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Abstract

In this thesis we examine the combinatorial discrepancy problem. We have a ground set of
elements Q = {1,2,...,n} and a family of sets A and we prove that there exists a coloring
X : @ — {=1,+1} such that disc(A) is ©(y/n). To prove the upper bound of this result, we
use the well-known entropy method. Afterwards, since the proof is not constructive, we give an
algorithm that finds such a coloring with probability 1051;n' Finally, we prove the lower bound
using techniques from Linear Algebra and we also mention some modifications of the combina-
torial discrepancy based on the structure of A and the number of sets it contains.

Keywords Combinatorial Discrepancy, Partial Coloring, Entropy Method

ITeptAndm

Yy noapoloa Simhwpatixy epyacia eetdlouye o combinatorial discrepancy problem. Eyoupe
éva obvoho 2 = {1,2,...,n} xau plo oixoyevelr cuvOhwV A xoi anodetxviovye Tt UTdpYEL Ypw-
potiopoe x 0 Q — {—1,+1} téroog dote disc(A) eivar O(y/n). T va anodeilloupe 10 dvew
PEAYHOL AUTOY TOL ATOTEAEGPATOS, YeNowonoolye Tn entropy method. "Eneita, agod 1 anddetln
dev elvon xataoxevao Ty, divoupe €vayv alydpripo tou Bploxel tétolo ypwuatiowd ue mdavotTnta
1og1;n' Téhog, anodetxvioUUE TO XATO GEAYUA YENOWLOTOIOVTIS TEYVIXES amd Ypouutxr) dhyeBpo xat
eniong avagépoupe xdmnoleg mapakhayes tou combinatorial discrepancy nou BaciCovton atn douy
Tou A xou 0Tt0 TANYoC TV CUVOAGY Tou TEPIEYEL.

AéZeic »hewdid Combinatorial Discrepancy, Partial Coloring, Entropy Method
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Chapter 0

Preliminaries

0.1 Introduction

In this thesis we examine the ”classical” versions of combinatorial discrepancy. Generally, we
are given a set Q = {1,...,m} of elements and also a family of n sets A = {Ay, ..., A,,} where
A; € Q. A coloring is considered a function x : © — {—1,+1} and discrepancy of a set A; is
just discy (A;) = | Y, a, X(8)|- Discrepancy of A is defined as

di — mi discy (A 1
isc(A) min max iscy (Ai) (1)

This problem is very important and lots of researchers have focused on it. There is a branch
of mathematics that is called discrepancy theory that studies the inevitable irregularities of
distributions. Discrepancy has a lot of applications in different fields, such as communication
complexity, high-dimensional algorithms, computational geometry, etc. We are going to prove
lower and upper bounds for disc(.A), using very powerful techniques such as entropy method,
SDP and Hadamard matrices. First of all, we will show the well-known result of Spencer [11]
where he proved that in case m = n it holds that disc(.A) = O(y/n) up to constant factors. In his
paper he proved that disc(A) < 64/n. However, this kind of proof is not constructive. In words,
he shows the existence of a coloring x, such that disc, (A4;) < 6+/n for 1 < i < n without finding
it, and his proof is based on properties of entropy as subadditivity and pigeonhole principle.
Twenty five years later, Bansal in his paper [3], gave an elegant randomized algorithm that
succeeds in finding a coloring that upper bounds the discrepancy from O(y/n) with probability
at least @. Finally, it can be proven using techniques from Linear Algebra or Probabilistic
Methods that this bound is tight. Namely, we will construct sets A; such that disc(A) = Q(y/n).
To begin with, we discuss below some basic definitions and theorems that are important for the
proofs that follow in the next chapters.

0.1.1 An example - Discrepancy of lights and switches

Before starting with the basics for the combinatorial discrepancy problem and the techniques
we will need, we will give an example of discrepancy in matrices, to see how powerful technique
is the probabilistic method. However, as it will become clear later, probabilistic method is
not enough when we deal with combinatorial discrepancy as was defined in (1). The following
problem is called Discrepancy of matrix of lights and switches.

We are given a n x n matrix A = {a;; = £1} (these are the lights), row switches x; and
column switches y; (i,j = 1,...,n). The objective is to find x;,y; € {£1} so as to maximize

1
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|22 aijriy;|. We will prove that there exists a matrix A such that
. 3/2
i S <
Z?]
To prove this, assume that each entry a;; of matrix A takes values uniformly at random from
{—1,+1}. We also consider that we know a priori the values of x;,y; (we suppose that are
fixed). Then, obviously Pr[A;;z;y; = —1] = Prla;jz;y; = +1] = 3 (A;; is a random variable
that corresponds to the value of aij). Therefore A;;x;y; are independent random variables and
also E[A;jz;y;] = 0. Hence from chernoff bounds, given that S,z = Zl ; A;jz;y; we have that

a

Pr[|S,2| > a] < 2e”2:2 (i)
Hence, using union bound we have that the probability some configuration of the switches gives
a2
discrepancy more than a is upper bounded by 22" - 2¢” 2.2 (we have 22" possible configurations
2

for the switches). Letting 227 - 2¢ 72 =1 (ii), it follows that there is a matrix A, such that for
each configuration of the switches, the discrepancy is less than a. Finally solving the equality ii,
we have that a® = 2n%(2n + 1)In2 = a = 2nvIn24/n + 1/2. By picking ¢ = 2v/In 2 the result
follows.

