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Κεφάλαιο 1

Εξισωτική Λογική

Το παρόν κεφάλαιο αναπτύσει την ῾῾ εξισωτική ᾿᾿ λογική. Η αφορμή για την ανά-

πτυξη αυτού του τομέα της λογικής είναι η κατανόηση των μεθόδων που χρησι-

μοποιούν οι μαθητές του Λυκείου για να λύνουν εξισώσεις. Ο όρος ῾῾ εξισωτική ᾿᾿

δεν είναι απολύτως ακριβής και μία καλύτερη προσέγγιση του αντικειμένου δίνεται

από τον όρο ῾῾ ταυτοτική ᾿᾿ λογική. Η ιδέα πίσω από αυτό είναι ότι μας ενδιαφέρουν

οι εξισώσεις που ισχύουν ταυτοτικά (αν και προφανώς οι μαθητές του Λυκείου

῾῾ ταλαιπωρούνται ᾿᾿ λύνοντας εξισώσεις ως προς αγνώστους).

Αν ρωτήσουμε έναν μαθητή Λυκείου αν μπορεί να μας πει κάποιον νόμο που

ισχύει ταυτοτικά στο R =< N,+, 0 > τότε χωρίς σκέψη θα μας απαντήσει κάποιον
από τους γνωστούς κανόνες x+0 = x ή x+y = y+x ή (x+y)+z = x+(y+z).
Στο εξής θα αναφερόμαστε σε αυτούς τους κανόνες ως CAZ.

Εαν θέλουμε να προκαλέσουμε λίγη σκέψη παραπάνω μπορούμε να τον ρω-

τήσουμε αν γνωρίζει κάποιον κανόνα (εκτός των παραπάνω) που να ισχύει ταυ-

τοτικά στο R. Τότε αν η σκέψη του είναι σωστή θα μας απαντήσει κάτι όπως
x+ y = y+ (0 +x). Ο μαθητής για να απαντήσει στο ερώτημά μας ῾῾ σχημάτισε ᾿᾿
μία απόδειξη από το CAZ χρησιμοποιώντας κάποιους κανόνες.

Μπορούμε να προχωρήσουμε ένα βήμα πιο πέρα ρωτώντας τον αν γνωρίζει μία

εξίσωση που να ισχύει ταυτοτικά στο R αλλά δεν μπορούμε να την συνάγουμε από
το CAZ. Προφανώς αυτό το ερώτημα ξεπερνάει τις δυνατότητές του αλλά είναι
ένα πολύ ενδιαφέρον ερώτημα στα πλαίσια της λογικής.

Στην συνέχεια θα αναπτύξουμε τα κατάλληλα εργαλεία για να απαντήσουμε

στο παραπάνω ερώτημα. Επίσης θα ορίσουμε τους κανόνες απόδειξης της ῾῾ εξι-

σωτικής ᾿᾿ λογικής, οι οποίοι είναι αρκετά απλοί και διαισθητικά αποδεκτοί, και θα

αποδείξουμε θεωρήματα Πληρότητας και Εγκυρότητας γι΄ αυτήν.

1.1 Εξισωτικοί Κανόνες

Σ΄ όλο το κεφάλαιο η γλώσσα στην οποία δουλεύουμε είναι η L = {+, 0} εκτός
αν αναφέρεται διαφορετικά. Το σύνολο των όρων, T , αυτής της γλώσσας ορίζεται
κατα τα γνωστά και συμβολίζουμε με G =< T,+T , 0 > την ΄Αλγεβρα των
΄Ορων της γλώσσας μας. Επειδή 0 ∈ T η G είναι δομή στην γλώσσα μας. Ακόμα
η G έχει τις εξής ιδιότητες:

1. Τα σύνολα V ar, {0}, ran(+T ) είναι ξένα ανά δύο.
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2. Εαν σ, τ, σ′, τ ′ ∈ T και σ +T τ = σ′ +T τ
′
τότε σ = σ′ και τ = τ ′.

3. Εαν U ⊆ T και (i) V ar ∪ {0} ⊆ U και (ii) U είναι κλειστή για +T τότε

U = T .

Στην ουσία οι παραπάνω ιδιότητες χαρακτηρίζουν την G εως ισομορφισμού επο-
μένως αρκεί να κάνουμε χρήση των παραπάνω ιδιοτήτων χωρίς να αναφερόμαστε

καθόλου στους ορισμούς των T και +T .

Ορισμός 1.1. Απόδειξη είναι μία πεπερασμένη ακολουθία τύπων που οδηγούν

από ένα δοσμένο σύνολο Γ τύπων, τις υποθέσεις, σ΄ ένα τύπο φ, το συμπέρασμα
της απόδειξης. Οι τύποι σε μία απόδειξη που δεν είναι υποθέσεις σχετίζονται με

προηγούμενους στην ακολουθία της απόδειξης με συγκεκριμένους κανόνες, τους

κανόνες συμπερασμού.

Ορισμός 1.2. (Κανόνες Συμπερασμού για την L)

• (R0) σ = σ για κάθε όρο σ ∈ T (Ταυτολογία)

• (R1) Εαν τ = σ τότε σ = τ (Κανόνας Συμμετρικότητας)

• (R2) Εαν σ = ρ και ρ = τ τότε σ = τ (Κανόνας Μεταβατικότητας)

• (R3) Εαν σ = σ′ και τ = τ ′ τότε σ+τ = σ′+τ ′ (Κανόνας Προσθετικότητας)

• (R4) Εαν σ = τ και f : V ar → T και Subfσ, Subfτ οι όροι που παίρνουμε
από τους σ, τ αντίστοιχα αν αντικαταστήσουμε κάθε μεταβλητή u με τον όρο
f(u), τότε Subfσ = Subfτ(Κανόνας Αντικατάστασης).

Τώρα μπορούμε να πούμε πως για κάθε σύνολο τύπων Γ μία απόδειξη από το
Γ είναι μία πεπερασμένη ακολουθία τύπων (φ1, . . . , φn) όπου κάθε φi είναι είτε

στοιχείο του Γ ή ταυτολογία (R0) ή συνεπάγεται από έναν ή δύο προηγούμενους
τύπους της ακολουθίας και έναν από τους κανόνες R1−R4.
Μπορούμε να σχηματίσουμε το σύνολο υποθέσεων ΓCAZ με τις ακόλουθες

εξισώσεις.

φC := (u0 + u1) = (u1 + u0)
φA := ((u0 + u1) + u2) = (u0 + (u1 + u2))
φZ := (u0 + 0) = u0

Ως παράδειγμα δείνουμε την απόδειξη της (u0+u1) = (u1+(0+u0)) από το ΓCAZ

1.(u0 + 0) = u0 φZ

2.u0 = (u0 + 0) 1, (R1)
3.(u0 + 0) = (0 + u0) φC και (R4) με f(u1) = 0
4.u0 = (0 + u0) 2, 3(R2)
5.u1 = u1 (R0)
6.(u0 + u1) = ((0 + u0) + u1) 4, 5(R3)
7.((0 + u0) + u1) = (u1 + (0 + u0)) φC και (R4) με f(u0) = 0 + u0

8.(u0 + u1) = (u1 + (0 + u0)) 6, 7(R2)
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1.2 Δίνοντας ζωή στα σύμβολα

Ακόμα για να μπορέσουμε να διατυπώσουμε και τυπικά το ερώτημα που θέσαμε

στην πρώτη παράγραφο πρέπει να δώσουμε ῾῾ ζωή ᾿᾿ στην γλώσσα μας. Για πα-

ράδειγμα η φC είναι αλήθεια ή ψέμμα;Προφανώς η απάντηση εξαρτάται από την

δομή που βρισκόμαστε. Στην R =< N,+, 0 > είναι αλήθεια, κάτι που θα συμ-
βολίζουμε με WR(φC) = 1, από την άλλη στην δομή R∗ =< N, exp, 0 > όπου
exp(x, y) = xy

είναι ψέμμα και WR∗
(φC) = 0.

Επειδή ενδιαφερόμαστε για ταυτότητες θα λέμε ότι για έναν τύπο ψ := σ = τ
ισχύει WA(ψ) = 1 αν-ν για οποιαδήποτε τιμή στις μεταβλητές των σ, τ οι δύο
αυτοί όροι παίρνουν την ίδια τιμή στην δομή A.
Διατυπωμένη διαφορετικά η παραπάνω πρόταση λέει uA(σ) = uA(τ) για κάθε

αποτίμηση u της δομής A, όπου τυπικά η αποτίμηση u είναι μία συνάρτηση από το
σύνολο των μεταβλητών της γλώσσας μας στο σύμπαν της δομής A.
Ο υπολογισμός της τιμής ενός όρου στην δομή μας, δεδομένης μιας αποτίμησης,

βασίζεται στο παρακάτω πολύ σημαντικό Θεώρημα. Χωρίς αυτό δεν είναι τόσο

προφανές ότι μπορούμε να αντιστοιχίσουμε σε κάθε όρο μοναδική τιμή.

Θεώρημα 1.1. (Θεμελιώδες Θεώρημα Ομομορφισμού)

Για κάθε δομή A =< A,+A, 0A > και κάθε αποτίμηση u : V ar → A υπάρχει
μοναδικός ομομορφισμός h της G =< T,+T , 0 > στην A έτσι που h(v) = u(v)
για κάθε v ∈ V ar. Θα συμβολίζουμε αυτόν τον ομομορφισμό με uA

.

Απόδειξη:

Για την απόδειξη του Θεωρήματος θα χρειαστούμε τους εξής ορισμούς και λήμματα.

Ορισμός 1.3. ΄Ενα υποσύνολο H του T ονομάζεται τμήμα αν {0} ∪ V ar ⊆ H
και αν x+T y ∈ H τότε x, y ∈ H.

Ορισμός 1.4. Μία συνάρτηση, j, ονομάζεται μερική εαν Dom(j) = H για
κάποιο τμήμα H και Ran(j) ⊆ A έτσι που

j(0) = 0A

j(v) = u(v), για κάθε v ∈ V ar

j(x+T y) = j(x) +A j(y), για κάθε x, y έτσι που x+T y ∈ H

Λήμμα 1.1.

Εαν j1, j2 είναι μερικές συναρτήσεις και x ∈ Dom(j1) ∩ Dom(j2) τότε j1(x) =
j2(x).

Απόδειξη

΄Εστω G το υποσύνολο του T έτσι που x ∈ G αν j1(x) = j2(x) για j1, j2 μερικές
συναρτήσεις και x ∈ Dom(j1) ∩Dom(j2).

• {0} ∪ V ar ⊆ G. Πράγματι, j(0) = 0A, j(v) = u(v) για κάθε μερική συνάρ-
τηση j.

• ΄Εστω x, y τυχαία στοιχεία του G και j1, j2 μερικές συναρτήσεις έτσι που
x+T y ∈ Dom(j1)∩Dom(j2) τότε j1(x+T y) = j1(x)+A j1(y) = j2(x)+A

j2(y) = j2(x+T y).
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Τελικά το G είναι το T κάτι που αποδεικνύει το λήμμα.

Λήμμα 1.2.

Κάθε στοιχείο του T ανήκει στο πεδίο ορισμού μιας μερικής συνάρτησης.

Απόδειξη

΄Εστω G το υποσύνολο του T έτσι που τα στοιχεία του G ανήκουν στο πεδίο
ορισμού κάποιας μερικής συνάρτησης.

• Το {0} ∪ V ar ⊆ G. Πράγματι το {0} ∪ V ar είναι τμήμα και η συνάρτηση j
με Dom(j) = {0}∪V ar και j(0) = 0A, j(v) = u(v) για κάθε v ∈ V ar είναι
μερική, αφού για κανένα x, y, x+ y ∈ {0} ∪ V ar.

• ΄Εστω x, y στοιχεία του G και j1, j2 μερικές συναρτήσεις έτσι που x ∈
Dom(j1) και y ∈ Dom(j2), τότε μπορούμε να βρούμε μία μερική συνάρ-
τηση, j, όπου x, y ∈ Dom(j). Πράγματι, επιλέγουμε την j με Dom(j) =
Dom(j1) ∪ Dom(j2) προφανώς Dom(j) είναι τμήμα, αφού {0} ∪ V ar ⊆
Dom(j) και αν x+T y ∈ Dom(j) τότε x+T y ∈ Dom(j1) ∪Dom(j2) επο-
μένως αν x +T y ∈ Dom(j1) τότε x, y ∈ Dom(j1) άρα x, y ∈ Dom(j) και
αντίστοιχα αν x +T y ∈ Dom(j2). Και την ορίζουμε ως j|Dom(j1) = j1
και j|Dom(j2) = j2 ο ορισμός είναι καλός λόγω του Λήμματος 1.1. Η j
είναι μερική διότι {0}∪V ar ⊆ Dom(j1)∩Dom(j2) και αν x+T y ∈ Dom(j1)
τότε j(x +T y) = j1(x +T y) = j1(x) +A j1(y) = j(x) +A j(y), όμοια εαν
x+T y ∈ Dom(j2).

Εαν τώρα x +T y ∈ Dom(j) τότε x +T y ∈ G και ισχύει το ζητούμενο.
Επομένως παίρνουμε την περίπτωση που x +T y /∈ Dom(j). Παίρνουμε το
σύνολο H ′ = Dom(j) ∪ {x +T y}· προφανώς είναι τμήμα και ορίζουμε την
j′ ως j′|Dom(j) = j και j′(x +T y) = j(x) +A j(y), αρκεί να δείξουμε
ότι j′ είναι μερική συνάρτηση, πράγματι η j′ συμφωνεί με την j στο σύνολο
{0} ∪ V ar και εαν w +T z ∈ Dom(j) τότε j′(w +T z) = j(w +T z) =
j(w) +A j(z) = j′(w) +A j

′(z)· εαν w+T z = x+T y τότε w = x και z = y
επομένως j′(x+T y) = j(x) +A j(y) = j′(x) +A j

′(y).

