ 2(n−1)/5

Then there exists a partial coloring χ such that at least n
10 elements are colored, discχ(Bi) = 0

for every Bi and discχ(Ci) ≤
√

2s ln(4|C|) for every Ci.

The proof of the theorem 0.2 has 2 main steps. To give some intuition, family of sets B stands
for few sets where we insist that discrepancy is 0 and C plays the role of the rest sets. The
number

√
2s ln(4|C|) has been taken from the easy bound we proved earlier. The constant factor

is 4, in order to accomplish that at least half of the random colorings work for the constraint
discχ(Ci) ≤

√
2s ln(4|C|). On the other hand, in order to satisfy the constraint discχ(Bi) = 0, it

suffices to take two colorings χ1, χ2 that satisfy the first constraint, define the same discrepancy
for every Bi, namely discχ1(Bi) = discχ2(Bi) and consider the partial coloring (it is clear why
it is partial, notice that χ1, χ2 are not partial)

χ′ =
χ1 − χ2

2
(5)

This proposition, namely the existence of χ1, χ2 that satisfy the first constraint and discχ1(Bi) =
discχ2(Bi) comes from the hypothesis for Bi and Pigeonhole Principle. Finally, to certify that
the partial coloring χ′ leaves uncolored for example 9n

10 elements, it suffices to choose χ1, χ2 such
that they differ in at least n− 9n

10 = n
10 elements.

Below we discuss a refinement of the Partial coloring lemma, which uses entropy and it can
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found in bibliography with the term entropy method. The proof of spencer’s result will actually
be a corollary of that method, which will be formally proved in the next chapter. It is remark-
able that the proof is not algorithmic because of the use of Pigeonhole Principle (similar use of
Pigeonhole Principle to the Partial coloring Lemma).

0.3.2 Entropy Method

We will use the notation that Bansal [3] used in his paper. We recommend you to read also [7].

Theorem 0.3. (Quantitative version) Let A be a family of n sets Ai, Ω = {1, 2, ..., n} and
∆Ai ≥ 2

√
|Ai| be a given number for every set Ai. Suppose that

∑
Ai∈A

Ke
−∆2

Ai
/(4|Ai|) log2

(
2 +

√
|Ai|

∆Ai

)
≤ n

5
(6)

with K a constant. Then there exists a partial coloring χ : Ω → {−1, 0,+1} such that
discχ(Ai) < ∆ for all Ai ∈ A and the number of colored elements is at least n

10 .

This theorem is the key to prove Spencer’s result (the existence of a coloring χ which certifies
that disc(A) is O(

√
n) (using this theorem, the proof is just three lines). Bansal also was based

on this theorem to give a randomized algorithm for finding the coloring. The proof will be
postponed until the next chapter.

0.4 Bounded degree case and other versions

In this final section of chapter 0, we will mention some different versions of the discrepancy
problem, such as the bounded degree case and the permutation problem. For the former version,
we consider that each element of Ω can be used at most k times. This setting can be seen as
a hypergraph, where the vertices are the elements of Ω and have degree at most k and each
edge corresponds to a set Ai. The goal is to find a coloring with values {−1,+1} such that the
number of −1’s and 1’s are close to each other for each set in A. Beck and Fiala [4] proved that
disc(A) ≤ 2k− 1 using techniques from Linear Algebra. A proof of their result can be found in
chapter 2.

For the latter version, commonly known in bibliography as k-permutation problem, the setting
is the following: Let π1, ..., πk be k permutations of the elements of Ω, Aij = {πi(1), ..., pi(j)}
for 1 ≤ j ≤ n and 1 ≤ i ≤ k and A be the collection of all Aij . An example for k = 2 is A =
{{π1(1)}, {π1(1), π1(2)}, ..., {π1(1), π1(2), ..., π1(n)}, {π2(1)}, {π2(1), π2(2)}, ..., {π2(1), π2(2), ..., π2(n)}}.
It has been proven by Srinivasan [13] that k-permutation problem is O(

√
k log n) and recently

Newman et al [9] proved that discrepancy is unbounded even for the case k = 3, it is of order
Ω(log n) (the conjecture of Beck that the discrepancy of 3-permutation problem is O(1) isn’t
true).
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Chapter 1

Algorithmic vs Non-Algorithmic

1.1 Introduction

The first half of this chapter concerns the entropy method, which will be more clear with the
proof of Spencer’s result at section 1.2. The second half concerns Bansal’s algorithmic result.
It is remarkable that for more than 25 years, it wasn’t known any algorithmic guarantee better
than the random coloring we presented in the previous chapter (section 0.1.2). Before we
continue with the two amazing results - proofs, we mention some necessary theorems that we
are going to use.