0.1.2 Easy Bound

Before continuing with the definitions and techniqual points of the proofs, let’s examine an
easy upper bound which can be derived with the use of elementary ideas. It is rather common
in probabilistic methods, to color the elements independently and uniformly at random. So,
considering that x takes values —1,1 with probability % and independently for each element,
we get that E[x(a)] = 0 for each a € ©, so using Chernoff Bounds it follows that

a2

a2
Pr(|x(4;)| > a] < 2e 24l < 2e72m

where X (A;) = > c 4, X(s). Finally, by choosing a’® = 2mIn 2n and using union bound it follows
that

lir[disc(A) > \/2mIn(2n)] <) " Pr{|x(4;)| > v/2mIn(2n)] < 1 (2)

i=1
Therefore, there exists coloring x such that disc,(A4;) < y/2mIn(2n) for every ¢ and hence

disc(A) < /2mIn(2n).

It is remarkable that for m = n it occurs that disc(A) is O(y/2n1n(2n)). On the other hand,
as we promised before, we will prove something slightly better. Another thing that we should
mention is that the standard deviation of the random variable discrepancy (we consider random
coloring) for each set A; is /A; and so O(y/n) (assuming m = n) so we expect from discrepancy
to have lower upper bound, closer to the standard deviation. In a sense, it looks that uniform
the random coloring is far away from the best we can do (since Spencer [11] proved that disc(A)
is O(y/n)). Trying to do a cleverer random coloring, for example splitting uniformly at random
Q in disjoint pairs and give each pair opposite signs, we can improve /2mIn(2n) by a constant
factor, so even that it is not enough.

0.2 Properties of Entropy

For the purpose of this thesis, we use the notion of binary entropy, measure that was introduced
by Shannon [10]. Let X be a random variable and S be the range of X.
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Definition 0.1. Binary entropy is denoted by

Z Pr[X =i]log Prix — il [Xl = (3)
€S

Intuitively, the entropy of a random variable X measures the amount of information X encodes.
We recommend [2] for furher studying on entropy.

0.2.1 Good chance and Uniformity optimal

Lemma 0.1. (Good chance) Let X be a (discrete) random variable such that H(X) < K for
some K. Then there exists a value x in the range of X such that Pr[X = x] > 27K

Proof. Assume that Pr[X = z] < 27X for all z, then Pr[X = 7]log @ > K Pr[X = z] and

hence H(X) > > K Pr[X = z] = K (contradiction) O

Lemma 0.1 is very useful for proving Spencer’s Result, because in order to prove that a random
variable X takes a value with sufficient probability p, it suffices to prove that H(X) < log%

Lemma 0.2. (Uniformity optimal) Let X be a (discrete) random variable which takes at most
k distinct values. Then H(X) < log, k.

Proof. Let f(xz) =logyz. Then f”(x) < 0 and hence f is concave. From Jensen’s Inequality we
get that

B 1 Pr[X = z]
ZPI[X = z]log, <Pr[X:x]> < logy (Z Pr[X::U])

xT xT

<logy k

0.2.2 Subadditivity

Theorem 0.1. Let X1, ..., X,, be random variables and X = (X1,..., X)) be a random variable
which is the cartesian product. The following holds:

X) <Y H(X) ()

Proof. We prove the following claim and then it comes from induction on n.
Claim: Let X,Y random variables. Then H(X,Y) < H(X)+ H(Y).

Let S, T be the range of X, Y respectively. Then we get that

. 1
ZPr log ZZPr = j]logm

€S €S jeT

Z Pr[Y = j]log W

= J]

ZZPr :j]logPr[Yl_

jeT €S

1
=D D PrX =Y =jllog 5
i€S jeT PriX =4,V = j]
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. . Pr[X=i,Y=j :
Therefore, H(X) + X(Y) = H(X,Y) = Sieg ¥ jer Pr[X =i,V = j]log pxagpyy Using
the fact that f(z) = xlogz is convex (it comes from (zlogz)” = 1 > 0), from Jensen’s

inequality it follows that
HX)+H(Y)—-H(X,Y)

_ o PrX =4Y =] Pr[X =i,Y =]
— ;;PT[X — | Pr[y = ]]Pr[X — Py = log X P = ]

>1logl=0

0.3 Entropy Method and Pigeonhole Principle

0.3.1 Partial Coloring

A very powerful method for achieving lower bounds on discrepancy is the partial coloring
method. In almost every result is used as one of the basic ideas.