Και αυτό ολοκληρώνει την απόδειξη.

Τώρα είμαστε σε θέση να αποδείξουμε τοΘεώρημα. Συνδυάζοντας ταΛήμμα-

τα 1.1,1.2, έχουμε ότι για κάθε τ ∈ T υπάρχει μοναδικό a ∈ A έτσι που a = j(σ)
για κάποια μερική συνάρτηση j. Θέτουμε ως h την συνάρτηση με Dom(h) = T
και για κάθε σ ∈ T , h(σ) είναι το μοναδικό a ∈ A. Θα δείξουμε ότι η h είναι
ομομορφισμός με h(v) = u(v) για κάθε v ∈ V ar. Πράγματι, h(0) = 0A και

h(v) = u(v) για κάθε v ∈ V ar, αφού αυτά ισχύουν για κάθε μερική συνάρτηση j.
Ακόμα για κάθε σ, τ ∈ T υπάρχει μερική συνάρτηση j έτσι που σ+T τ ∈ Dom(j)
επομένως h(σ +T τ) = j(σ +T τ) = j(σ) +A j(τ) = h(σ) +A h(τ).
Δείχνουμε την μοναδικότητα της h. ΄Εστω h1 ομομορφισμός μεDom(h1) = T .

Τότε προφανώς T είναι τμήμα και h1 είναι μερική συνάρτηση, όμοια η h είναι με-
ρική συνάρτηση επομένως από Λήμμα 1.1 h(σ) = h1(σ) για κάθε σ ∈ T .
Τελικά το ερώτημά μας παίρνει την εξής τυπική μορφή.

Ερώτημα:Μπορούμε να βρούμε εξίσωση ψ στην γλώσσα L έτσι πουWR(ψ) = 1
αλλά ΓCAZ 6` ψ;
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Ακόμα χρησιμοποιώντας το Θεώρημα 1.1 μπορούμε να δούμε ότι σημασιο-

λογικά, η έννοια της αντικατάστασης που εμφανίζεται στον κανόνα (R4), είναι ένα
῾῾ παιγνίδι ᾿᾿ αποτιμήσεων. Πράγματι, έστω f : V ar → T και Subf η διαδικασία
που αντιστοιχεί κάθε όρο σ στον όρο Subf (σ) δηλαδή τον όρο που αποκτάμε από
τον σ αν αντικαταστήσουμε κάθε μεταβλητή που συμμετέχει σε αυτόν, έστω v,
με τον όρο f(v). Από τον ορισμό έχουμε ότι Subf (v) = f(v) για κάθε v ∈ V ar
ακόμα Subf (0) = 0 και Subf (σ +T τ) = Subf (σ) +T Subf (τ) για κάθε σ, τ ∈ T .
Και έτσι οδηγούμαστε με φυσικό τρόπο στο επόμενο Θεώρημα.

Θεώρημα 1.2. (Θεώρημα Αντικατάστασης Τιμών)

΄Εστω A =< A,+A, 0A > δομή, u αποτίμηση της A, f αποτίμηση της G =<
T,+T , 0 > και σ ∈ T . Τότε uA(Subf (σ)) = u′

A
(σ) όπου u′(v) = uA(f(v)).

Απόδειξη:

Δείχνουμε ότι η σύνθεση uA ◦Subf είναι ομομορφισμός της G στην A. Πράγματι,

• uA ◦ Subf (0) = uA(0) = 0A.

• uA ◦ Subf (σ +T τ) = uA(Subf (σ +T τ)) = uA(Subf (σ) +T Subf (τ)) =
uA ◦ Subf (σ) +A u

A ◦ Subf (τ).

Ακόμα uA ◦Subf (v) = uA(f(v)) = u′(v). Και από την μοναδικότητα του ομομορ-
φισμού του Θεωρήματος 1.1 προκύπτει το ζητούμενο.

1.3 Εγκυρότητα και Πληρότητα της Εξισω-

τικής Λογικής

΄Ενα αποδεικτικό σύστημα είναι έγκυρο αν δεν οδηγεί από αληθείς υποθέσεις σε

ψευδή συμπεράσματα. Τώρα που έχουμε δώσει ῾῾ ζωή ᾿᾿ στις εξισώσεις της γλώσσας

μας είμαστε σε θέση να αποδείξουμε το Θεώρημα εγκυρότητας για την εξισωτική

λογική. Πριν προχωρήσουμε μας είναι χρήσιμο να ορίσουμε την εννοιολογική

ερμηνεία της συνέπειας.

Ορισμός 1.5. ΄Εστω Γ σύνολο εξισώσεων της L και ψ μία εξίσωση της L. Μία
δομή A ικανοποιεί την ψ αν-ν WA(ψ) = 1. Τέλος Γ |= ψ αν-ν η ψ ικανοποιείται
σε κάθε δομή που ικανοποιεί το Γ.

Θεώρημα 1.3. (Θεώρημα Εγκυρότητας)

Γ ` ψ ⇒ Γ |= ψ

Απόδειξη:

΄Εστω Γ ` ψ τότε από τον ορισμό της απόδειξης έχουμε μία ακολουθία (φ1, . . . , φn)
από το Γ με φn = ψ. Θα δείξουμε με επαγωγή στο i ότι κάθε φi ικανοποιείται

από κάθε δομή A που ικανοποιεί το Γ.

• Για i = 1 έχουμε φ1 μπορεί να είναι είτε ταυτολογία (R0) ή να ανήκει στο
Γ και στις δύο περιπτώσεις ισχύει το ζητούμενο, δηλαδή για κάθε A |= Γ
έχουμε WA(φ1) = 1.
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• ΄Εστω ισχύει για κάθε φj , j ≤ i. Δείχνουμε το ζητούμενο για i + 1. Δια-
κρίνουμε περιπτώσεις:

1. Εαν φi+1 είναι ταυτολογία ή ανήκει στο Γ τότε το ζητούμενο ισχύει
όπως στην πρώτη περίπτωση.

2. Εστω φi+1(:= τ = σ) προκύπτει από κάποιο φj(:= σ = τ), j <
i+1 και τον κανόνα (R1). Τότε από την Επαγωγική Υπόθεση έχουμε
WA(φj) = 1 για κάθε A |= Γ, επομένως για κάθε αποτίμηση u στην A
έχουμε uA(σ) = uA(τ) άρα uA(τ) = uA(σ) επομένως WA(τ = σ) = 1
άρα WA(φi+1).

3. ΄Εστω φi+1(:= σ = τ) προκύπτει από τους φj(:= σ = ρ), φk(:= ρ =
τ),j, k < i+1 και τον κανόνα (R2) τότε όμοια με πριν, από Επαγωγική
Υπόθεση, uA(σ) = uA(ρ) και uA(ρ) = uA(τ) άρα uA(σ) = uA(τ) και
τελικά WA(φi+1) = 1.

4. ΄Εστω φi+1(:= σ + τ = σ′ + τ ′) προκύπτει από τους φj(:= σ =
σ′), φk(:= τ = τ ′),j, k < i + 1 και τον κανόνα (R3), τότε από την
Επαγωγική Υπόθεση έχουμε uA(σ) = uA(σ′) και uA(τ) = uA(τ ′) α-
κόμα uA(σ+ τ) = uA(σ)+A u

A(τ) = uA(σ′)+A u
A(τ ′) = uA(σ′+ τ ′),

επομένως WA(φi+1) = 1.
5. ΄Εστω φi+1(:= Subf (σ) = Subf (τ)) προκύπτει από κάποιον φj(:=
σ = τ), τότε από την Επαγωγική Υπόθεση έχουμε ότι για κάθε α-
ποτίμηση u στην A(όπου A δομή που ικανοποιεί το Γ) ισχύει uA(σ) =
uA(τ) άρα και για την u′ όπου u′(v) = uA(f(v)), επομένως έχουμε

uA(Subf (σ))
Θεώρημα 1.2

= u′
A
(σ)

Επαγωγική Υπόθεση

= u′
A
(τ) = uA(Subf (τ)),

άρα WA(φi+1) = 1.

Το Θεώρημα Πληρότητας δεν είναι τόσο απλό όσο αυτό της Εγκυρότητας. Πρέπει

να δείξουμε ότι για δεδομένα Γ και ψ πάντα υπάρχει απόδειξη (φ1, . . . , φn) με
φn = ψ από το Γ εκτός αν υπάρχει μοντέλο του Γ που δεν ικανοποιεί τον ψ.

Θεώρημα 1.4. (Θεώρημα Πληρότητας)

Γ |= ψ ⇒ Γ ` ψ.

Απόδειξη:

Θα δείξουμε το αντιθετοανάστροφο δηλαδή εαν Γ 6` ψ τότε υπάρχει μοντέλο A
τέτοιο που WA(φ) = 1 για κάθε φ ∈ Γ αλλά WA(ψ) = 0. Το ζητούμενο προκύ-
πτει άμεσα από το εξής ισχυρότερο Λήμμα, το οποίο μας λέει ότι για κάθε σύνολο

εξισώσεων μπορούμε να βρούμε μία δομή που ικανοποιεί ακριβώς ό,τι αποδεικνύε-

ται από τις εξισώσεις αυτές. Το ισχυρό σημείο αυτού του λήμματος είναι ότι δεν

κάνει χρήση της δοσμένης εξίσωσης ψ.

Λήμμα 1.3.

Για κάθε σύνολο εξισώσεων Γ υπάρχει δομή A έτσι που για κάθε ψ έχουμε A |= ψ
αν-ν Γ ` ψ.

Απόδειξη:

Για να κατασκευάσουμε την δομή A ξεκινάμε από την άλγεβρα των όρων G =
< T,+T , 0 > και ορίζουμε την σχέση IΓ στο T , έτσι που για κάθε σ, τ ∈ T σIΓτ
αν-ν Γ ` σ = τ . Δείχνουμε ότι η IΓ είναι σχέση ισοδυναμίας στο T .
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• (Αυτοπαθής) σIΓσ λόγω του κανόνα (R0).

• (Συμμετρική) Αν σIΓτ , τότε τIΓσ λόγω του κανόνα (R1).

• (Μεταβατική) Αν σIΓρ και ρIΓτ , τότε σIΓτ λόγω του κανόνα (R2).

Επομένως μπορούμε να πάρουμε το σύνολο |A| = T/IΓ (το σύνολο των κλάσεων
ισοδυναμίας). Παρατηρούμε ότι για κάθε σ ∈ T υπάρχει [σ] ∈ |A| και είναι το
[σ] = {τ ∈ T |σIΓτ}. Ακόμα ορίζουμε ως 0A = [0] την κλάσση ισοδυναμίας του 0.
Και τέλος ορίζουμε [σ] +A [τ ] = [σ+T τ ]. Ο ορισμός αυτός είναι καλός λόγω του
κανόνα (R3) έτσι που αν έχουμε δύο διαφορετικούς αντιπροσώπους των κλάσεων
[σ] και [τ ], έστω σ′ και τ ′ αντίστοιχα, τότε [σ] = [σ′] και [τ ] = [τ ′] επομένως
σIΓσ

′
και τIΓτ

′
άρα από τον κανόνα (R3) έχουμε ότι σ+T τIΓσ

′ +T τ
′
επομένως

[σ +T τ ] = [σ′ +T τ
′].

Αυτό που μένει να δείξουμε είναι ότι η δομή που κατασκευάσαμε ικανοποιεί το

Λήμμα 1.3. Για να το πετύχουμε αυτό πρέπει να βρούμε έναν τρόπο υπολογι-

σμού του uA(σ) για κάθε όρο σ και κάθε αποτίμηση u. Αυτό μπορεί να επιτευχθεί
εαν σε κάθε απεικόνιση f : V ar → T αντιστοιχίσουμε την αποτίμηση uf έτσι

που uf (v) = [f(v)] για κάθε μεταβλητή v ∈ V ar. Τέλος αποδεικνύουμε τον εξής
ισχυρισμό.

Ισχυρισμός:

Για κάθε απεικόνιση f : V ar → T και κάθε όρο σ ∈ T ισχύει uf
A(σ) = [Subfσ].

Απόδειξη:

Με επαγωγή στην πολυπλοκότητα των όρων.

• Εαν είναι ο όρος 0 τότε uf
A(0) = 0A = [0] = [Subf (0)].

• Εαν είναι μεταβλητή , έστω η v, τότε uf
A(v) = uf (v) = [f(v)] = [Subf (v)].

• Εαν είναι της μορφής σ+T τ όπου για τους σ, τ ισχύει το ζητούμενο, έχουμε
uf

A(σ+T τ) = uf
A(σ)+Auf

A(τ) = [Subf (σ)]+A [Subf (τ)] = [Subf (σ)+T

Subf (τ)] = [Subf (σ +T τ)].

Ας θεωρήσουμε την απεικόνιση f∗ : V ar → T έτσι που f∗(v) = v για κάθε
v ∈ V ar. Η Subf∗ είναι η ταυτοτική απεικόνιση στο T αφού η ταυτοτική απεικό-
νιση είναι ομομορφισμός της G στον εαυτό της και f∗(v) = v επομένως από το
Θεώρημα 1.1 έχουμε το ζητούμενο.