1.1.1 Gaussian random variables and tail bounds

Definition 1.1. Gaussian distribution N (µ, σ2) with mean µ and variance σ2 has probability
distribution function

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2

An important property (additivity) that we will use is the fact that a linear combination of
two random variables x1 ∼ N (µ1, σ

2
1), x2 ∼ N (µ2, σ

2
2) follows gaussian distribution too, a1x1 +

a2x2 ∼ N (a1µ1 + a2µ2, a
2
1σ

2
1 + a2

2σ
2
2).

Definition 1.2. A martingale is a sequenceX0, ..., Xm of random variables so that for 0 ≤ i < m

E[Xi+1|Xi, ..., X0] = Xi

Theorem 1.1. (Tail bounds) Let 0 = X0, X1, ..., Xn be a martingale with increments Yi = Xi−
Xi−1. Suppose that Yi|(Xi−1, ..., X0) has distribution ciG where G is the gaussian distribution
N (0, 1) and |ci| ≤ 1 constant. Then it holds that

Pr[|Xn| ≥ a
√
n] ≤ 2e−a

2/2 (1.1)

Proof. Let λ > 0, then we get that E[eλYi |Xi−1, ..., X0] ≤ eλ
2c2i /2 ≤ ea

2/2 (i). Using properties
of conditional expectation (see appendix) we get that

E[eλXn ] = E[eλYneλXn−1 ]

= E[eλXn−1E[eλYn |Xn−1, ..., X0]]

(i)︷︸︸︷
≤ eλ

2/2E[eλXn−1 ]

1
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Therefore taking the telescopic product, it follows that E[eλXn ] ≤ eλ2n/2. Hence from Markov’s
inequality (see appendix) it occurs that

Pr[Xn ≥ a
√
n] = Pr[eλXn ≥ eλa

√
n] ≤ E[eλXn ]

eλa
√
n
≤ eλ2n/2−λa

√
n

Finally substituting λ = a√
n

and by symmetry the result follows.

1.1.2 Semidefinite Programming

Let Ai and C be n × n symmetric matrices and bi be real numbers. A general SDP has the
following form:

maxC •X
s.t Ai •X ≤ bi

X � 0

X is symmetric

where A•B =
∑n

i=1

∑n
j=1 aijbij . SDP is important in convex optimization and it is known that

it can be solved efficiently (see [6]). For our purpose (for Bansal’s result), we are interested in
finding efficiently a feasible solution to the SDP and not the optimal.

1.2 Spencer’s result

1.2.1 Proof of Entropy Method

In this section we will prove theorem 0.3. Let χ be a coloring uniformly at random and bi(χ) =⌊∑
s∈Ai

χ(s)

2∆Ai

⌉
(random variable) where bue denotes the nearest integer to u. Using Chernoff

bounds (see appendix) we get that

Pr[bi(χ) = 0] ≥ 1− 2e−5 (1.2)

Pr[bi(χ) = s] = Pr[bi(χ) = −s] ≤ e−5(2s−1)2 (1.3)

Let ps = Pr[bi(χ) = s]. Then from elementary calculus and using the fact that −x log x is
nondecreasing on (0, 1

e ) and that log(1− x) ≤ −x we get that

H(bi) = −p0 log p0 −
∑
s≥1

ps log ps

≤ 4e−5
∑
s≥1

5(2s− 1)2

ln 2
e−5(2s−1)2

< 14e−5 < 0.1

Hence the constraint of the theorem 0.3 holds since the maximum of left hand side of the in-
equality happens when ∆Ai ≈ 2

√
∆Ai and 14e−5 < 1

5 .