Definition 0.2. Partial coloring of a set € is a function x : @ — {—1,0,+1}. An element z is
colored if x(x) # 0 else it is uncolored.

For example, in Spencer’s proof, the idea is to find a partial coloring y such that the number of
uncolored elements is bounded by a constant percentage of the number of elements and also the
discrepancy of A for the given x to be as small as possible. This kind of procedure is repeated
(find a new partial coloring X’ with again the same properties, for the uncolored elements instead
of dealing with all the elements etc, for the proof see chapter 1).

Theorem 0.2. (Partial Coloring Lemma) Let B and C be disjoint subsets of A such that |C;| < s
for every C; € C and

[T (B +1) <2073

B;eB

Then there exists a partial coloring x such that at least {5 elements are colored, discy(B;) = 0
for every B; and disc,(C;) < /2sIn(4|C|) for every C;.

The proof of the theorem 0.2 has 2 main steps. To give some intuition, family of sets BB stands
for few sets where we insist that discrepancy is 0 and C plays the role of the rest sets. The
number /2s1n(4|C|) has been taken from the easy bound we proved earlier. The constant factor
is 4, in order to accomplish that at least half of the random colorings work for the constraint
discy (C;) < y/2sIn(4|C]). On the other hand, in order to satisfy the constraint disc, (B;) = 0, it
suffices to take two colorings x1, x2 that satisfy the first constraint, define the same discrepancy
for every B;, namely discy, (B;) = disc,,(B;) and consider the partial coloring (it is clear why
it is partial, notice that x1, x2 are not partial)

X1 — X2
X'==5— (5)

This proposition, namely the existence of x1, x2 that satisfy the first constraint and disc,, (B;) =
discy,(B;) comes from the hypothesis for B; and Pigeonhole Principle. Finally, to certify that
the partial coloring x’ leaves uncolored for example ?—8 elements, it suffices to choose x1, x2 such
that they differ in at least n — %‘ = 15 elements.

Below we discuss a refinement of the Partial coloring lemma, which uses entropy and it can
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found in bibliography with the term entropy method. The proof of spencer’s result will actually
be a corollary of that method, which will be formally proved in the next chapter. It is remark-
able that the proof is not algorithmic because of the use of Pigeonhole Principle (similar use of
Pigeonhole Principle to the Partial coloring Lemma).

0.3.2 Entropy Method

We will use the notation that Bansal [3] used in his paper. We recommend you to read also [7].

Theorem 0.3. (Quantitative version) Let A be a family of n sets A;, @ = {1,2,...,n} and
Ag, > 2+/|Ai] be a given number for every set A;. Suppose that

- . A;
3 Ke A/ WA 1o, (2+ A' ’) < g (6)

A;eA Ai

with K a constant. Then there exists a partial coloring x : Q@ — {—1,0,+1} such that
discy(A;) < A for all A; € A and the number of colored elements is at least {j.

This theorem is the key to prove Spencer’s result (the existence of a coloring x which certifies
that disc(A) is O(y/n) (using this theorem, the proof is just three lines). Bansal also was based
on this theorem to give a randomized algorithm for finding the coloring. The proof will be
postponed until the next chapter.

0.4 Bounded degree case and other versions

In this final section of chapter 0, we will mention some different versions of the discrepancy
problem, such as the bounded degree case and the permutation problem. For the former version,
we consider that each element of 2 can be used at most k£ times. This setting can be seen as
a hypergraph, where the vertices are the elements of {2 and have degree at most k and each
edge corresponds to a set A;. The goal is to find a coloring with values {—1,+1} such that the
number of —1’s and 1’s are close to each other for each set in 4. Beck and Fiala [4] proved that
disc(A) < 2k — 1 using techniques from Linear Algebra. A proof of their result can be found in
chapter 2.

For the latter version, commonly known in bibliography as k-permutation problem, the setting

is the following: Let 7, ..., m; be k permutations of the elements of 2, A;; = {m;(1),...,p:(j)}

for 1 <j<nand1l<i<kand.Abe the collection of all A;;. An example for k =2 is A =
(O} A1 (1)1 (2} o {1 (1), 71(2), o 1)}, {2}, {m2(1), 122D, o {m2(1), 72(2), o a() -
It has been proven by Srinivasan [13] that k-permutation problem is O(\/Elog n) and recently
Newman et al [9] proved that discrepancy is unbounded even for the case k = 3, it is of order
Q(logn) (the conjecture of Beck that the discrepancy of 3-permutation problem is O(1) isn’t

true).
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Chapter 1

Algorithmic vs Non-Algorithmic

1.1 Introduction

The first half of this chapter concerns the entropy method, which will be more clear with the
proof of Spencer’s result at section 1.2. The second half concerns Bansal’s algorithmic result.
It is remarkable that for more than 25 years, it wasn’t known any algorithmic guarantee better
than the random coloring we presented in the previous chapter (section 0.1.2). Before we
continue with the two amazing results - proofs, we mention some necessary theorems that we
are going to use.