Θέτοντας ως αποτίμηση u∗ την u∗(v) = uf∗(v) = [v] για κάθε v ∈ V ar
παίρνουμε ως ειδική περίπτωση του ισχυρισμού μας ότι

u∗
A(σ) = uf∗

A(σ) = [Subf∗σ] = [σ], για κάθε σ ∈ T (1.1)

Ακόμα για τυχαία αποτίμηση u της A μπορούμε να επιλέξουμε απεικόνιση f :
V ar → T (για παράδειγμα f(v) ∈ u(v) για κάθε v ∈ V ar) έτσι που

uA(ρ) = [Subfρ], για κάθε ρ ∈ T (1.2)

Τώρα έχουμε ό,τι χρειαζόμαστε για να αποδείξουμε το ζητούμενο.

(⇒) ΄Εστω ψ τύπος της L της μορφής σ = τ και Γ 6` ψ τότε δεν ισχύει σIΓτ ,
επομένως [σ] 6= [τ ] άρα από την (1.1) έχουμε ότι υπάρχει αποτίμηση u∗ έτσι που
u∗

A(σ) 6= u∗
A(τ) άρα WA(ψ) = 0.
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(⇐)΄Εστω Γ ` ψ, όπου ψ της μορφής σ = τ και u τυχαία αποτίμηση της A
τότε χρησιμοποιώντας την (1.2) επιλέγουμε απεικόνιση f : V ar → T έτσι που
uA(ρ) = [Subf (ρ)] για κάθε ρ ∈ T και γι αυτή την f και τον κανόνα (R4) έχουμε
Γ ` Subf (σ) = Subf (τ) άρα Subf (σ)IΓSubf (τ) επομένως [Subf (σ)] = [Subf (τ)]
συνεπώς uA(σ) = uA(τ) και επειδή η u ήταν τυχαία έχουμε ότι WA(ψ) = 1.

1.4 Δομικοί Μετασχηματισμοί

Η έννοια της αποδειξιμότητας (συμβολικά Γ ` φ) ορίζεται με κανόνες συμπερα-
σμού που η εφαρμογή τους βασίζεται καθαρά στα σύμβολα ενός τύπου και όχι

στην σημασία τους. Γι΄ αυτό το λόγο η αποδειξιμότητα θεωρείται συντακτική έν-

νοια. Από την άλλη πλευρά η έννοια της συνέπειας (συμβολικά Γ |= φ) ορίζεται με
την βοήθεια των τιμών των όρων και την αλήθεια ή το ψεύδος των τύπων, επομέ-

νως έχει σημασιολογική υφή. Από τα προηγούμενα θεωρήματα Εγκυρότητας και

Πληρότητας έχουμε ότι Γ ` φ αν-ν Γ |= φ για κάθε εξίσωση φ και κάθε σύνολο
εξισώσεων Γ.
Το βασικό ερώτημα που τέθηκε στην αρχή περικλείει και τις δύο έννοιες ω-

στόσο χρησιμοποιώντας τα θεωρήματα Πληρότητας και Εγκυρότητας το ερώτημα

μπορεί να μεταφραστεί σε καθαρά σημασιολογικούς όρους ως εξής:Υπάρχει εξίσω-

ση ψ της L έτσι που WR(ψ) = 1 αλλά ΓCAZ 6|= ψ;
Αν θυμηθούμε ότι ΓCAZ |= ψ αν ψ είναι αλήθεια σε κάθε δομή που ικανοποιεί

το ΓCAZ και ότι οι δομές που ικανοποιούν το ΓCAZ είναι αβελιανές ημιομάδες με

ουδέτερο στοιχείο, τότε το ερώτημά μας παίρνει την εξής μορφή.

Ερώτημα: Μπορούμε να βρούμε μία εξίσωση ψ της L έτσι που WR(ψ) = 1
αλλά WA(ψ) = 0 για τουλάχιστον μία αβελιανή ημιομάδα με ουδέτερο στοιχείο;

Στη συνέχεια θα δείξουμε ότι ορισμένοι δομικοί μετασχηματισμοί (π.χ υποδο-

μές, ομομορφικές εικόνες, ευθέα γινόμενα) διατηρούν την αλήθεια των εξισώσεων

και μ΄ αυτό τον τρόπο θα απαντήσουμε αρνητικά στο κύριο ερώτημα του κεφαλαίου.

Η ιδέα είναι ότι ξεκινώντας από την δομή R μπορούμε με δομικούς μετασχηματι-
σμούς που διατηρούν την αλήθεια των εξισώσεων να φτάσουμε σε οποιαδήποτε

αβελιανή ημιομάδα με ουδέτερο στοιχείο.

Θεώρημα 1.5.

A1 ⊆ A2 και ψ εξίσωση της L. Αν WA2(ψ) = 1, τότε WA1(ψ) = 1.

Απόδειξη:

WA2(σ = τ) = 1 αν-ν A2 |= ∀v(σ(v) = τ(v)) και επειδή οι καθολικές προτάσεις
διατηρούνται υπό υποδομές έχουμε A1 |= ∀v(σ(v) = τ(v)) άρα WA1(σ = τ) =
1.

Θεώρημα 1.6.

΄Εστω A2 είναι ομομορφική εικόνα του A1 και ψ εξίσωση της L. Αν WA1(ψ) = 1,
τότε WA2(ψ) = 1.

Απόδειξη:
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WA1(σ = τ) αν-ν A1 |= ∀v(σ(v) = τ(v)) και επειδή ∀v(σ(v) = τ(v)) είναι θετική
πρόταση, διατηρείται ύπο ομομορφισμούς, επομένως A2 |= ∀v(σ(v) = τ(v)) άρα
WA2(σ = τ).

Ο επόμενος μετασχηματισμός δεν είναι τόσο τετριμμένος γι αυτό θα δώσουμε

πρώτα τον ορισμό του.

Ορισμός 1.6. ΄Εστω J ένα μη-κενό σύνολο δεικτών και για κάθε j ∈ J , Aj =
< Aj ,+j , 0j >. Ευθύ Γινόμενο

∏
J Aj των δομών Aj είναι η δομή B =

< B,+, 0 > όπου B είναι το
∏

J Aj = {f : J →
⋃
Aj |f(j) ∈ Ajγια κάθε j ∈ J},

(f + g)(j) = f(j) +j g(j) και 0 είναι το στοιχείο του B όπου 0(j) = 0j για κάθε

j ∈ J . Στην περίπτωση που Aj = A για κάθε j, τότε αντί για
∏

J Aj γράφουμε

AJ
και AJ

καλείται η J−ευθεία δύναμη της A.

Θεώρημα 1.7. ΄Εστω B =
∏

J Aj και ψ εξίσωση της L έτσι που WAj (ψ) = 1
για κάθε j ∈ J . Τότε WB(ψ) = 1.

Απόδειξη:

Αντιστοιχούμε σε κάθε αποτίμηση u της B τις αποτιμήσεις uj των Aj για κάθε

j ∈ J έτσι που uj(v) = (u(v))(j) για κάθε v ∈ V ar. Δείχνουμε ότι για κάθε όρο
σ ∈ T ισχύει (uB(σ))(j) = uj

Aj (σ), με επαγωγή στον όρο σ.

• Αν σ είναι ο όρος 0 τότε (uB(0))(j) = 0(j) = 0j = uj
Aj (0).

• Αν σ είναι μεταβλητή, έστω η v, τότε (uB(v))(j) = (u(v))(j) = uj(v) =
uj

Aj (v).

• Αν σ είναι της μορφής τ + ρ, όπου για τους τ, ρ ισχύει το ζητούμενο, τότε
έχουμε (uB(τ+ρ))(j) = (uB(τ)+uA(ρ))(j) = (uB(τ))(j)+j (uB(ρ))(j) =
uj

Aj (τ) +j uj
Aj (ρ) = uj

Aj (τ + ρ).

΄Εστω, προς άτοπο, εξίσωση ψ(:= σ = τ) τέτοια πουWAj (ψ) = 1 για κάθε j ∈ J ,
και u αποτίμηση στην B έτσι που uB(σ) 6= uB(τ). Τότε για κάποιο j ∈ J έχουμε
(uB(σ))(j) 6= (uB(τ))(j) τότε όμως uj

Aj (σ) 6= uj
Aj (τ) επομένως στην δομή Aj

έχουμε ότι WAj (ψ) = 0, άτοπο.
Το επόμενο Θεώρημα δίνει αρνητική απάντηση στο ερώτημά μας, κάτι που συμ-

φωνεί με την διαίσθησή μας, αλλά χρειάστηκε αρκετή προεργασία και ανάπτυξη

περιοχών που δεν βρίσκονται στα χέρια των μη-μυημένων στην λογική.

Θεώρημα 1.8. ΄Εστω ψ εξίσωση της L και A τυχαία αβελιανή ημιομάδα με
ουδέτερο στοιχείο. Εαν WR(ψ) = 1, τότε WA(ψ) = 1.

Απόδειξη:

Θα δείξουμε πως να κατασκευάσουμε δομές B1,B2 έτσι που B1 είναι J−ευθεία
δύναμη της R για κάποιο σύνολο δεικτών J , B2 είναι υποδομή της B1 και A είναι
ομομορφική εικόνα της B2.

B1 = R|A|
, δηλαδή παίρνουμε ώς σύνολο δεικτών το σύμπαν της A και έστω

B1 =< B1,+1, 01 >.
΄Εστω B2 ⊆ B1 έτσι που f ∈ B2 αν-ν f(a) = 0 για όλα εκτός απο πεπερασμένα

το πλήθος a ∈ |A|. Είναι φανερό ότι 01 ανήκει στο B2 αφού είναι παντού 0 και
ακόμα η B2 είναι κλειστή για +1 αφού αν δύο συναρτήσεις είναι παντού 0 εκτός
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από πεπερασμένα το πλήθος σημεία τότε και το άθροισμά τους είναι παντού 0 εκτός
από το πολύ το άθροισμα των σημείων που δεν μηδενίζονται οι αρχικές άρα πάλι

πεπερασμένο το πλήθος σημεία. Επομένως μπορούμε να ορίσουμε την υποδομή

B2 =< B2,+2, 02 > ως την δομή με σύμπαν το B2, +2 τον περιορισμό της +1

στο B2 και 02 = 01.

Δείχνουμε ότι η A είναι ομομορφική εικόνα της δομής B2. ΄Εχουμε ότι για

κάθε f ∈ B2 και a ∈ A· f(a) ∈ N επομένως με f(a) · a θα συμβολίζουμε το
αποτέλεσμα της πρόσθεσης του a στον εαυτό του f(a) φορές. Επειδή f(a) 6= 0
για πεπερασμένο το πλήθος a ∈ A μπορούμε να σχηματίσουμε το

∑
a∈A(f(a) · a),

ισχυριζόμαστε ότι h(f) =
∑

a∈A(f(a) · a) είναι ο ομομορφισμός που θέλουμε.

• h είναι επί. Πράγματι, έστω a ∈ A τότε επιλέγοντας f έτσι που f(a) = 1
και παντού αλλού 0 έχουμε h(f) = a.

• h(02) = 0, αφού 02(a) = 0 για κάθε a ∈ A.

• h(f +2 g) =
∑

a∈A(f +2 g)(a) · a =
∑

a∈A(f(a) +A g(a)) · a =
∑

a∈A f(a) ·
a+A

∑
a∈A g(a) · a = h(f) +A h(g)

και αυτό ολοκληρώνει την απόδειξη.

Πόρισμα 1.1. Εαν WR(ψ) = 1 τότε {φC , φA, φZ} |= ψ.

Πόρισμα 1.2. Εαν WR(ψ) = 1 τότε {φC , φA, φZ} ` ψ.

Το τελευταίο πόρισμα μας λέει ότι κάθε εξίσωση που ισχύει στην R αποδει-
κνύεται από το CAZ χρησιμοποιώντας τους κανόνες (R0) − (R4). Είναι εύκολο
να δούμε ότι και τα αντίστροφα των Πορισμάτων 1.1,1.2 ισχύουν και αυτό

μας δίνει μία νέα σημαντική έννοια, αυτήν της βάσης μιας εξισωτικής θεωρίας.

Ορισμός 1.7. ΄Εστω A δομή και Γ σύνολο εξισώσεων. Λέμε ότι Γ αποτελεί
βάση για την εξισωτική θεωρία της δομής A αν WA(ψ) = 1 αν-ν Γ ` ψ για κάθε
εξίσωση ψ.

Το επόμενο Θεώρημα είναι άμεσο.

Θεώρημα 1.9.

Το σύνολο εξισώσεων CAZ αποτελεί βάση για την εξισωτική θεωρία της R.

1.5 Ταυτότητες σε άλλες δομές

Σ΄ αυτή την παράγραφο θα επεκτείνουμε την ισχύ του Θεωρήματος 1.9 σε

άλλες δομές οι οποίες έρχονται φυσικά στο μυαλό μας και θα καταλήξουμε με ένα

πρόβλημα που θα μας απασχολήσει στο υπόλοιπο της εργασίας.