Moreover we use theorem 0.1 (subadditivity) and we get that

H(b) ≤ 14ne−5



1.3. BANSAL’S RESULT 3

where b is the random variable (b1, ..., bn). Additionally from lemma 0.1 (good chance) and the
inequality above, it occurs that there exists a b0 such that

Pr[b = b0] ≥ 2−εn

with ε = 14e−5 (this is the step that makes the proof non-constructive, pigeonhole in a sense).
Since χ was taken uniformly at random, it follows that there exists a set of colorings C such
that bi(χ1) = bi(χ2) for all 1 ≤ i ≤ n and χ1, χ2 ∈ C and |C| ≥ 2(1−ε)n. To finish the proof we
will prove that there exist colorings χ1, χ2 ∈ C which differ in at least n

10 elements. To do this,
let N be the number of colorings that differ in less that n

10 elements. Clearly we have that

N =
∑
q< n

10

(
n

q

)
2q <

(
2en

n/10

)n/10

= (20e)n/10

< 26n/10

< 2(1−ε)n = |C|

and thus there exist χ1, χ2 ∈ C that differ in at least n
10 elements. Hence the partial coloring

χ′ = χ1−χ2

2 colors at least n
10 elements and the discrepancy of each set Ai is at most ∆Ai (since

bi(χ1) = bi(χ2) for all i, they lie in the same interval [2∆Ai(k − 0.5), 2∆Ai(k + 0.5)) for some

integer k and hence discχ′(Ai) =
|
∑
s∈Ai

χ1(s)−
∑
s∈Ai

χ2(s)|
2 ≤ ∆Ai) and the proof finishes.

1.2.2 Corollary - Spencer’s result

Theorem 1.2. (J.H.Spencer, [11]) Let A be a family of n subsets of a set Ω = {1, 2, ..., n}.
Then

disc(A) ≤ c
√
n (1.4)

for c constant (Spencer proved it for c = 6).

Proof. It is clear that for c sufficiently large, we can use the theorem 0.3, therefore there exists a
partial coloring χ1 which leaves uncolored at most 9n

10 elements and discχ1(Ai) ≤ c
√
n. Having

obtained χ1 coloring, let Ω2 be the set of uncolored elements and A∈ be the ”induced” family of
sets on Ω2. Similarly from theorem 0.3, there exists a partial coloring χ2 which leaves uncolored
at most 92n

102
elements discχ1(A2 i) ≤ c

√
n (and so on). Hence at step t, we have at most

( 9
10)tn elements uncolored. We may stop at some step k such that the uncolored elements

are sufficiently small (say constant, hence k = O(lnn) and the discrepancy will be at most∑k
j=1 c

√
( 9

10)jn ln(2(10
9 )j) = O(

√
n).

1.3 Bansal’s result

1.3.1 Sketch of the algorithm

The algorithm has some similarities with the proof of Beck-Fiala in the next chapter. We con-
sider a vector χ ∈ [−1, 1]n (fractional coloring) which is initially χ0 = (0, 0, ..., 0). At step t,
vector χt = χt−1 +ct where ct is a tiny value. If χt(i) (at step t) is very close to 1 or −1 then we
set χt(i) = 1 or −1 respectively with probability very close to 1 and with probability very close
to 0, we will set χt(i) the opposite value. The choice of the updates ct depends on a certain
SDP and is made so as to be able to use theorem 0.3 (entropy method). In words, the variables
that are floating (have not been fixed yet), do a random walk certifying that at each time the
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hypothesis of entropy method holds.

The main theorem from which follows as a corollary an algorithm that finds a proper coloring
with discrepancy O(

√
n) is the following:

Theorem 1.3. ([3]) Let x ∈ [−1, 1]n be a fractional coloring with at most a floating variables
(not fixed yet). Then there exists an algorithm that with probability at least 1

2 , produces a
fractional coloring y with at most a/2 floating variables and the discrepancy of any set increases
by O(

√
a ln(2n/a)).

We will postpone theorem’s 1.3 proof sketch for later. Let us first prove the main theorem
(below) using theorem 1.3.

Theorem 1.4. There exists an algorithm that finds a proper coloring χ : Ω → {−1,+1} with
discrepancy O(

√
n). The algorithm succeeds with probability at least 1

logn .

Proof. Starting with coloring χ = (0, 0, ..., 0), we apply theorem 1.3 for k = log log n steps and
hence with probability at least 1

logn we have a fractional coloring with at most n/ log n floating

variables and as in Spencer’s proof with discrepancy O(
√
n). For the floating variables, we

set χ(i) = 1 with probability 1+y(i)
2 and χ(i) = −1 with probability 1−y(i)

2 independently. By
Chernoff bounds, it is easy to see that with high probability, the additional discrepancy will be
O(
√
n) and the result follows.