1.1.1 Gaussian random variables and tail bounds

Definition 1.1. Gaussian distribution N (1, 0?) with mean p and variance o has probability

distribution function
1 _(@=w?
(& 202

fz) =

2o

An important property (additivity) that we will use is the fact that a linear combination of

two random variables 11 ~ N (u1,0%), 2 ~ N (2, 03) follows gaussian distribution too, a1 +

2.2, 29
asxy ~ N(aip + aspe, ajoi + a503).

Definition 1.2. A martingale is a sequence X, ..., X;, of random variables so that for 0 < i < m
EXi1] X, ..., Xo] = X;

Theorem 1.1. (Tail bounds) Let 0 = Xg, X1, ..., X;, be a martingale with increments Y; = X; —
Xi—1. Suppose that Y|(X;—1, ..., Xo) has distribution ¢;G where G is the gaussian distribution
N(0,1) and |¢;| <1 constant. Then it holds that

Pr[|X,| > av/n] < 2 %72 (1.1)

Proof. Let A > 0, then we get that E[e*?|X;_1, ..., Xo] < N2 < /2 (i). Using properties
of conditional expectation (see appendix) we get that

E[GAX"] — E[GAYTLE)\X”,l]
= B[N 1 B[eM"| X, 1, ..., Xo]]

(i
=~

=

6A2/2E[e>\Xn,1]
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Therefore taking the telescopic product, it follows that E[e*X»] < e\""/2 Hence from Markov’s
inequality (see appendix) it occurs that

AX Aay/n E[e}Mn] A2n/2—Nay/n
Pr[X,, > ay/n| = Prle**" > V"] < avn S €
e as/mn

a

Finally substituting A = Jn and by symmetry the result follows. O

1.1.2 Semidefinite Programming

Let A; and C' be n x n symmetric matrices and b; be real numbers. A general SDP has the
following form:

maxC e X
s.t A,‘OXSI)Z'
X =0

X is symmetric

where Ae B =371, 37" | a;;bij. SDP is important in convex optimization and it is known that
it can be solved efficiently (see [6]). For our purpose (for Bansal’s result), we are interested in
finding efficiently a feasible solution to the SDP and not the optimal.

1.2 Spencer’s result

1.2.1 Proof of Entropy Method

In this section we will prove theorem 0.3. Let y be a coloring uniformly at random and b;(y) =

{stf(s)—‘ (random variable) where |u| denotes the nearest integer to u. Using Chernoff
bounds (see appendix) we get that

Pr[bi(x) = 0] > 1 —2¢7° (1.2)

Pr(bi(x) = 5] = Prfbi(x) = —s] < 72 (13)

Let ps = Pr[bi(x) = s]. Then from elementary calculus and using the fact that —xzlogz is
nondecreasing on (0, 1) and that log(1 — z) < —z we get that

H(bi) = —pologpo — Y pslogps

s>1

_ 5(25 —1)% 0, 12

< de 52 o 5(25—1)
= In2

<14e7® < 0.1

Hence the constraint of the theorem 0.3 holds since the maximum of left hand side of the in-
equality happens when Ay, ~ 2\/A 4, and 1475 < %

Moreover we use theorem 0.1 (subadditivity) and we get that

H(b) < 14ne™>
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where b is the random variable (b1, ...,b,). Additionally from lemma 0.1 (good chance) and the
inequality above, it occurs that there exists a by such that

Prlb = by] > 27"

with € = 14e~° (this is the step that makes the proof non-constructive, pigeonhole in a sense).
Since x was taken uniformly at random, it follows that there exists a set of colorings C' such
that b;(x1) = bi(x2) for all 1 <i < n and i, x2 € C and |C| > 21797, To finish the proof we
will prove that there exist colorings x1, x2 € C which differ in at least {5 elements. To do this,
let N be the number of colorings that differ in less that {5 elements. Clearly we have that

N_Z g - 2en \ ™10
- 4L \g n/10
<1y
= (20e)™/10

< 96n/10

<2079 = ||

and thus there exist x1,x2 € C that differ in at least 75 elements. Hence the partial coloring

X' = 5% colors at least {5 elements and the discrepancy of each set A; is at most Ay, (since

bi(x1) = bi(x2) for all i, they lie in the same interval [2A4,(k — 0.5),2A4,(k + 0.5)) for some

integer k£ and hence disc,/(A;) = | Loea; Xl(s);zse“‘i el < Ay,) and the proof finishes.