Αν σκεφτούμε την I =< Z,+, 0 > τότε το {φC , φA, φZ} ικανοποιείται σε
αυτήν, επομένως και κάθε συνέπεια αυτων των εξισώσεων ισχύει στην I. Αντί-
στροφα, εαν ψ είναι μία ταυτότητα που ισχύει στην I, τότε επειδή R ⊆ I έχουμε
ότι η ψ ισχύει στην R (Θεώρημα 1.5) επομένως αποδεικνύεται από το CAZ,
συνεπώς το CAZ αποτελεί βάση για την εξισωτική θεωρία της I.
΄Ομοια η δομή B =< N∗, ·, 1 > των θετικών ακεραίων έχει υποδομή, την

B′ =< {2k|k ∈ N}, ·, 1 >, που απεικονίζεται ομομορφικα από την log2 επί της R.
Επομένως λόγω των Θεωρημάτων 1.5,1.6 αν WB(ψ) = 1 τότε WR(ψ) = 1
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και συνεπώς ΓCAZ ` ψ. ΄Αρα το CAZ αποτελεί βάση και για την εξισωτική θεωρία
της δομής B.
Ακόμα επειδή η B είναι υποδομή των R′ =< N, ·, 1 >, I′ =< Z, ·, 1 > το

τελευταίο αποτέλεσμα μας δίνει ότι το CAZ είναι βάση για την εξισωτική θεωρία
των R′, I′. Ωστόσο σε αυτές τις δύο δομές συμβαίνει κάτι περίεργο, και στις δύο
έχουμε ότι 0 · x = 0 για κάθε x στις δομές μας. Μήπως τελικά έχουμε βρεί μία
εξίσωση που δεν αποδεικνύεται από το CAZ;
Η απάντηση είναι ναι και όχι. Πράγματι αυτή η εξίσωση δεν αποδεικνύεται

από το CAZ (κάτι που θα ήταν αντιφατικό με το ότι το CAZ αποτελεί βάση για
τις εξισωτικές θεωρίες των R′, I′), όμως η γλώσσα μας έχει μόνο ένα σύμβολο
σταθεράς που σ΄ αυτές τις δύο δομές ερμηνεύεται ως ο αριθμός 1, επομένως η
εξίσωση 0 · x = 0 δεν μπορεί να εκφραστεί με τύπο της γλώσσα μας. Τελικά ,
όπως αποδείξαμε, κάθε τύπος της L που ισχύει στις R′, I′ αποδεικνύεται από το
CAZ.
Φυσικά αν περάσουμε στην δομή < Z, ·, 1, 0 > τότε χρειαζόμαστε μία πιο

πλούσια γλώσσα για να εκφράσουμε τις εξισώσεις της. Συγκεκριμένα διαλέγουμε

την γλώσσα με ΄Αλγεβρα ΄Ορων < T,+T , 1, 0 > με δύο σταθερές και σ΄ αυτήν
την άλγεβρα επιλέγουμε μία βάση για την εξισωτική θεωρία της < Z, ·, 1, 0 > που
περιέχει τις εξισώσεις (u0 +T 1) = u0 και (u0 +T 0) = 0.
΄Ενα πιο ενδιαφέρον παράδειγμα είναι η δομή ενός δακτυλίου K =< Z,+, ·, 1, 0 >.

Σ΄ αυτήν την περίπτωση πρέπει να πλουτίσουμε περαιτέρω την γλώσσα μας, L′′
,

με ακόμα ένα διθέσιο συναρτησιακό σύμβολο και μπορούμε να δείξουμε ότι οι ε-

ξισώσεις CAZ για κάθε μία από τις δομές < Z,+, 0 >,< Z, ·, 1 > μαζί με τις
u0 · (u1 + u2) = (u0 · u1) + (u0 · u2) και u0 · 0 = 0 αποτελούν βάση για την
εξισωτική θεωρία του K. Για συντομία θα αναφερόμαστε σε αυτό το σύνολο των
8 εξισώσεων ως Γ.
Αν και θα μπορούσαμε να ακολουθήσουμε την ίδια μέθοδο που εφαρμόσαμε

στην περίπτωση της R, εδώ θα εκμεταλλευτούμε κάποια στοιχεία της θεωρίας
δακτυλίων. Από το σύνολο των όρων της γλώσσας μας θα ξεχωρίσουμε ένα

υποσύνολο F που τα στοιχεία του είναι ῾῾ τυπικά ᾿᾿ πολυώνυμα.

Ορισμός 1.8. Ψηφία της L′′
είναι οι εξής όροι (αναδρομικά).

• Το 0 είναι ψηφίο.

• Αν g είναι ψηφίο, τότε g + 1 είναι ψηφίο.

Ορισμός 1.9. Τυπικές δυνάμεις τυχαίας μεταβλητής ul είναι οι εξής όροι

της L′′
(αναδρομικά).

• Η ul είναι τυπική δύναμη της ul.

• Αν ο f είναι τυπική δύναμη της ul, τότε ο f ·ul είναι τυπική δύναμη της ul.

Ορισμός 1.10. ΄Ενας όρος της L′′
είναι τυπικό μονώνυμο εαν είναι της

μορφής k · f1 · . . . · fn όπου k είναι ψηφίο, fi, 1 ≤ i ≤ n είναι τυπικές δυνάμεις
μεταβλητών και αν fi είναι τυπική δύναμη της ul τότε κανένα fj με j < i δεν
είναι τυπική δύναμη μεταβλητής um με m ≤ l.

Ορισμός 1.11. ΄Ενας όρος της L′′
είναι τυπικό πολυώνυμο εαν είναι της

μορφής g1 + . . . + gn όπου τα gi, 1 ≤ i ≤ n είναι τυπικά μονώνυμα και αν
gi = k · ul1

i1
· . . . · uln

in
και gj = λ · uw1

j1
· . . . · uwm

jm
με i < j τότε είτε υπάρχει ξ ≤ n

έτσι που για κάθε ρ < ξ έχουμε iρ = jρ και lρ = wρ και είτε iξ > jξ ή iξ = jξ και
lξ > wξ, ή n > m και για κάθε ρ ≤ m έχουμε iρ = jρ και lρ = wρ.
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Οι παραπάνω ορισμοί μας δίνουν την δυνατότητα να αποδείξουμε τα επόμενα

δύο βασικά λήμματα.

Λήμμα 1.4.

Για κάθε όρο σ της L′′
υπάρχει τυπικό πολυώνυμο τ της L′′

έτσι που Γ ` σ = τ .

Απόδειξη:

Με επαγωγή στον όρο σ.

• Εαν σ είναι ο όρος 0 τότε 0 είναι τυπικό πολυώνυμο και 0 = 0 είναι ταυτο-
λογία άρα Γ ` 0 = 0.

• Εαν σ είναι ο όρος 1 τότε όμοια με πριν το 1 είναι τυπικό πολυώνυμο και
Γ ` 1 = 1.

• Εαν σ είναι της μορφής τ +ρ, όπου για τους όρους τ, ρ ισχύει το ζητούμενο,
τότε έχουμε από την Επαγωγική Υπόθεση ότι Γ ` τ = τ ′ και Γ ` ρ =
ρ′ όπου τ ′ = g1 + . . . + gn και ρ

′ = f1 + . . . + fm τυπικά πολυώνυμα.

Ισχυριζόμαστε ότι το τυπικό πολυώνυμο h = h1 + . . .+ hk όπου k ≤ m+n
και hi είναι είτε κάποιο gj είτε κάποιο fw ή το άθροισμα των ψηφίων δύο

μονωνύμων με τις ίδιες μεταβλητές στις ίδιες τυπικές δυνάμεις, έτσι που

το h ικανοποιεί τον Ορισμό 1.11, είναι αυτό που ζητάμε. Είναι άμεσο
ότι χρησιμοποιώντας την επιμεριστικότητα της · επί της + καθώς και τις
εξισώσεις CAZ για την πρόσθεση έχουμε το εξής Γ ` τ ′+ρ′ = h και επειδή
Γ ` τ + ρ = τ ′ + ρ′ έχουμε ότι Γ ` σ = h όπου h τυπικό πολυώνυμο.

• Αν σ είναι της μορφής τ · ρ, όπου για τους τ, ρ ισχύει το ζητούμενο, τότε
όπως πριν έχουμε ότι υπάρχουν τυπικά πολυώνυμα τ ′ = g1 + . . .+ gn, ρ

′ =
f1 + . . . + fm και φυσικά το τυπικό πολυώνυμο που ζητάμε είναι το h =
h1 + . . . + hk όπου k ≤ m · n και hi είναι της μορφής gj · fw ή είναι το

άθροισμα των ψηφίων δύο ή περισσότερων μονωνύμων της μορφής gj ·fw με

τις ίδιες μεταβλητές στις ίδιες τυπικές δυνάμεις, έτσι που h ικανοποιεί τον
Ορισμό 1.11. Είναι άμεσο ότι χρησιμοποιώντας την επιμεριστικότητα της ·
επί της + και τις εξισώσεις CAZ για την πρόσθεση και των πολλαπλασιασμό
έχουμε ότι Γ ` τ ′ · ρ′ = h και επειδή Γ ` τ · ρ = τ ′ · ρ′ έχουμε ότι Γ ` σ = h
όπου h τυπικό πολυώνυμο.

Λήμμα 1.5.

Εαν τ, ρ είναι τυπικά πολυώνυμα της L′′
τέτοια που WK(τ = ρ) = 1 τότε είναι τα

ίδια πολυώνυμα.

Απόδειξη:

Συμβολίζουμε με f(u1, . . . , un), το τυπικό πολυώνυμο f μαζί με τις ελεύθερες
μεταβλητές που συμμετέχουν σ΄ αυτό. ΄Εστω, προς άτοπο, ότι τ(u1, . . . , un) δεν
είναι το ρ(u1, . . . , un), τότε επειδή κάθε πολυώνυμο αναπαριστάται μοναδικά ως
τυπικό πολυώνυμο (Ορισμός 1.11) έχουμε ότι τK(u1, . . . , un) δεν είναι το
ρK(u1, . . . , un)(∈ Z[u1, . . . , un]) και η διαφορά τους δεν είναι το μηδενικό πο-
λυώνυμο, επομένως ορίζεται ο βαθμός του πολυωνύμου degu1(τ

K(u1, . . . , un) −
ρK(u1, . . . , un)) = k ∈ N. Συνεπώς το πολυώνυμο (τK − ρK)(u1, a2, . . . , an) έχει
το πολύ k ρίζες για κάθε (a2, . . . , an) ∈ Zn−1

, όμως από την υπόθεση έχουμε ότι

τK(j, a2, . . . , an) = ρK(j, a2, . . . , an)
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για 1 ≤ j ≤ k + 1, άτοπο.

Από τα παραπάνω λήμματα εύκολα βλέπουμε ότι η Γ αποτελεί βάση για την εξι-
σωτική θεωρία της K. Στην ουσία ισχύει κάτι ισχυρότερο δηλαδή τα δύο λήμματα
μας οδηγούν στην αποκρισιμότητα της εξισωτικής θεωρίας της K. Πράγματι, έστω
σ = τ ένας τύπος της L′′

, τότε από το Λήμμα 1.4 υπάρχουν τυπικά πολυώνυμα

σ′ και τ ′ έτσι που Γ ` σ = σ′ και Γ ` τ = τ ′. Επειδή WK(σ = σ′) = 1 και
WK(τ = τ ′) = 1 έχουμε, χρησιμοποιώντας το Λήμμα 1.5, ότι WK(σ = τ) = 1
αν-ν το τυπικό πολυώνυμο τ ′ είναι το τυπικό πολυώνυμο σ′, κάτι που προφανώς
μπορεί να αποφασιστεί. Ακόμα αν WK(σ = τ) = 1 τότε Γ ` σ = σ′ και Γ ` τ = σ
κάτι που αποδεικνύει ότι το Γ αποτελεί βάση για την εξισωτική θεωρία της K.
Επίσης η ίδια απόδειξη λειτουργεί στην περίπτωση οποιασδήποτε ακέραιας πε-

ριοχής. Και ακόμα με τον ίδιο τρόπο μπορούμε να δείξουμε ότι Γ αποτελεί βάση
για την εξισωτική θεωρία της < N, ·,+, 0, 1 >.
Τέλος θα θέσουμε το πρόβλημα που θα μας απασχολήσει στο υπόλοιπο της

εργασίας.

Ερώτημα:Εαν εμπλουτίσουμε την δομή K με ακόμα ένα διθέσιο συναρτησιακό
σύμβολο, το exp, και N =< N,+, ·, exp, 0, 1 >, όπου x exp y = xy

, μπορούμε να

βρούμε βάση για την εξισωτική θεωρία της N;

Ο Alfred Tarski προχώρησε το πρόβλημα περαιτέρω ρωτώντας αν η βάση για
την εξισωτική θεωρία της N προκύπτει από το Γ και τις εξής εξισώσεις:

(a) u0
0 = 1 (d) u(u1+u2)

0 = uu1
0 · uu2

0

(b) u1
0 = u0 (e) (u0 · u1)u2 = uu2

0 · uu2
1

(c) 1u0 = 1 (f) ((u0)u1)u2 = u
(u1·u2)
0

Συμπληρωματικά αναφέρουμε ότι ο Charles Martin έδειξε ότι το σύνολο Γ
μαζί με τις εξισώσεις (d) − (f) δεν αποτελεί βάση για την εξισωτική θεωρία της
δομής Z′ =< N,+, ·, exp >. Συγκεκριμένα η εξής εξίσωση

(xy + xy)x · (yx + yx)y = (xx + xx)y · (yy + yy)x

είναι αλήθεια στην Z′ αλλά δεν αποδεικνύεται από το Γ μαζί με τις εξισώσεις
(d)− (f). Ακόμα ο Martin έδειξε ότι η Z′ δεν έχει πεπερασμένη βάση.
Πολύ ενδιαφέρον είναι το γεγονός ότι σχεδόν όλα τα σημαντινκά αποτελέσμα-

τα που αποδείχθηκαν σε αυτή την ενότητα μεταφέρονται σχεδόν αυτούσια στην

πλουσιότερη γλώσσα που περιλαμβάνει το συναρτησιακό σύμβολο exp. ΄Ετσι στα
επόμενα κεφάλαια θα δείξουμε ότι υπάρχει διαδικασία απόφασης για την ισότητα

δύο όρων της νέας γλώσσας και ότι το σύνολο Γ μαζί με τις εξισώσεις (a)− (f)
δεν αποτελούν βάση για την εξισωτική θεωρία της N′ =< N,+, ·, exp, 1 >. Στην
ουσία κάτι ισχυρότερο ισχύει, η εξισωτική θεωρία της N′

δεν έχει πεπερασμένη

βάση. Για το πρώτο αποτέλεσμα θα χρειαστούμε την βοήθεια της ανάλυσης, αλλά

πώς μπορούμε να κάνουμε ανάλυση στους φυσικούς ή ακόμα και στους ακεραίους;

΄Ετσι το επόμενο κεφάλαιο έπεται φυσικά δείχνοντας ότι δύο όροι της επαυξη-

μένης γλώσσας είναι ίσοι στους φυσικούς αν-ν είναι ίσοι στους πραγματικούς.
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Κεφάλαιο 2

Ιεραρχία του Hardy και
οι νόμοι της

εκθετικοποίησης

Οι ιδέες του παρόντος κεφαλαίου έχουν αρκετά βαθιές ρίζες και βασίζονται σε

μία πρωτοποριακή εργασία του Hardy, που αφορά τις τάξεις του απείρου. Ο
Hardy μελετώντας συναρτήσεις (μιας μεταβλητής) σε μία αρκετά πλούσια γλώσσα
(LH = {+,−, ·,÷, ( n

√
)
n∈N, e, log, (r)r∈R})έδειξε ότι αυτές που τελικώς ορίζονται

δεν διασταυρώνονται άπειρα ανα δύο. Αυτό σημαίνει ότι από κάποιο σημείο και

μετά είτε είναι ίσες, ή η μία είναι μεγαλύτερη της άλλης.