1.3.2 The Algorithm

Theorem 1.3 was proven by Bansal [3], who gave the following algorithm. A(t) stands for the
floating variables at step t.

Repeat the following subroutine log(2n)3 times (abort if the floating points are
less than a/2 where a ≡ # of floating points at the beginning)

Bansal’s routine

1. For each set Ai, let di be the discrepancy of Ai until now.
2. Let Sk be the set of k-dangerous sets, namely sets Ai s.t di ∈ [b(k), b(k + 1)) with
b(k) = C

√
a log(4n/a)(2− 1

k ).
3. Find feasible solution u of SDP1
4. Construct ct from ui, by setting ct(i) = s〈g, ui〉 (where g(i) ∼ N (0, 1))
5. Update χt = χt−1 + ct (abort in case |χt(i)| > 1 for some i

6. For each i, if χt(i) ≥ 1− 1
log 2n then set χt(i) = 1 with probability p = 1+χt(i)

2

and −1 with 1− p.
7. Update A(t).

The SDP1 is the following:

1.
∑
i∈[n]

||ui||22 ≥ A(t− 1)/2

2.||
∑
i∈Aj

ui||22 ≤
C ′a log(2n/a)

(k + 1)5
∀k, ∀Aj ∈ Sk

3.||ui||22 ≥ 1 ∀i ∈ A(t− 1)

4.||ui||22 = 0 ∀i /∈ A(t− 1)
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1.3.3 Discussion

Let us first give some observations for SDP1. Clearly, the first constraint exists because we
want at a current step, at least half of the floating points to become fixed and hence in a sense
we want to make large progress. The constraint 4 is trivial since we want our fixed variables to
continue to be fixed, thus we don’t want to increase them. Constraint 3 is trivial too, because
we want a tiny increase in the floating variables. Finally, constraint 2 is useful to certify that
the k-dangerous sets (for some k) will not become bigger than discrepancy O(

√
n).

The idea of the algorithm, is to seperate the sets Ai in groups with respect to the discrep-
ancy (k-dangerous) and find a vector that changes χt so as to maintain discrepancy of each set
low. Additionally, using theorem 1.1, it can be proved that the number of k-dangerous sets
decreases exponentially with respect to k with high probability w.r.t k (namely exponential).
This fact implies that SDP1 is feasible. These arguments suffice to prove theorem 1.3 (the rest
are just technical).

What is important to mention is the choice of some parameters in the algorithm. Even if
Spencer’s result is not constructive since he uses entropy’s property good chance, it is clear that
except of the partial coloring method, mostly Bansal’s algorithm was influenced by Entropy
method. Namely, the non-constructive entropy method is a major component for the algorithm
above. The parameters b(k) and C

√
a log(4n/a)(2− 1

k ) which guide the semi-definite program
were given by Entropy method.
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Chapter 2

Lower Bounds, Eigenvalues and
Other cases

2.1 Lower Bound

2.1.1 Definitions

In this section, we mention the necessary definitions we need to prove the lower bound of
combinatorial discrepancy (proof follows in section 2.1.2).

Definition 2.1. Hadamard Matrix H is a square matrix with entries −1,+1 and with rows
that are pairwise orthogonal. From the observation HHT = nIn, it follows that the columns of
H are also othogonal and also it holds that

|det(H)| = nn/2 (2.1)

It’s an open question whether or not, there exists an Hadamard matrix with dimension 4k× 4k
for every k ∈ N∗. By Sylvester’s construction, for every k ∈ N, there exists a Hadamard matrix
with size 2k × 2k (*). The construction follows from the recursion below

H1 = [1]

H2k+1 =

[
H2k H2k

H2k −H2k

]
(2.2)

It is clear that the first column of H2k has entries 1 and also that the number of 1 is equal to
the number of −1 for all the other columns (because of the orthogonality).