1.2.2 Corollary - Spencer’s result

Theorem 1.2. (J.H.Spencer, [11]) Let A be a family of n subsets of a set Q@ = {1,2,...,n}.
Then
disc(A) < ev/n (1.4)

for ¢ constant (Spencer proved it for ¢ =6).

Proof. 1t is clear that for ¢ sufficiently large, we can use the theorem 0.3, therefore there exists a
partial coloring x1 which leaves uncolored at most ‘% elements and disc,, (4;) < ¢y/n. Having
obtained 7 coloring, let 25 be the set of uncolored elements and A¢ be the ”induced” family of
sets on {29. Similarly from theorem 0.3, there exists a partial coloring x2 which leaves uncolored
at most % elements discy, (A2 ;) < ¢y/n (and so on). Hence at step t, we have at most
(%)tn elements uncolored. We may stop at some step k such that the uncolored elements
are sufficiently small (say constant, hence & = O(lnn) and the discrepancy will be at most

Y1 ey/ (1) n2(3)7) = O(van). O

1.3 Bansal’s result

1.3.1 Sketch of the algorithm

The algorithm has some similarities with the proof of Beck-Fiala in the next chapter. We con-
sider a vector x € [—1,1]" (fractional coloring) which is initially xo = (0,0,...,0). At step ¢,
vector x¢ = Xt—1+ ¢t where ¢ is a tiny value. If x;(i) (at step t) is very close to 1 or —1 then we
set x¢(i) = 1 or —1 respectively with probability very close to 1 and with probability very close
to 0, we will set x¢(7) the opposite value. The choice of the updates ¢; depends on a certain
SDP and is made so as to be able to use theorem 0.3 (entropy method). In words, the variables
that are floating (have not been fixed yet), do a random walk certifying that at each time the
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hypothesis of entropy method holds.

The main theorem from which follows as a corollary an algorithm that finds a proper coloring
with discrepancy O(y/n) is the following:

Theorem 1.3. (/3]) Let x € [—1,1]" be a fractional coloring with at most a floating variables
(not fized yet). Then there exists an algorithm that with probability at least %, produces a
fractional coloring y with at most a/2 floating variables and the discrepancy of any set increases

by O(v/aln(2n/a)).

We will postpone theorem’s 1.3 proof sketch for later. Let us first prove the main theorem
(below) using theorem 1.3.

Theorem 1.4. There exists an algorithm that finds a proper colorz’ng X Q= {=1,+1} with
discrepancy O(y/n). The algorithm succeeds with probability at least

log n’

Proof. Starting with coloring x = (0, 0,...,0), we apply theorem 1.3 for k& = loglogn steps and
hence with probability at least we have a fractional coloring with at most n/logn floating

10g
variables and as in Spencer’s proof with discrepancy O(y/n). For the floating variables, we
set x(i) = 1 with probability 1+Ty(z) and x(i) = —1 with probability y() independently. By

Chernoff bounds, it is easy to see that with high probability, the add1t10nal discrepancy will be
O(y/n) and the result follows. O

1.3.2 The Algorithm

Theorem 1.3 was proven by Bansal [3], who gave the following algorithm. A(t) stands for the
floating variables at step t.

Repeat the following subroutine log(2n)? times (abort if the floating points are
less than a/2 where a = # of floating points at the beginning)
Bansal’s routine

1. For each set A;, let d; be the discrepancy of A; until now.

2. Let Sy be the set of k-dangerous sets, namely sets A; s.t d; € [b(k),b(k + 1)) with
b(k) = Cy/alog(4n/a)(2 — 1).

3. Find feasible solution u of SDP1

4. Construct ¢; from u;, by setting ¢;(i) = s{g,u;) (where g(i) ~ N(0,1))

5. Update x: = xt—1 + ¢ (abort in case |x¢(7)] > 1 for some ¢

6. For each 1, if Xt( ) > 1 — o, then set x;(i) = 1 with probability p = fot(l)

and —1 with 1 —

7. Update A(t).

The SDP1 is the following:

LY (il > A —1)/2

i€[n]
C'alog(2n/a
2013wl < g;()f)/) Vk,VA; € S
iI€A;
3fJuills > 1 Vie A(t — 1)

4.||uil|3 =0 Vig At —1)
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1.3.3 Discussion

Let us first give some observations for SDP1. Clearly, the first constraint exists because we
want at a current step, at least half of the floating points to become fixed and hence in a sense
we want to make large progress. The constraint 4 is trivial since we want our fixed variables to
continue to be fixed, thus we don’t want to increase them. Constraint 3 is trivial too, because
we want a tiny increase in the floating variables. Finally, constraint 2 is useful to certify that
the k-dangerous sets (for some k) will not become bigger than discrepancy O(y/n).