Θα δείξουμε ότι στην γλώσσα LM = {0, 1,+, ·,−,−1 , exp} η εξισωτική θεωρία
των φυσικών είναι αποκρίσιμη (κάτω από κάποιους ασθενείς περιορισμούς). Με

άλλα λόγια μπορούμε να αποφανθούμε δεδομένης μιας εξίσωσης τ = σ αν ισχύει
ταυτοτικά στους φυσικούς. Ακόμα θα δείξουμε ότι οι νόμοι της εκθετικοποίησης

είναι ίδιοι στους φυσικούς και τους πραγματικούς.

2.1 ΄Οροι και απονομή τιμών

Σ΄ αυτή την παράγραφο θα κάνουμε έναν τεχνικό διαχωρισμό όρων. Θα χωρίσουμε

τους όρους σε R−όρους και Z−όρους. Η διαφορά στην γλώσσα είναι σχεδόν
ανεπαίσθητη. Για τους R−όρους η γλώσσα θα περιέχει (εκτός των 0, 1,+,−, ·,−1

)

δύο μονοθέσια συναρτησιακά τα e, log,ενώ η γλώσσα για τους Z−όρους θα περιέχει
ένα διθέσιο συναρτησιακό το exp. Ωστόσο αυτός ο διαχωρισμός είναι αναγκαίος
για να χρησιμοποιήσουμε τις ιδέες του Hardy.

Ορισμός 2.1. Το σύνολο των R−όρων είναι το ελάχιστο σύνολο, T , έτσι που
τα {0, 1}∪V ar ⊆ T και αν τ, σ ∈ T τότε (τ)−1, (logτ), (eτ ), (τ+σ), (τ−σ), (τ ·σ)
είναι όροι.

Ορισμός 2.2. Το σύνολο των Z−όρων είναι το ελάχιστο σύνολο, T , έτσι που
τα {0, 1} ∪ V ar ⊆ T και αν τ, σ ∈ T τότε (τ)−1, (τexpσ), (τ + σ), (τ − σ), (τ · σ)
είναι όροι.

Οι όροι καθορίζουν μερικές συναρτήσεις στους πραγματικούς. Στην συνέχεια
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θα ορίσουμε πότε ένας όρος τ ορίζεται στο ā με τιμή b και πότε δεν ορίζεται στο
ā.

Ορισμός 2.3. ΄Εστω u : V ar → R τότε ορίζουμε με ταυτόχρονη αναδρομή τις
έννοιες:

τu
ορίζεται να είναι το τ .

τu
δεν ορίζεται.

Z−όροι:
i) 0u

ορίζεται να είναι το 0.
1u
ορίζεται να είναι το 1.

ii) Για κάθε v ∈ V ar, vu
ορίζεται να είναι το u(v).

iii) Εαν τu
δεν ορίζεται ή ορίζεται να είναι το 0 τότε (τ)−1

δεν ορίζεται.

Εαν τu
ορίζεται να είναι το r και r 6= 0 τότε ((τ)−1)u

ορίζεται να είναι το r−1
.

iv)Εαν κάποιο από τα τu, σu
δεν ορίζεται τότε (τ + σ)u, (τ · σ)u, (τ − σ)u

και

(τexpσ)u
δεν ορίζονται.

Εαν τu
ορίζεται να είναι το r και σu

ορίζεται να είναι το µ τότε:
(τ + σ)u

ορίζεται να είναι το r + µ.
(τ · σ) ορίζεται να είναι το r · µ.
(τ − σ) ορίζεται να είναι το r − µ.
v) Εαν τu

ορίζεται να είναι το 0 τότε το (τexpσ)u
δεν ορίζεται.

Εαν τu
ορίζεται να είναι το r,r 6= 0, και σu

ορίζεται να είναι το µ τότε (τexpσ)u

ορίζεται να είναι το eµlog|r|
.

R−όροι:
Ακριβώς όπως οι Z−όροι για τα 0, 1, V ar,−1 ,+,−, · και
Εαν τu

δεν ορίζεται,τότε (logτ)u, (eτ)u
δεν ορίζονται.

Εαν τu
ορίζεται να είναι το r, τότε (eτ)u

είναι το er
.

Εαν τu
ορίζεται να είναι το r, r 6= 0, τότε (logτ)u

είναι το log|r|.
Εαν τu

ορίζεται να είναι το 0, τότε (logτ)u
δεν ορίζεται.

Σημείωση:Ο λόγος που δεν ορίζουμε στους Z−όρους 0r = 0 για r 6= 0 και
00 = 1 είναι γιατί τότε το πρόβλημα ισότητας στους φυσικούς είναι τετριμμένα
αναποκρίσιμο. Για παράδειγμα 0(p(x̄)2) = 0 (όπου p(x̄) ∈ Z[x1, . . . , xn]) αν-ν p(x̄)
δεν έχει λύσεις στους φυσικούς, το τελευταίο πρόβλημα όμως έχει αποδειχθεί από

τον Matijasevic αναποκρίσιμο στους ακεραίους. Το επόμενο λήμμα ολοκληρώνει
τον συλλογισμό μας.

Λήμμα 2.1.

LZ:Δεδομένης μίας διοφαντικής εξίσωσης να αποφασιστεί αν αυτή έχει λύση στους
ακεραίους.

LN:Δεδομένης μίας διοφαντικής εξίσωσης να αποφασιστεί αν αυτή έχει λύση στους
φυσικούς.

LZ ∝ LN (δηλαδή το πρόβλημα LZ ανάγεται στο LN).

Απόδειξη:

Μετατρέπουμε την διοφαντική εξίσωση p(x1, . . . , xn) = 0 στην q(y1, z1, . . . , yn, zn) =
0 όπου q(y1, z1, . . . , yn, zn) είναι το p(y1 − z1, . . . , yn − zn) και έχουμε:

(⇒) Εαν a1, . . . , an ∈ Z είναι λύση της p(x1, . . . , xn) (δηλαδή ένα ῾῾ ναι ᾿᾿ στιγμιό-
τυπο του πρώτου προβλήματος) τότε μπορούμε να βρούμε b1, c1, . . . , bn, cn ∈ N
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έτσι που bi − ci = ai για 1 ≤ i ≤ n και q(b1, c1, . . . , bn, cn) = 0.

(⇐) Εαν b1, c1, . . . , bn, cn ∈ N είναι λύση της q(y1, z1, . . . , yn, zn) = 0 (δηλαδή
ένα ῾῾ ναι ᾿᾿ στιγμιότυπο του δεύτερου προβλήματος) τότε για τα ai = bi − ci ∈
Z,1 ≤ i ≤ n ισχύει p(a1, . . . , an) = 0.

Τώρα είμαστε σε θέση να δώσουμε τον βασικό ορισμό.

Ορισμός 2.4. τ ≡ σ αν για κάθε u είτε τu, σu
δεν ορίζονται ή τu

ορίζεται να

είναι το r και σu
ορίζεται να είναι το µ και r = µ.

Τελικά το πρόβλημα απόφασης παίρνει την εξής μορφή.

Δεδομένων των τ, µ υπάρχει διαδικασία που να αποφασίζει αν τ ≡ σ;

2.2 Ιεραρχία του Hardy
Θα χρησιμοποιήσουμε μία παραλλαγή των μεθόδων του Hardy για να αποδείξουμε
κάποια άνω φράγματα στον αριθμό των ριζών λογαριθμικο-εκθετικών συναρτήσεων

(στην περίπτωσή μας θα περιοριστούμε σε R−όρους). Η πολύ σημαντική συμβολή
του Hardy στο συγκεκριμένο θέμα είναι η τυποποίηση της μεθόδου που χρεια-
ζόμαστε για να αποδείξουμε ιδιότητες των λογαριθμικο-εκθετικών συναρτήσεων.

Από όλη την κλάση αυτών των συναρτήσεων αρκεί να δείξουμε την προς απόδει-

ξη ιδιότητα για συναρτήσεις μιας συγκεκριμένης μορφής,αυτό μπορεί να επιτευχεί

με επαγωγή σε τρία μεγέθη επομένως η απόδειξη ιδιοτήτων στις λογαριθμικο-

εκθετικές συναρτήσεις απαιτεί υπερπεπερασμένη επαγωγή στον ω3
. Ας γίνουμε

όμως πιο συγκεκριμένοι.

Πρώτα θα ορίσουμε την τάξη ενός R−όρου.

Ορισμός 2.5. Η τάξη≤ του R−όρου τ είναι ≤ 0 εαν κανένα από τα e, log δεν
συμμετέχουν σε αυτόν.

Η τάξη≤ του R−όρου τ είναι ≤ n + 1 εαν όλες οι εμφανίσεις των e, log επισυνά-
πτονται σε όρους τάξης≤ ≤ n.
Η τάξη του R−όρου τ είναι ο ελάχιστος φυσικός έτσι που η τάξη≤ του τ είναι
≤ m.

Εύκολα μπορύμε να δούμε ότι η τάξη ενός R−όρου είναι αποτελεσματικά υπο-
λογίσιμη καθώς και ότι η κλάση των όρων τάξης n είναι κλειστή για +,−, ·,−1

.

Θα συμβολίζουμε με fn όρους τάξης ≤ n.

Ορισμός 2.6. fn καλείται ακέραιος αν είναι της μορφής

∑
i

ρn−1,i · eσn−1,i ·
hi∏

j=1

(logτ [j]
n−1,i)

kj,i

όπου ρn−1,i, σn−1,i, τ
[j]
n−1,i είναι όροι τάξης ≤ n− 1 και kj,i ≥ 0.

Ακόμα k1,i + . . . + khi,i καλείται ο βαθμός λογάριθμου ενός τυπικού όρου

(δηλαδή ενός προσθετέου) και το μέγιστο των βαθμών λογαρίθμου όλων των όρων

καλείται ο βαθμός λογαρίθμου του fn.
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Εαν ο βαθμός λογαρίθμου του fn είναι λ και σ΄ αυτό συμβάλλουν µ όροι τότε ο fn

καλείται λογαριθμικού τύπου (λ, µ).
Περαιτέρω εαν λ = 0,τότε fn καλείται ακέραιος εκθετικός,και µ καλείται ο
τύπος του fn. Αν επιπρόσθετα µ = 1,τότε fn καλείται απλός εκθετικός.

Ορισμός 2.7. Εαν fn είναι gn·(hn)−1
, όπου gn, hn είναι ακέραιοι,τότε fn καλείται

ρητός. Εαν gn, hn είναι εκθετικοί, τότε fn καλείται ρητός εκθετικός.

Λήμμα 2.2.

Κάθε fn είναι (πρωτογενώς αναδρομικά) ισοδύναμος με κάποιον ρητό gn.

Απόδειξη:

fn είναι αλγεβρική έκφρασηA(h1, . . . , hn) με h1, . . . , hn τάξης το πολύ n,θεωρούμε
αυτή την αλγεβρική έκφραση ως μία πεπερασμένη ακολουθία πράξεων μεταξύ των

hi. ΄Ετσι έχουμε ότι

fn = g121g222g323 . . .2m−1gm

όπου 2i = +ή − ή · και gi = hij ή (hij )
−1
για ij με 1 ≤ ij ≤ n. Να σημειώσουμε

εδώ ότι κάποια gi μπορεί να παίρνουν τις ίδιες τιμές. Με επαγωγή στον αριθμό

των αλγεβρικών πράξεων θα δείξουμε ότι το αποτέλεσμα των πράξεων αυτών είναι

ρητός ακέραιος της μορφής ρn · (σn)−1
.

• Για m = 1. Διακρίνουμε περιπτώσεις.

1. 21 = +ή − ή · και g1 = h1j ,g2 = h2j . Τότε g121g2 είναι πρωτογενώς
αναδρομικά ισοδύναμος είτε με (h1j + h2j ) · (1)−1

είτε με (h1j − h2j ) ·
(1)−1

ή με (h1j
· h2j

) · (1)−1
.