2.1.2 The Proof

In this subsection we will construct a family of sets A such that disc(A) ≥
√
n/2 using some

Linear Algebra and also (*) from previous section. We can represent A as a square matrix
M which we will call incident matrix, Mij = 1 if element j ∈ Ai and Mij = 0 otherwise.
Therefore to prove that Spencer’s result is tight, it suffices to find a matrix M such that
minχ∈{−1,+1}n ||Mχ||∞ is Ω(

√
n). This is true because

disc(A) = min
χ∈{−1,+1}n

||Mχ||∞ (2.3)

(observe that a coloring χ can be seen as a 1 × n vector with entries −1,+1). The following
theorem certifies the tightness of Spencer’s result.

1
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Theorem 2.1. For every k ≥ 2, there exists a family A of sets A1, ..., An ⊆ {1, 2, ..., n} such
that disc(A) ≥

√
n/2, where n = 2k

Proof. Let Hn be a hadamard matrix as defined in section 2.1.1 and let M = (Hn+J)/2 where
J is a square matrix with entries all ones. It is clear that each entry of M is either 0 or 1 (plays
the role of an incident matrix as mentioned above). For an arbitrary χ ∈ {−1,+1}n we get that

||Hnχ||22 =
n∑
i=1

χ2
i ||H i

2k ||
2
2 = n2 (2.4)

where H i
n denotes the i-th column of the hadamard matrix Hn and ||u||2 denotes the euclidean

norm of vector u.

Moreover, using the fact that the first column of Hn has entries 1 and also that the num-
ber of 1 is equal to the number of −1 for all the other columns (mentioned above), it holds
that

|
n∑
i=1

(Hnχ)i| = n|(χ)1| = n (2.5)

Finally, setting s =
∑n

i=1 χi, observe that Jχ = (s, s, ..., s), so

||(Hn + J)χ||22 = ||Hnχ+ (s, s, ..., s)||22 (2.6)

= ||Hnχ||22 + ns2 + 2s
n∑
i=1

(Hnχ)i (2.7)

2.4,2.5︷︸︸︷
= n2 + ns2 ± 2ns (2.8)

Since s ∈ Z, (2.8) is minimized for s = 0,∓2 (observe that since n is even, s is even too, thus
sneq ± 1). Namely, we conclude that

||(Hn + J)χ||22 ≥ n2 (2.9)

From Pingeonhole Principle and (2.9), it follows that there exists a coordinate j such that
|((Hn + J)χ)j | ≥

√
n and hence ||(Hn + J)χ||∞ ≥

√
n or equivalently ||M ||∞ ≥

√
n/2.

Therefore, M is the matrix we are looking for and the proof finishes (as stated at the beginning
of the section and 2.3)

2.2 Eigenvalues

The proof above with the Hadamard matrices gives some interesting observations and tools
to deal with combinatorial discrepancy. The idea is to consider the coloring χ, as a vector
that belongs to {−1,+1}n and observe that disc(A) = minχ∈{−1,+1}n ||Mχ||∞ where M is the
incident matrix of A. For purposes of completeness, we mention some important theorems that
concern discrepancy and which are nice and powerful tools to deal with this problem and helps
in obtaining lower bounds. In many cases and it can also be seen in the proof of the lower
bound, it is more convenient to use Euclidean norm instead of infinity norm. Please notice that
we use ||.|| and ||.||2 for euclidean norm interchangeably. So using the same notation as before
(M to be the incident matrix, etc), we may define disc2(A) as follows:

disc2(A) =
1√
n

min
χ∈{−1,+1}n

||Mχ||2 (2.10)

It is straightforward that disc(A) ≥ disc2(A).
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Theorem 2.2. Let A be a family of sets Ai ⊂ Ω as previously and M be the incident matrix.
It holds that:

disc2(A) ≥
√
λmin (2.11)

where λmin denotes the minimum eigenvalue of matrix MTM .

In case the number of sets is n and Ω = {1, ...,m} then the inequality becomes disc2(A) ≥√
m
n λmin. Before continuing with the proof, we will give some intuition and discuss about

theorem 2.2. First of all, matrix MTM is symmetric and hence all its eigenvalues are reals.
Additionally, for a given vector y 6= 0 we have that yTMTMy = (yTMT )TMy = ||My||22 ≥ 0
and hence MTM is a semidefinite matrix, or equivalently all its eigenvalues are nonnegative.

Finally, it follows that min||χ||=1
||χTMTMχ||

||χ|| = λmin (similar to the spectral norm).