The idea of the algorithm, is to seperate the sets A; in groups with respect to the discrep-
ancy (k-dangerous) and find a vector that changes x; so as to maintain discrepancy of each set
low. Additionally, using theorem 1.1, it can be proved that the number of k-dangerous sets
decreases exponentially with respect to k& with high probability w.r.t k& (namely exponential).
This fact implies that SDP1 is feasible. These arguments suffice to prove theorem 1.3 (the rest
are just technical).

What is important to mention is the choice of some parameters in the algorithm. Even if
Spencer’s result is not constructive since he uses entropy’s property good chance, it is clear that
except of the partial coloring method, mostly Bansal’s algorithm was influenced by Entropy
method. Namely, the non-constructive entropy method is a major component for the algorithm
above. The parameters b(k) and Cy/alog(4n/a)(2 — 1) which guide the semi-definite program
were given by Entropy method.
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Chapter 2

Lower Bounds, Eigenvalues and
Other cases

2.1 Lower Bound

2.1.1 Definitions

In this section, we mention the necessary definitions we need to prove the lower bound of
combinatorial discrepancy (proof follows in section 2.1.2).

Definition 2.1. Hadamard Matrix H is a square matrix with entries —1,41 and with rows
that are pairwise orthogonal. From the observation HH”' = nl,, it follows that the columns of
H are also othogonal and also it holds that

\det(H)| = n™/? (2.1)

It’s an open question whether or not, there exists an Hadamard matrix with dimension 4k x 4k
for every k € N*. By Sylvester’s construction, for every k& € N, there exists a Hadamard matrix
with size 2F x 2F (*). The construction follows from the recursion below

- H2k HQk
H2k+1 — |: H2k —H2k :| (22)
It is clear that the first column of Hyx has entries 1 and also that the number of 1 is equal to

the number of —1 for all the other columns (because of the orthogonality).

2.1.2 The Proof

In this subsection we will construct a family of sets A such that disc(A) > \/n/2 using some
Linear Algebra and also (*) from previous section. We can represent A as a square matrix
M which we will call incident matrix, M;; = 1 if element j € A; and M;; = 0 otherwise.
Therefore to prove that Spencer’s result is tight, it suffices to find a matrix M such that
minyer_1 4130 |[[MX]|oo is 2(y/n). This is true because

disc(A) = min  ||Mx||eo (2.3)
xe{—-1,+1}7

(observe that a coloring x can be seen as a 1 x n vector with entries —1,41). The following
theorem certifies the tightness of Spencer’s result.

1
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Theorem 2.1. For every k > 2, there exists a family A of sets Ay, ..., An C {1,2,...,n} such
that disc(A) > \/n/2, where n = 2¥

Proof. Let Hy, be a hadamard matrix as defined in section 2.1.1 and let M = (H,, + J)/2 where
J is a square matrix with entries all ones. It is clear that each entry of M is either 0 or 1 (plays
the role of an incident matrix as mentioned above). For an arbitrary x € {—1,+1}" we get that

HHTLXHZ_ZXz |H k”2—n (2.4)

where H! denotes the i-th column of the hadamard matrix H,, and ||u||2 denotes the euclidean
norm of vector w.

Moreover, using the fact that the first column of H, has entries 1 and also that the num-
ber of 1 is equal to the number of —1 for all the other columns (mentioned above), it holds
that

1> (Hux)il = nl(x)1l =n (2.5)
i=1

Finally, setting s = > | x;, observe that Jx = (s, s, ..., s), so

|(Ho + )| = || Hux + (s, 5., 9)|13 (2.6)
n
= | Hnx|[3 +ns® + 25 > (HaX)s (2.7)
i=1
2.4,2.5
= n? 4+ ns® £ 2ns (2.8)

Since s € Z, (2.8) is minimized for s = 0, F2 (observe that since n is even, s is even too, thus
sneq £+ 1). Namely, we conclude that

[(Hy + J)x|[3 > n? (2.9)

From Pingeonhole Principle and (2.9), it follows that there exists a coordinate j such that
|((Hn + J)x);| > v/n and hence ||(Hy + J)x|loc > /1 or equivalently ||M||o > /n/2.