2. 21 = + ή − και g1 = h1j , g2 = (h2j )
−1
. Τότε g12g2 είναι πρωτογενώς

αναδρομικά ισοδύναμος είτε με (h1j
·h2j

+1) · (h2j
)−1
ή με (h1j

·h2j
−

1) · (h2j
)−1
.

3. 21 = · και g1 = h1j
, g2 = (h2j

)−1
. Τότε g12g2 είναι πρωτογενώς

αναδρομικά ισοδύναμος με h1j
· (h2j

)−1
.

4. 21 = + ή − και g1 = (h1j
)−1, g2 = (h2j

)−1
. Τότε g12g2 είναι πρω-

τογενώς αναδρομικά ισοδύναμος είτε με (h1j
+ h2j

) · (h1j
· h2j

)−1
ή με

(h1j
− h2j

) · (h1j
· h2j

)−1
.

5. 21 = · και g1 = (h1j
)−1, g2 = (h2j

)−1
. Τότε g12g2 είναι πρωτογενώς

αναδρομικά ισοδύναμος με 1 · (h1j
· h2j

)−1
.

6. Οι υπόλοιπες περιπτώσεις εύκολα ανάγονται στις προηγούμενες

• ΄Εστω ότι το ζητούμενο ισχύει γιαm. Δείχνουμε ότι ισχύει γιαm+1. ΄Εχου-

με ότι g121g222g323 . . . 2m+1gm+2

Επαγωγική Υπόθεση

≡ ρn · (σn)−12m+1gm+2.

Διακρίνουμε πάλι περιπτώσεις:

1. 2m+1 = + ή − και gm+2 = hm+2j
. Τότε ρn · (σn)−12m+1gm+2 είναι

πρωτογενώς αναδρομικά ισοδύναμος είτε με (ρn + hm+2j
· σn) · (σn)−1

ή με (ρn − hm+2j
· σn) · (σn)−1

.

2. 2m+1 = · και gm+2 = hm+2j
. Τότε ρn · (σn)−12m+1gm+2 είναι πρω-

τογενώς αναδρομικά ισοδύναμος με (ρn · hm+2j
) · (σn)−1

.
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3. 2m+1 = + ή − και gm+2 = (hm+2j
)−1
. Τότε ρn · (σn)−12m+1gm+2

είναι πρωτογενώς αναδρομικά ισοδύναμος είτε με (ρn · hm+2j
+ σn) ·

(hm+2j
· σn)−1

ή με (ρn · hm+2j
− σn) · (hm+2j

· σn)−1
.

4. 2m+1 = · και gm+2 = (hm+2j
)−1
. Τότε ρn · (σn)−12m+1gm+2 είναι

πρωτογενώς αναδρομικά ισοδύναμος με ρn · (hm+2j
· σn)−1

.

Και αυτό ολοκληρώνει την απόδειξη.

Λήμμα 2.3.

Εαν fn = ρn−1 · eσn−1 είναι απλός εκθετικός, τότε
∂
∂xfn είναι απλός εκθετικός με

τον ίδιο παράγοντα eσn−1 .

Απόδειξη:
∂
∂xfn = ∂

∂x (ρn−1 · eσn−1) = [ ∂
∂x (ρn−1) + ρn−1 · ∂

∂x (σn−1)] · eσn−1 .

Λήμμα 2.4.

Εαν fn είναι ακέραιος εκθετικός τύπου µ τότε
∂
∂xfn είναι ακέραιος εκθετικός τύπου

µ , εκτός εαν κάποιος από τους προσθετέους είναι σταθερός στο x, οπότε ∂
∂xfn είναι

τύπου < µ.

Απόδειξη:

Από το Λήμμα 2.3 έχουμε ότι
∂
∂xfn = ∂

∂x (
∑µ

i=1 ρn−1,i · eσn−1,i) =
∑µ

i=1

[ ∂
∂x (ρn−1,i) + ρn−1,i · ∂

∂x (σn−1,i)] · eσn−1,i . Ακόμα αν κάποιος από τους προσθε-

τέους, έστω ο ξ, είναι σταθερός στο x τότε ∂
∂x (ρn−1,ξ) = 0 και ∂

∂x (σn−1,ξ) = 0,
άρα ο

∂
∂xfn θα είναι ακέραιος εκθετικός τύπου < µ.

Λήμμα 2.5.

Εαν fn είναι ακέραιος λογαριθμικού τύπου (λ, µ) τότε ∂
∂xfn είναι είτε τύπου (λ, µ)

είτε τύπου (λ, µ1) με µ1 < µ ή τύπου (λ− 1, h1) εαν µ = 1.

Απόδειξη:

Με υπερπεπερασμένη επαγωγή στον ω2
.

• Εαν fn ακέραιος εκθετικός τότε ισχύει το ζητούμενο από τα Λήμματα

2.3,2.4.

• ΄Εστω ότι το ζητούμενο ισχύει για λ για κάθε µ. Δείχνουμε ότι ισχύει για
λ+ 1.

• ΄Εστω fn λογαριθμικού τύπου (λ+1, 1) και g = ρn−1e
σn−1(logτ [1]

n−1)
k1 · . . . ·

(logτ [h]
n−1)

kh με k1 + . . .+ kh = λ+ 1. Τότε ∂
∂xg = g1 + g2 όπου

g1 = [
θ

θx
(ρn−1) +

θ

θx
(σn−1) · ρn−1]eσn−1 · (logτ [1]

n−1)
k1 · . . . · (logτ [h]

n−1)
kh

και

g2 = ρn−1e
σn−1 ·

[k1

θ
θx (τ [1]

n−1)

τ
[1]
n−1

(logτ [1]
n−1)

k1−1 · . . . · (logτ [h]
n−1)

kh + . . .
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+(logτ [1]
n−1)

k1 · . . . · kh

θ
θx (τ [h]

n−1)

τ
[h]
n−1

(logτ [h]
n−1)

kh−1]

Επομένως
∂
∂xg είναι είτε λογαριθμικού τύπου (λ+1, 1) (από το g1) ή (λ, h2)

όπου h2 ≤ h(από το g2 εαν ρn−1e
σn−1 είναι σταθερό ως προς x).

Ακόμα έχουμε ότι fn − g είναι λογαριθμικού τύπου (λ, µ), επομένως από
την Επαγωγική Υπόθεση έχουμε ότι

∂
∂x (fn− g) έχει λογαριθμικό τύπο είτε

(λ, µ) είτε (λ, µ1) με µ1 < µ ή (λ− 1, h1). Διακρίνουμε περιπτώσεις:

1.
∂
∂x (fn − g) έχει λογαριθμικό τύπο (λ, µ). Ακόμα έχουμε ότι ∂

∂xfn =
∂
∂x (fn − g) + ∂

∂xg. Επομένως, εαν
∂
∂xg είναι λογαριθμικού τύπου (λ+

1, 1) έχουμε ότι ∂
∂xfn είναι λογαριθμικού τύπου (λ + 1, 1), εαν είναι

λογαριθμικού τύπου (λ, h2) τότε ∂
∂xfn είναι λογαριθμικού τύπου (λ, µ+

h2). Και στις δύο περιπτώσεις ισχύει το ζητούμενο.

2.
∂
∂x (fn − g) έχει λογαριθμικό τύπο (λ, µ1), όπου µ1 < µ. Τότε όπως

πριν ανάλογα με το
∂
∂xg θα είναι είτε λογαριθμικού τύπου (λ + 1, 1) ή

τύπου (λ, µ1 + h2).

3.
∂
∂x (fn − g) έχει λογαριθμικό τύπο (λ − 1, h1). Τότε πάλι ανάλογα με
το

∂
∂xg θα είναι είτε λογαριθμικού τύπου (λ+ 1, 1) ή τύπου (λ, h2).

• ΄Εστω ότι ισχύει για (λ+ 1, µ). Δείχνουμε ότι ισχύει για (λ+ 1, µ+ 1).

• ΄Οπως πριν επιλέγουμε κάποιον προσθετέο, έστω g, που συμβάλλει στον
λογαριθμικό βαθμό του

∂
∂xfn. Ακολουθούμε την ίδια ανάλυση με πριν και

διακρίνουμε περιπτώσεις:

1.
∂
∂x (fn− g) έχει λογαριθμικό τύπο (λ+1, µ). Τότε ανάλογα με το ∂

∂xg

το
∂
∂xfn έχει λογαριθμικό τύπο είτε (λ+ 1, µ+ 1) ή (λ+ 1, µ).

2.
∂
∂x (fn − g) έχει λογαριθμικό τύπο (λ + 1, µ1). Τότε όμοια με πριν το
∂
∂xfn έχει λογαριθμικό τύπο είτε (λ+1, µ1 +1) (όπου µ1 +1 ≤ µ+1)
ή (λ+ 1, µ1).

Αυτό ολοκληρώνει την επαγωγή μας και έτσι ισχύει το ζητούμενο για κάθε ακέραιο

όρο fn λογαριθμικού τύπου (λ, µ).

Λήμμα 2.6.
∂
∂xfn είναι τάξης ≤ n.

Απόδειξη:

Με επαγωγή στο n

• Για n = 0. Τότε από το Λήμμα 2.2 (χρησιμοποιώντας το γεγονός ότι
f0 είναι αλγεβρική έκφραση πολυωνύμων καθώς και την τελική μορφή που
προκύπτει από την πρωτογενώς αναδρομική διαδικασία) f0 = P (x̄)·(Q(x̄))−1

όπου P (x̄), Q(x̄) πολυώνυμα. Επομένως

∂

∂x
f0 = (

∂

∂x
P (x̄) ·Q(x̄)− P (x̄) · ∂

∂x
Q(x̄)) · ([Q(x̄)]2)−1

και
∂
∂xf0 είναι τάξης 0.
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• ΄Εστω ότι το ζητούμενο ισχύει για n. Δείχνουμε ότι ισχύει για n + 1.
Ακολουθούμε την ιδέα του Λήμματος 2.2 έτσι ο fn+1 είναι αλγεβρική

έκφραση

A(eρn,1 , . . . , eρn,m , logτn,1, . . . , τn,s, hn,1, . . . , hn,k).

Βλέπουμε την αλγεβρική έκφραση ως μία ακολουθία πράξεων, έτσι έχουμε:

fn+1 = g121g222g2 . . .2m−1gm

όπου 2i = + ή − ή · και gi = hij
ή (hij

)−1
ή eρij ή (eρij )−1

ή logτij
ή

(logτij
)−1
(παραλείποντας τους δείκτες που δείχνουν την τάξη των όρων).

Δείχνουμε το ζητούμενο με επαγωγή στον αριθμό των πράξεων.

– Για m = 1. Κάνουμε μερικές χαρακτηριστικές περιπτώσεις.

1. ΄Εστω 21 = · και g1 = eρ1j , g2 = logτ2j
. Τότε

∂
∂x (g121g2) είναι

∂
∂x (ρ1j

)·eρ1j ·logτ2j
+ ∂

∂x (τ2j
)·(τ2j

)−1 ·eρ1j ·logτ2j
, άρα

∂
∂x (g121g2)

είναι τάξης ≤ n+ 1.
2. ΄Εστω 21 = · και g1 = eρ1j , g2 = (logτ2j

)−1
. Τότε

∂
∂x (g121g2)

είναι ( ∂
∂x (ρ1j

) · eρ1j · logτ2j
− ∂

∂x (τ2j
) · (τ2j

)−1 · eρ1j · logτ2j
) ·

([logτ2j
]2)−1

, πάλι έχουμε ότι
∂
∂x (g121g2) είναι τάξης ≤ n+ 1.

3. ΄Εστω 21 = + και g1 = eρ1j , g2 = logτ2j . Τότε
∂
∂x (g121g2) είναι

∂
∂x (ρ1j ) · e

ρ1j + ∂
∂x (τ2j ) · (τ2j )

−1 · logτ2j , και πάλι
∂
∂x (g121g2) είναι

τάξης ≤ n+ 1.
4. Εύκολα ελέγχουμε τις υπόλοιπες περιπτώσεις.

– ΄Εστω ότι το ζητούμενο ισχύει για m. Δείχνουμε ότι ισχύει για m+1.
΄Εχουμε ότι fn+1 = g121g222 . . . 2m+1gm+2 και διακρίνουμε περιπτώ-

σεις για τα 2m+1, gm+2.

1. 2m+1 = · και gm+2 = eρm+2j . Τότε, θέτοντας C = g121g222 . . .2m

gm+1 έχουμε
∂
∂xfn+1 = ∂

∂xC · eρm+2j + C · ∂
∂x (ρm+2j

)eρm+2j και

από την Επαγωγική Υπόθεση έχουμε το ζητούμενο.

2. 2m+1 = · και gm+2 = (logτm+2j
)−1
. Τότε, όμοια με πριν

∂
∂xfn+1 =

( ∂
∂xC · logτm+2j

− ∂
∂x (τm+2j

) · (τm+2j
)−1 · logτm+2j

· C)·
([logτm+2j

]2)−1
και από την Επαγωγική Υπόθεση ισχύει το ζη-

τούμενο.

3. Εύκολα ελέγχουμε τις υπόλοιπες περιπτώσεις

Αυτό ολοκληρώνει την απόδειξη.

Ας επανέλθουμε τώρα στην συμβολή του Hardy στον τομέα. Ο Hardy έδειξε
ότι για να αποδείξουμε κάποια ιδιότητα Φ στην κλάση των R−όρων (υποθέτοντας
ότι f ≡ g ⇒ (Φ(f) ↔ Φ(g))) πρέπει να προχωρήσουμε ως εξής:
(I) Να αποδείξουμε Φ(f) για f τάξης 0.
(II) Να υποθέσουμε Φ(f) για κάθε όρο f τάξης < n.
(III) Να αποδείξουμε Φ(fn) για fn απλό εκθετικό.