Proof. Using the arguments mentioned above we get that

√
λmin = min

||χ||=1

√
||χTMTMχ||
||χ||

= min
||χ||=1

||Mχ||
||χ||

scaling︷︸︸︷
= min

||χ||=
√
n

||Mχ||
||χ||

≤ min
χ∈{−1,+1}n

||Mχ||
||χ||

= disc2(A)

2.3 Beck-Fiala’s theorem

2.3.1 Discussion

One of the most common and interesting settings of combinatorial discrepancy which has plenty
of applications, is the case where each element of Ω is allowed to be used at most k times in A
(bounded degree). In the section that follows, we will prove that if the degree is bounded from
k, then the discrepancy is at most 2k−1 using techniques from Linear Algebra. Bednarchak and
Helm [5] improved the result to 2k−3 (which is the best result in terms of the maximum degree
k, namely considering that k is constant and also k � n). It was conjectured that discrepancy
is of order O(

√
k) (still an open question). Finally, if the conjecture is true, it will be tight since

it has been proven that discrepancy is Ω(
√
k).

2.3.2 Proof

The proof we mention below, uses some Linear algebra without any randomness. However, it
has some similarities (at least the beginning) with Bansal’s.

Theorem 2.3. Let A be a family of sets on an arbitrary finite set Ω such that
|{Ai ∈ A : x ∈ Ai}| ≤ t for all x ∈ Ω. Then disc(A) ≤ 2t− 1.

Proof. The proof is algorithmic. Let xj ∈ [−1, 1] be a variable that corresponds to the value
of element j. Initially, xj = 0 for all j. A variable xj will be called floating if xj ∈ (−1, 1) at
an arbitrary step of the algorithm. Once xj = −1 or xj = 1, then it is fixed. A set Ai will
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be called dangerous at an arbitrary step if more than t elements of Ai are still floating. The
algorithm finishes when there are no dangerous sets, and then we give arbitrary values (±1) to
the remaining floating variables. Finally, at each step, we assume that the discepancy of each
dangerous set is equal to 0, namely∑

j∈Ai

xj = 0 for all dangerous sets Ai (2.12)

(each element has a real value in [−1, 1], at the beginning every set has discrepancy 0). The
inductive step as described below, ensures that at each step of the algorithm, at least one float-
ing variable gets a fixed value ±1.

Inductive Step: The main idea which ensures that we can decrease the number of fixed variables
at each step, maintaining 2.10, is the following claim:

Claim: At each step, the number of the floating variables is larger that the number of the
dangerous sets.

Proof of claim: It comes from a simple double counting. Let l be the number of dangerous
sets in an arbitrary step. Then the number of floating variables is at least l · (k+ 1), where each

variable is counted at most k times, hence we have at least (k+1)·l
k > l floating variables.

Hence if we write for each dangerous set Ai, the constraint that the discrepancy is equal to
0, we get a system of l linear equations (where l is the number of dangerous sets) and more
unknowns, so we can force a floating variable to aquire value ±1, by adapting and all the other
floating variables.

In the end, since each set is not dangerous, it has at most t floating variables, whose val-
ues belong to (−1, 1). Finally, each floating variable takes an arbitrary value and hence it may
increase the discrepancy of a set Ai which is currently 0 (at the end of the algorithm) by less
than 2, hence for a total discrepancy of less than 2k for each set Ai ∈ A. Thus disc(A) < 2k,
so disc(A) ≤ 2k − 1.

2.4 2,3 - Permutation problem

We have already defined the modified version of combinatorial discrepancy called k-permutation
problem, where the family of sets A contains sets Aij where Aij = {πi(1), ..., πi(j)} for given
permutations p1, ..., pk of ground set Ω = {1, 2, ..., n}. In this last section, we mention the
cases k = 2, 3 (notice that for k = 1 trivially disc(A) = 1 if we consider the coloring χ where
χ(π(i)) = −χ(π(i − 1)) and χ(π(1)) = 1 for the given permutation π). Surprisingly for k = 2
we also have that discrepancy equals to 1. Beck conjectured that the discrepancy of the 3-
permutation problem is O(1) and Spencer offered 100$ for the resolution of this conjecture.
However, on April 2011, Alantha Newman and Aleksandar Nikolov [9] gave a counterexample
to this conjecture. They actually showed that discrepancy is Ω(log n) for k = 3.