Therefore, M is the matrix we are looking for and the proof finishes (as stated at the beginning
of the section and 2.3) O

2.2 Eigenvalues

The proof above with the Hadamard matrices gives some interesting observations and tools
to deal with combinatorial discrepancy. The idea is to consider the coloring y, as a vector
that belongs to {—1,+1}" and observe that disc(A) = minye(_1 y1)n [|Mx|[oc Wwhere M is the
incident matrix of A. For purposes of completeness, we mention some important theorems that
concern discrepancy and which are nice and powerful tools to deal with this problem and helps
in obtaining lower bounds. In many cases and it can also be seen in the proof of the lower
bound, it is more convenient to use Euclidean norm instead of infinity norm. Please notice that
we use ||.|| and ||.||2 for euclidean norm interchangeably. So using the same notation as before
(M to be the incident matrix, etc), we may define disca(.A) as follows:

. 1
disca(A) = T el mi +1}n [| M x||2 (2.10)

It is straightforward that disc(A) > disca(A).
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Theorem 2.2. Let A be a family of sets A; C Q as previously and M be the incident matrix.
It holds that:

disca(A) > v/ Amin (2.11)

where Amin denotes the minimum eigenvalue of matric MT M.

In case the number of sets is n and Q = {1,...,m} then the inequality becomes disca(A) >
V¥ Amin- Before continuing with the proof, we will give some intuition and discuss about
theorem 2.2. First of all, matrix M7 M is symmetric and hence all its eigenvalues are reals.
Additionally, for a given vector y # 0 we have that y" MT My = (y" M) My = ||My||3 > 0

and hence MT M is a semidefinite matrix, or equivalently all its eigenvalues are nonnegative.
™M™ My||

I = Amin (similar to the spectral norm).

Finally, it follows that minj,|—;

Proof. Using the arguments mentioned above we get that

Vs w—— [[XTMTMx||
min — 1 T
lIx|=1 x|

L [[IMy]
= min
Ixli=1 xl|
scaling
M
~~ L || M x|
Ixli=va x|
M
< min [|Mx||
xe{-1+137 ||x||
= disco(A)

2.3 Beck-Fiala’s theorem

2.3.1 Discussion

One of the most common and interesting settings of combinatorial discrepancy which has plenty
of applications, is the case where each element of 2 is allowed to be used at most k& times in A
(bounded degree). In the section that follows, we will prove that if the degree is bounded from
k, then the discrepancy is at most 2k — 1 using techniques from Linear Algebra. Bednarchak and
Helm [5] improved the result to 2k —3 (which is the best result in terms of the maximum degree
k, namely considering that k is constant and also k < n). It was conjectured that discrepancy
is of order O(v/k) (still an open question). Finally, if the conjecture is true, it will be tight since
it has been proven that discrepancy is Q(Vk).

2.3.2 Proof

The proof we mention below, uses some Linear algebra without any randomness. However, it
has some similarities (at least the beginning) with Bansal’s.

Theorem 2.3. Let A be a family of sets on an arbitrary finite set Q such that
HAi e A:x e A} <t forallz € Q. Then disc(A) < 2t — 1.

Proof. The proof is algorithmic. Let z; € [—1,1] be a variable that corresponds to the value
of element j. Initially, ; = 0 for all j. A variable z; will be called floating if x; € (—1,1) at
an arbitrary step of the algorithm. Once x; = —1 or x; = 1, then it is fixed. A set A; will
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be called dangerous at an arbitrary step if more than ¢ elements of A; are still floating. The
algorithm finishes when there are no dangerous sets, and then we give arbitrary values (£1) to
the remaining floating variables. Finally, at each step, we assume that the discepancy of each
dangerous set is equal to 0, namely

Z xj =0 for all dangerous sets A; (2.12)
JEA:

(each element has a real value in [—1, 1], at the beginning every set has discrepancy 0). The
inductive step as described below, ensures that at each step of the algorithm, at least one float-
ing variable gets a fixed value +1.

Inductive Step: The main idea which ensures that we can decrease the number of fixed variables
at each step, maintaining 2.10, is the following claim:

Claim: At each step, the number of the floating variables is larger that the number of the
dangerous sets.

Proof of claim: It comes from a simple double counting. Let [ be the number of dangerous
sets in an arbitrary step. Then the number of floating variables is at least I - (k+ 1), where each

variable is counted at most k times, hence we have at least W > [ floating variables.

Hence if we write for each dangerous set A;, the constraint that the discrepancy is equal to
0, we get a system of [ linear equations (where [ is the number of dangerous sets) and more
unknowns, so we can force a floating variable to aquire value 1, by adapting and all the other
floating variables.