(IV ) Να αποδείξουμε Φ(fn) για fn ακέραιο εκθετικό με επαγωγή στον τύπο της

fn.

(V ) Να αποδείξουμε Φ(fn) για fn λογαριθμικού τύπου (λ+1, 1) υποθέτοντας ότι
ισχύει Φ(fn) για κάθε fn λογαριθμικού βαθμού λ.
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(V I) Να αποδείξουμε Φ(fn) για fn λογαριθμικού τύπου (λ+1, µ+1) υποθέτοντας
ότι ισχύει Φ(fn) για κάθε fn λογαριθμικού τύπου (λ+ 1, µ).
(V II) Να αποδείξουμε Φ(fn) για κάθε ρητό fn.

Η πραγματικά καλή ιδέα του Hardy βρίσκεται στον εντοπισμό των σωστών μεγε-
θών αλλά και της κατάλληλης μορφής μιας υποκλάσης των λογαριθμικο-εκθετικών

συναρτήσεων που αποτελεί τον θεμελιακό λίθο των συναρτήσεων αυτών.

2.3 Βαθμός Λογαριθμικο-εκθετικών Συναρ-

τήσεων

Η βασική ιδέα είναι να ορίσουμε μία ποσότητα στους φυσικούς, τέτοια που αν

κάποια λογαριθμικο-εκθετική συνάρτηση έχει πλήθος ριζών παραπάνω από αυτή

την ποσότητα, τότε είναι ταυτοτικά 0. Η αναπόφευκτη σύγκριση με αυτό που
συμβαίνει στους δακτυλίους πολυωνύμων μας οδηγεί με φυσικό τρόπο στην έννοια

του ῾῾ βαθμού ᾿᾿ λογαριθμικο-εκθετικών συναρτήσεων.

Θεώρημα 2.1.

Υπάρχει πρωτογενώς αναδρομική συνάρτηση d(x, τ), όπου x μεταβλητή και τ ό-
ρος, έτσι που:

(a) Η d παίρνει τιμές στους φυσικούς.
(b) Εαν τ = τ(x1, . . . , xn) και x = xi για 1 ≤ i ≤ n, τότε για κάθε a1, . . . , ai−1,
ai+1, . . . , an στους πραγματικούς και κάθε ανοικτό διάστημα I στο οποίο
ο τ(a1, . . . , ai−1, x, ai+1, . . . , an) ορίζεται παντού, εαν υπάρχουν παραπάνω από d(x, τ)
σημεία a στο I έτσι που τ(a1, . . . , ai−1, a, ai+1, . . . , an) = 0 τότε για κάθε β στο
I, τ(a1, . . . , ai−1, β, ai+1, . . . , an) = 0.

Σημείωση:Για παράδειγμα, εαν ο τ(x, ȳ) ορίζεται παντού, τότε το Θεώρημα
2.1 λέει ότι για κάθε ā ∈ Rn−1

εαν ο τ(x, ā) έχει πάνω από d(x, τ) ρίζες στο R,
τότε είναι ταυτοτικά 0.

Το Θεώρημα 2.1 αποδεικνύεται καλύτερα σε συνδυασμό με το παρακάτω.

Θεώρημα 2.2.

Υπάρχει πρωτογενώς αναδρομική συνάρτηση s(x, τ), όπου x μεταβλητή και τ όρος
έτσι που:

(a) Η s παίρνει τιμές στους φυσικούς.
(b) Εαν τ = τ(x1, . . . , xn) και x = xi για 1 ≤ i ≤ n, τότε για κάθε a1, . . . , ai−1,
ai+1, . . . , an στους πραγματικούς και κάθε διάστημα I, εαν υπάρχουν παραπάνω από
s(x, τ) σημεία του I στα οποία ο τ(a1, . . . , ai−1, x, ai+1, . . . , an) είναι μη ορίσιμος
τότε, δεν ορίζεται για κάθε β ∈ I.

Απόδειξη:

Θα ακολουθήσουμε τα βήματα που δόθηκαν παραπάνω.

(I) Εαν τ είναι τάξης 0 τότε από το Λήμμα 2.2 μπορούμε να βρούμε πο-
λυώνυμα f, g έτσι που τ ≡ f · g−1

, επομένως θέτουμε d(x, τ) = degx(f) και
s(x, τ) = degx(g).
(II) ΄Εστω ότι ισχύει.
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(III) τ είναι ο fn = σn−1e
βn−1

, τότε d(x, τ) = d(x, σn−1) και s(x, τ) = s(x, σn−1)
+s(x, βn−1).
(IV ) ΄Εστω ισχύει αν ο τ είναι fn =

∑m
k=1 σ

[k]
n−1e

β
[k]
n−1 . Δείχνουμε την περίπτωση

που ο τ είναι fn =
∑m+1

k=1 σ
[k]
n−1e

β
[k]
n−1 . Τότε έχουμε s(x, τ) = s(x,

∑m
k=1 σ

[k]
n−1e

β
[k]
n−1)+

s(x, σ[m+1]
n−1 eβ

[m+1]
n−1 ) (Από την Επαγωγική Υπόθεση και την βάση).

Για το d(x, τ) εργαζόμαστε ως εξής:
΄Εστω δ = d(x, σ[m+1]

n−1 eβ
[m+1]
n−1 ), σταθεροποιούμε κάποιες τιμές ā και ένα διάστη-

μα I στο οποίο ο τ(a1, . . . , ai−1, x, ai+1, . . . , an) ορίζεται παντού. Για αυτές τις
τιμές ο fn δεν έχει πάνω από δ ρίζες κοινές με τον σ

[m+1]
n−1 eβ

[m+1]
n−1 εκτός εαν ο

σ
[m+1]
n−1 eβ

[m+1]
n−1 για την συγκεκριμένη αναθεση τιμών είναι παντού 0 στο I. Στην

τελευταία περίπτωση, fn δεν έχει παραπάνω από δ1 = d(x,
∑m

k=1 σ
[k]
n−1e

β
[k]
n−1) ή

είναι παντού 0 στο διάστημα I.
Στην άλλη περίπτωση όπου ο όρος σ

[m+1]
n−1 eβ

[m+1]
n−1 δεν έχει πάνω από δ ρίζες

για την συγκεκριμένη ανάθεση τιμών στο I, θέτουμε hn = fn · (σ[m+1]
n−1 eβ

[m+1]
n−1 )−1

ο οποίος είναι αποτελεσματικά ισοδύναμος με τον 1 + gn όπου gn είναι ακέραιος

εκθετικός τύπου m. Θα εκτιμήσουμε το πλήθος ριζών του hn, εκτιμώντας το πλή-

θος ριζών του
∂
∂xhn που είναι αποτελεσματικά ισοδύναμος με τον

∂
∂xgn. Θέλουμε

να χρησιμοποιήσουμε το γεγονός ότι μεταξύ δύο ριζών του hn υπάρχει ρίζα του
∂
∂xgn. Ωστόσο, υπάρχει η μικρή δυσκολία, ότι μεταξύ δύο ριζών του hn μπορεί ο

∂
∂xgn και ο hn να μην ορίζονται στο σημείο που θα ήταν ρίζα του

∂
∂xgn.

Παρακάμπτουμε την δυσκολία ως εξής. Οι ρίζες του σ
[m+1]
n−1 eβ

[m+1]
n−1 στο I ε-

πάγουν μία αποσύνθεση του I σε λιγότερα από δ + 1 διαστήματα στα οποία ο hn

ορίζεται παντού. Σε κάθε τέτοιο διάστημα οι gn,
∂
∂xgn ορίζονται παντού. Διακρί-

νουμε περιπτώσεις:

Α. hn έχει λιγότερες από (δ + 1) · (d(x, ∂
∂xgn) + 1) ρίζες στο I

Β. σε κάποιο υποδιάστημα I1 του I,
∂
∂xgn είναι ταυτοτικά 0.

Στην περίπτωση B στο διάστημα I1,
∂
∂xhn είναι ταυτοτικά 0, επομένως hn είναι

κάποια σταθερά και fn = λ · σ[m+1]
n−1 eβ

[m+1]
n−1 για κάποια σταθερά λ. Σ΄ αυτό το

σημείο θα χρησιμοποιήσουμε μιγαδική ανάλυση για να αποδείξουμε ότι fn = λ ·
σ

[m+1]
n−1 eβ

[m+1]
n−1 σ΄ όλο το I. Πράγματι, η fn είναι αναλυτική σε κάποια ανοικτή

συνεκτική (μιγαδική) γειτονιά του I, και το I1 περιέχει σημείο συσσώρευσης του
I, επομένως το ζητούμενο έπεται από το παρακάτω θεώρημα.

Θεώρημα 2.3. (Αρχή Αναλυτικής Συνεχίσεως)

Αν το Ω είναι τόπος στο C, οι f, g : Ω → C είναι ολόμορφες και το σύνολο
{z ∈ Ω : f(z) = g(z)} έχει τουλάχιστον ένα σημείο συσσώρευσης στο Ω, τότε
f = g.

Τελικά fn = λ · σ[m+1]
n−1 eβ

[m+1]
n−1 σ΄ όλο το I. Τώρα, στην περίπτωση που λ = 0, fn

είναι ταυτοτικά 0, εαν λ 6= 0 τότε fn δεν έχει πάνω από δ ρίζες στο I.
Στην περίπτωση A έχουμε ότι fn δεν έχει παραπάνω από (δ+1) ·(d(x, ∂

∂xgn)+
1) + δ ρίζες στο I.
Συγκεντρώνοντας τα αποτελέσματα για τις διάφορες περιπτώσεις έχουμε ότι

d(x, τ) = δ1 + (δ + 1) · (d(x, ∂
∂x
gn) + 2)
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(V ) τ είναι ο fn, όπου fn είναι ακέραιος λογαριθμικού τύπου (λ+ 1, 1), επομένως
fn είναι της μορφής

gn + ρn−1e
βn−1(logτ [1]

n−1)
k1 · . . . · (logτ [h]

n−1)
kh

όπου gn είναι λογαριθμικού βαθμού ≤ λ και k1+ . . .+kh = λ+1. Τα επιχειρήματα
είναι περίπου όμοια με πριν με μία επιπρόσθετη δυσκολία.

Ορίζουμε s(x, τ) = s(x, gn) + s(x, ρn−1e
βn−1) +

∑h
j=1 s(x, τ

[j]
n−1) +

∑h
j=1

d(x, τ [j]
n−1). Για τον ορισμό του d(x, τ), σταθεροποιούμε πάλι κάποιες τιμές ā και

κάποιο διάστημα I στο οποίο ο fn ορίζεται παντού. ΄Εστω δ = d(x, ρn−1e
βn−1).

Εαν ρn−1e
βn−1 είναι ταυτοτικά 0 στο I, τότε fn δεν έχει πάνω από d(x, gn) ρί-

ζες στο I. ΄Εστω τώρα ότι ρn−1e
βn−1 δεν είναι ταυτοτικά 0 στο I και hn =

fn · (ρn−1e
βn−1)−1

. Τότε οι ρίζες του ρn−1e
βn−1 επάγουν μία αποσύνθεση του I

σε λιγότερα από δ + 1 υποδιαστήματα όπου ο hn ορίζεται παντού σε καθ΄ ένα από

αυτά. Προφανώς hn είναι αποτελεσματικά ισοδύναμος με τον

gn · (ρn−1e
βn−1)−1 + (logτ [1]

n−1)
k1 · . . . · (logτ [h]

n−1)
kh .

Ακόμα έστω jn = gn · (ρn−1e
βn−1)−1

. Τότε jn είναι λογαριθμικού βαθμού ≤ λ,
επομένως από το Λήμμα 2.5

∂
∂xjn είναι λογαριθμικού βαθμού ≤ λ. Επίσης

∂
∂x (logτ [1]

n−1)
k1 · . . . · (logτ [h]

n−1)
kh είναι λογαριθμικού βαθμού ≤ λ. Επομένως ∂

∂xhn

είναι λογαριθμικού βαθμού ≤ λ και ∂
∂xhn είναι παντού ορισμένη σε κάθε επαγόμενο

υποδιάστημα. ΄Αρα όπως στο (IV ) έχουμε τις περιπτώσεις:

Α. hn έχει ≤ (δ + 1) · (d(x, ∂
∂xhn) + 1) ρίζες στο I

Β. Σε κάποιο υποδιάστημα I1 του I, hn είναι σταθερή.

Ακριβώς όπως στην περίπτωση (IV ) έχουμε:

d(x, τ) = d(x, gn) + (δ + 1)(d(x,
∂

∂x
hn) + 2).

(V I) τ είναι ο fn όπου fn είναι ακέραιος λογαριθμικού τύπου (λ+1, µ+1). Τότε
fn είναι της μορφής

gn + ρn−1e
βn−1(logτ [1]

n−1)
k1 · . . . · (logτ [h]

n−1)
kh

όπου gn είναι λογαριθμικού τύπου (λ + 1, µ) και k1 + . . . + kh = λ + 1. Τα
επιχειρήματα είναι ακριβώς ίδια με πριν.

(V II) τ είναι ο fn, όπου fn είναι ρητός της μορφής
hn

gn
. Τότε θέτουμε d(x, τ) =

d(x, hn) και s(x, τ) = s(x, hn) + d(x, gn).
Αυτό ολοκληρώνει την απόδειξη.

2.4 Νόμοι Εκθετικοποίησης

Τα επόμενα θεωρήματα δίνουν μία μέθοδο για τον έλεγχο νόμων στους φυσικούς.