2.4.1 Case k = 2

In this subsection, we present an elegant and short proof that for the case k = 2, discrepancy
is at most 1 (see also [12]).

Theorem 2.4. Let p1, p2 be two permutations of {1, ..., n} and Aij = {pi(1), ..., pi(j)} for
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i ∈ {1, 2} and 1 ≤ j ≤ n. Then it holds that

disc(A) ≤ 1 (2.13)

Proof. We may assume that p1 maps every element to itself, so we have the permutations
1, 2, ..., n and q(1), ..., q(n). We may also assume that n is even. In case n is odd, we add a
dummy element and the argument still holds. Consider the graph G with V (G) = {1, ..., n}.
For the edges, (2i − 1, 2i) ∈ E(G) and q(2i − 1), q(2i) ∈ E(G) for every 1 ≤ i ≤ n/2. It is
clear that each vertex has degree two, hence G is a union of disjoint cycles. Also observe that
the cycles have even length (the edges of the cycles alternate). So what we do, is to color each
cycle alternately +1 and −1. Clearly each permutation breaks into +,− or −,+ pairs, thus no
partial sum is more than one (see the figure below, q is permutation 3, 8, 2, 6, 1, 5, 4, 7).

2.4.2 Case k = 3

It was an open question for more than two decades whether or not discrepancy of 3-permutation
problem is O(1). Few months ago, Newman et al. [9] gave a recursive construction (family of
sets Ak for n = 3k (k is a parameter) and they proved by induction the following theorem:

Theorem 2.5. disc(Ak) ≥ dk3 + 1e = d log3 n
3 + 1e

The construction can be discribed with the following matrix:

A B C
C A B
B C A

A corresponds to the numbers on the interval [1, n/3], B corresponds to [n/3 + 1, 2n/3] and C
to the [2n/3 + 1, n]. Each element of the matrix, recursively has the form of the row that it
appears, namely the A at the second row has the form C A B, where C corresponds to the
numbers on the interval [2n/9, 3n/9], B to the numbers on the interval [n/9, 2n/9] and A to
the numbers on the interval [1, n/9] (etc). An example can be shown below for n = 33.
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The main idea of the proof that is proven by induction is the following observation:
The sum of the discrepancies family of sets, each corresponding to one of the permutations,
increases by 1 as k increases by 1, so by pigeonhole principle the discrepancy of at least one set
is at least k

3 = Θ(log3 n).
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Theorem .6. (Markov’s Inequality) Let X be a (discrete) random variable that takes positive
values. Then for any number a > 0 we get that

Pr[X ≥ a] ≤ E[X]

a

Proof.

E[X] =
∑
x

xPr[X = x]

≥
∑
x≥t

xPr[X = x]

≥
∑
x≥t

tPr[X = x]

≥ tPr[X ≥ t]

Theorem .7. (Chernoff Bounds) Let Xi, 1 ≤ i ≤ n be mutually independent random variables
with

Pr[Xi = 1] = Pr[Xi = −1] =
1

2
and let Sn = X1 + ...+Xn. For every a > 0 we get that

Pr[|Sn| > a] < 2e−a
2/2n

Proof. Let λ > 0 then E[eλXi ] = eλ+e−λ

2 . Since Xi are mutually independent it follows that

E[eSn ] =
n∏
i=1

E[eXi ] =

(
eλ + e−λ

2

)n
< enλ

2/2

Therefore we get that

Pr[Sn > a] = Pr[eλSn > eλa]

Markov︷︸︸︷
≤ E[eλSn ]

eλa

< enλ
2/2−λa

Thus choosing λ = a
n the result follows.

Lemma .1. (Useful Inequality) For every natural k < n it holds that(
n

k

)
≤
(en
k

)k
Proof. First of all

(
n
k

)
= n(n−1)...(n−k+1)

k! < nk

k! . Additionally since ek =
∑∞

j=0
kj

j! , we get that

ek > kk

k! and thus
(
n
k

)
< nkek

kk
.

Remarks on conditional expectation: Two properties that we used in this thesis are the following:
Let X,Y be random variables and g(x) real function. It holds that

E[E[X|Y ]] = E[X]

and
E[Xg(Y )|Y ] = g(Y )E[X|Y ]
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