In the end, since each set is not dangerous, it has at most t floating variables, whose val-
ues belong to (—1,1). Finally, each floating variable takes an arbitrary value and hence it may
increase the discrepancy of a set A; which is currently 0 (at the end of the algorithm) by less
than 2, hence for a total discrepancy of less than 2k for each set A; € A. Thus disc(A) < 2k,
so disc(A) <2k — 1. O

2.4 2,3 - Permutation problem

We have already defined the modified version of combinatorial discrepancy called k-permutation
problem, where the family of sets A contains sets A;; where A;; = {m;(1),...,m(j)} for given
permutations pi,...,pr of ground set Q@ = {1,2,...,n}. In this last section, we mention the
cases k = 2,3 (notice that for k = 1 trivially disc(A) = 1 if we consider the coloring x where
x(m(i)) = —x(mw(i — 1)) and x(w(1)) = 1 for the given permutation 7). Surprisingly for £ = 2
we also have that discrepancy equals to 1. Beck conjectured that the discrepancy of the 3-
permutation problem is O(1) and Spencer offered 100$ for the resolution of this conjecture.
However, on April 2011, Alantha Newman and Aleksandar Nikolov [9] gave a counterexample
to this conjecture. They actually showed that discrepancy is (logn) for k = 3.

2.4.1 Case k=2

In this subsection, we present an elegant and short proof that for the case k = 2, discrepancy
is at most 1 (see also [12]).

Theorem 2.4. Let pi,p2 be two permutations of {1,...,n} and Ay = {pi(1),...,pi(j)} for
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1€ {1,2} and 1 < j <n. Then it holds that
disc(A) <1 (2.13)

Proof. We may assume that p; maps every element to itself, so we have the permutations
1,2,...,n and ¢(1),...,q(n). We may also assume that n is even. In case n is odd, we add a
dummy element and the argument still holds. Consider the graph G with V(G) = {1,...,n}.
For the edges, (2i — 1,2i) € E(G) and ¢(2i — 1),q(2i) € E(G) for every 1 < i < n/2. It is
clear that each vertex has degree two, hence GG is a union of disjoint cycles. Also observe that
the cycles have even length (the edges of the cycles alternate). So what we do, is to color each
cycle alternately +1 and —1. Clearly each permutation breaks into +, — or —, + pairs, thus no
partial sum is more than one (see the figure below, ¢ is permutation 3,8,2,6,1,5,4,7).

! 2 3 4
+ - +
- + +
3 ] B 7
+ -+ - - + + -
1 2 3 4 5 6 7 8
I 8 2 6 1 5 4 7
+ - = + + - - +
Figure 1

2.4.2 Case k=3

It was an open question for more than two decades whether or not discrepancy of 3-permutation
problem is O(1). Few months ago, Newman et al. [9] gave a recursive construction (family of
sets Ay, for n = 3% (k is a parameter) and they proved by induction the following theorem:

Theorem 2.5. disc(Ag) > [£+1] = [IOgTs” 1]

The construction can be discribed with the following matrix:

A B C
C A B
B C A

A corresponds to the numbers on the interval [1,n/3], B corresponds to [n/3 + 1,2n/3] and C
to the [2n/3 + 1,n]. Each element of the matrix, recursively has the form of the row that it
appears, namely the A at the second row has the form C' A B, where C corresponds to the
numbers on the interval [2n/9,3n/9], B to the numbers on the interval [n/9,2n/9] and A to
the numbers on the interval [1,7/9] (etc). An example can be shown below for n = 33.

T
o

9 il 11 12 13 14 15 16 17 18 19 0 21 22 2
2 ] i a 1 2 6 5 7 12 1 :
23 24 22 6 27 25 0 L | 19 5 g 1 8 4 T 2 3

b b M
w0
3
T

1)
[

Figure 2
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The main idea of the proof that is proven by induction is the following observation:

The sum of the discrepancies family of sets, each corresponding to one of the permutations,
increases by 1 as k increases by 1, so by pigeonhole principle the discrepancy of at least one set
is at least % = O(logs n).
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Appendices



Theorem .6. (Markov’s Inequality) Let X be a (discrete) random variable that takes positive
values. Then for any number a > 0 we get that

Proof.

O]

Theorem .7. (Chernoff Bounds) Let X;, 1 < i < n be mutually independent random variables

with 1
PI‘P(Z = 1] = Pr[Xz = —1] = 5

and let S, = X1+ ... + X,,. For every a > 0 we get that
Pr(|S,| > a] < 2¢7%°/2"

Proof. Let A > 0 then E[e*¥] = % Since X; are mutually independent it follows that
Bl = J[ Bl = (S5 ) <

Therefore we get that

Pr[S, > a] = Pr[e* > )]
Markov
A~ B[]
— ela
< en)\2/27)\a
Thus choosing A = > the result follows. O

Lemma .1. (Useful Inequality) For every natural k < n it holds that

(o) < (2)

Proof. First of all (}) = W < . Additionally since e* = >0 ’;—J,, we get that
k  k

k
ek > %, and thus (}) < S O

Remarks on conditional expectation: Two properties that we used in this thesis are the following:
Let X,Y be random variables and g(x) real function. It holds that

E[EX|Y]] = E[X]

and
EXg(Y)|Y] = g(Y)E[X]Y]
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