Θεώρημα 2.4.

΄Εστω τ(x1, . . . , xn) Z−όρος ή R−όρος που ορίζεται παντού στο Rn
. Τότε τ ≡ 0

στο Rn
αν-ν τ ≡ 0 στο Nn

.
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Απόδειξη:

Περίπτωση 1η. τ είναι R−όρος. Με επαγωγή στον αριθμό των μεταβλητών
που εμφανίζονται στον τ .

• Για n = 1. ΄Εστω τ(x) ≡ 0 στο N και k = d(x, τ) τότε έχουμε ότι τ(i) = 0
για 1 ≤ i ≤ k + 1 επομένως από το Θεώρημα 2.1 έχουμε ότι τ(x) ≡ 0
στο R.

• ΄Εστω ότι ισχύει για n. Δείχνουμε ότι ισχύει για n+1. ΄Εστω τ(x1, . . . , xn+1)
ταυτοτικά 0 στο Nn+1

και k1 = d(x1, τ). Τότε τ(i, x2, . . . , xn+1) ≡ 0 για
1 ≤ i ≤ k1+1 στο Nn

επομένως από την Επαγωγική Υπόθεση τ(i, x2, . . . , xn+1) ≡
0 για 1 ≤ i ≤ k1 + 1 στο Rn

. ΄Εστω τυχαία n−άδα ā = (a2, . . . , an+1) τότε
από το Θεώρημα 2.1 τ(x1, ā) ≡ 0 στο R, επομένως τ(x1, ā) ≡ 0 στο R
για κάθε ā, άρα τ(x1, . . . , xn+1) ≡ 0.

Περίπτωση 2η. τ είναι Z−όρος. Βρίσκουμε R−όρο σ, αντικαθιστώντας τα
θ exp ρ με eρlogθ

, έτσι που σ ≡ τ και το πρόβλημα ανάγεται στην 1η Περίπτω-
ση.

Πόρισμα 2.1.

Οι εκθετικοί νόμοι των φυσικών και των πραγματικών είναι οι ίδιοι.

Απόδειξη:

΄Εστω, προς άτοπο, ότι δεν είναι. Τότε υπάρχουν όροι τ, σ έτσι που τ ≡ σ στους
φυσικούς αλλά όχι στους πραγματικούς. Τότε όμως τ − σ ≡ 0 στους φυσικούς
αλλά όχι στους πραγματικούς, άτοπο από το Θεώρημα 2.4.

Τέλος δίνουμε έναν αλγόριθμο που αποφασίζει πότε μία εξίσωση είναι ταυτότη-

τα στους φυσικούς.

Ορισμός 2.8. ΄Ενας Z−όρος τ(x̄) λέγεται ολικά κληρονομικά υπολογί-
σιμος στο N εαν κάθε υποόρος Y του τ ορίζεται παντού στο N, παίρνει τιμές στο
Z, και εαν Y συμμετέχει σε εκθετικό τότε παίρνει τιμές στο N.

Θεώρημα 2.5.

Υπάρχει πρωτογενώς αναδρομική διαδικασία που αποφασίζει, δεδομένων ολικά κλη-

ρονομικά υπολογίσιμων τ, σ, αν τ ≡ σ.

Απόδειξη:

Για να αποφασίσουμε εαν τ ≡ σ βρίσκουμε τ∗, σ∗ R−όρους έτσι που τ ≡ τ∗

και σ ≡ σ∗. Προχωρούμε με επαγωγή στον αριθμό μεταβλητών που εμφανίζονται
στους όρους μας.

• Για n = 1. Υπολογίζουμε το d(x, τ∗ − σ∗) και ελέγχουμε για 1 ≤ j ≤
d(x, τ∗ − σ∗) αν τ(j) = σ(j). Εαν για κάποια τιμή του j οι δύο όροι δεν
είναι ίσοι τότε απαντάμε ῾῾ ΄Οχι ᾿᾿. Αλλιώς, απαντάμε ῾῾ Ναι ᾿᾿.
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• ΄Εστω ότι ισχύει για n. Δείχνουμε ότι ισχύει για n + 1. Υπολογίζουμε το
d(x1, τ

∗ − σ∗) και για κάθε 1 ≤ j ≤ d(x1, τ
∗ − σ∗) αποφασίζουμε χρησιμο-

ποιώντας την Επαγωγική Υπόθεση εαν τ(j, x2, . . . , xn+1) ≡ σ(j, . . . , xn+1).
Εαν για κάποια τιμή του j απαντήσουμε ῾῾ ΄Οχι ᾿᾿, τότε απαντάμε ῾῾ ΄Οχι ᾿᾿.
Αλλιώς απαντάμε ῾῾ Ναι ᾿᾿.

Στην ουσία η πρωτογενώς αναδρομική διαδικασία που περιγράψαμε ελέγχει
∏n

i=1

d(xi, τ
∗ − σ∗) τιμές των δεδομένων όρων.

Η πολύ καλή ιδέα του Hardy μας οδήγησε στον ορισμό του ῾῾ βαθμού ᾿᾿
λογαριθμικο-εκθετικών συναρτήσεων. Συγκρίνοντας τα αποτελέσματά μας με την

θεωρία πολυωνύμων παρατηρούμε ότι δεν υπάρχουν μεγάλες διαφορές, πραγματι-

κά για να ελέγξουμε αν δύο πολυώνυμα είναι ίσα αρκεί να ελέγξουμε πεπερασμένο

πλήθος τιμών τους. Το ίδιο δείξαμε ότι συμβαίνει και στις λογαριθμικο-εκθετικές

συναρτήσεις.

Τα αποτελέσματα του παρόντος κεφαλαίου θα χρησιμοποιηθούν κατά ουσιαστι-

κό τρόπο για την επίτευξη του στόχου μας, και η κύρια συνδρομή τους βρίσκεται

στο ότι πλέον (Θεώρημα 2.4) μας επιτρέπεται η χρήση διαφορικής άλγεβρας.

26



Κεφάλαιο 3

Η λύση του Wilkie

Η απλούστερη περίπτωση στο πρόβλημα που έθεσε ο Tarski είναι:

Δεδομένων δύο όρων f, g της L = {+, ·, exp, 1} έτσι που N |= f ≈ g, είναι
αλήθεια ότι EXP ` f ≈ g;

όπου EXP το εξής σύνολο εξισώσεων:

HSI



1.1(i)x+ y ≈ y + x (ii)x · y ≈ y · x
1.2 x+ (y + z) ≈ (x+ y) + z (ii)x · (y · z) ≈ (x · y) · z
1.3 x · (y + z) ≈ (x · y) + (x · z)
1.4 1 · x ≈ x
1.5(i)x1 ≈ x (ii)1x ≈ 1
1.6 (x · y)z ≈ xz · yz

1.7 x(y+z) ≈ xy · xz

1.8 (xy)z ≈ x(y·z)

Χωρίς να χρειάζεται να δοθούν ιδιαίτερες εξηγήσεις οι παραπάνω εξισώσεις

ονομάζονται και ῾῾ High School Identities ᾿᾿.
ΟWilkie απαντάει αρνητικά στο ερώτημα του Tarski με το εξής αντιπαράδειγ-

μα. f0 ≈ g0, όπου:

f0 := (x+ 1)x + (x2 + x+ 1)x)y · ((x3 + 1)y + (x4 + x2 + 1)y)x

g0 := ((x+ 1)y + (x2 + x+ 1)y)x · ((x3 + 1)x + (x4 + x2 + 1)x)y

Η παραπάνω ισότητα ισχύει στους φυσικούς λόγω της παραγοντοποίησης των x3+
1, x4 + x2 + 1 σε (x + 1)(x2 − x + 1) και (x2 + x + 1)(x2 − x + 1) αντίστοιχα,
αλλά δεν μπορεί να αποδειχθεί στο EXP , όπως θα δείξουμε σε επόμενο κεφάλαιο,
επειδή ο (x2 − x+ 1) δεν είναι καν όρος της L.
Στην συνέχεια δείχνουμε ότι αυτός είναι ο μόνος λόγος που το σύνολο εξισώ-

σεων EXP είναι ανεπαρκές.
Πριν προχωρήσουμε, να παρατηρήσουμε ότι η δομή N =< N,+, ·, exp, 1 >

δίνει τις φυσικές ερμηνείες στα σύμβολα της γλώσσας, καθώς και ότι σ΄ αυτή την

δομή αλλά και στην R+ =< R+,+, ·, exp, 1 > (πάλι με τις φυσικές ερμηνείες των
συμβόλων) μπορούμε να δούμε τους όρους ως ολικές συναρτήσεις.

Ακόμα δεν είναι δύσκολο να δούμε ότι από το αποτέλεσμα του προηγούμενου

κεφαλαίου (Θεώρημα 2.4) ισχύει ότι
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Πόρισμα 3.1.

WN(ψ) = 1 αν-ν WR+
(ψ) = 1, για κάθε εξίσωση ψ.

Απόδειξη

΄Εχουμε ότι L ⊆ {0, 1,+,−, ·,−1 , exp} και ακόμα όλοι οι όροι της L είναι παντού
ορίσιμοι.

3.1 Κανονική Μορφή ΄Ορων

Για να βρούμε μία βάση της εξισωτικής θεωρίας της N επεκτείνουμε την γλώσσα
και το σύνολο εξισώσεων EXP ως εξής.

Ορισμός 3.1. ΄Εστω ρ(x1, . . . , xn) ∈ Z[x1, . . . , xn]. Καλούμε το ρ(x1, . . . , xn)
θετικό αν ρ(r1, . . . , rn) ∈ R+

όποτε r1, . . . , rn ∈ R+. ΄Ενα θετικό πολυώνυμο
καλείται αυστηρά θετικό αν επιπλέον όλοι οι συντελεστές του είναι θετικοί.

΄Εστω Pn το σύνολο των θετικών πολυωνύμων σε n μεταβλητές. Για κάθε
ρ ∈ Pn, έστω tρ ένα νέο n−θέσιο συναρτησιακό σύμβολο και L∗

η γλώσσα που

προκύπτει αν προσθέσουμε στην L όλα τα νέα συναρτησιακά σύμβολα tρ (για
ρ ∈

⋃
n Pn).

Επίσης ορίζουμε ως EXP ∗
την εξισωτική θεωρία που προκύπτει από την EXP

προσθέτοντας όλες τις εξισώσεις f ≈ g έτσι που f, g είναι όροι της L∗
που δεν

περιέχουν το σύμβολο exp και WN(f ≈ g) = 1 (ή προφανώς ισοδύναμα από το
Πόρισμα 3.1, WR+

(f ≈ g) = 1).

Παρατηρήσεις:

• Οι δομές N,R+
μπορούν να επεκταθούν σε L∗−δομές με φυσικό τρόπο

ερμηνεύοντας τα νέα συναρτησιακά σύμβολα tρ ως ρ.

• ΄Εχουμε προσθέσει αριθμήσιμο το πλήθος νέων συμβόλων στην L, επομένως
η L∗

παραμένει αριθμήσιμη.

• Οι όροι της L που δεν περιείχαν το σύμβολο exp είναι αυστηρά θετικά πολυώ-
νυμα, επομένως κάποιες εξισώσεις τέτοιων όρων που ήδη αποδεικνυόντουσαν

από το EXP έχουν προστεθεί ως αξιώματα. Με αυτή την έννοια η EXP ∗

δεν είναι η ῾῾ οικονομικότερη ᾿᾿ θεωρία, που αποτελεί βάση για την N.

Η διαδικασία που ακολουθεί μας δίνει μία έννοια κανονικής μορφής των όρων

της γλώσσας L∗
.

Αρχικά σταθεροποιούμε ένα n (αυτό θα είναι ο αριθμός των μεταβλητών που
θα συμμετέχουν στους όρους μας) και υποθέτουμε ότι η L περιέχει τις μεταβλητές
y1, . . . , yn, x1 . . . , xk, . . ..
΄Εστω Pm το σύνολο των ανάγωγων (επί του Z) στοιχείων του Pm που εί-

ναι διαφορετικά από το 1 ή μίας μεταβλητής. Ακόμα έστω Mm το σύνολο των

μονωνύμων του Pm (με συντελεστή 1) που είναι διαφορετικά του 1.

Επειδή κανένας παράγοντας θετικού πολυωνύμου δεν μπορεί να έχει ρίζες στο R+

έχουμε ότι κάθε στοιχείο του Pm (διαφορετικό του 1) παραγοντοποιείται μοναδικά
ως γινόμενο ενός στοιχείου από το Mm και στοιχείων του Pm.

(3.1)

28



Τέλος σταθεροποιούμε μία απαρίθμηση < p1, q1 >, . . . , < pm, qm >, . . . όρων
της L∗

, που δεν περιέχουν το σύμβολο exp, με τις εξής ιδιότητες:

∀k ∈ N, pk+1 = tρ(y1, . . . , yn, x1, . . . , xk′) ή pk+1 = yi για κάποιο i ≤ n
qk+1 = tµ(y1, . . . , yn, x1, . . . , xk′′) για κάποια k′, k′′ ≤ k, ρ ∈ Pn+k′ και

µ ∈Mn+k′′ .
(3.2)

∀k′, k′′ ∈ N,∀ρ ∈ Pn+k′ ,∀µ ∈Mn+k′′ , υπάρχει κάποιο l ∈ N έτσι που
EXP ∗ ` pl ≈ tρ(y1, . . . , yn, x1, . . . , xk′) και
EXP ∗ ` ql ≈ tµ(y1, . . . , yn, x1, . . . , xk′′).

(3.3)

∀k′′ ∈ N,∀i ∈ N∗, i ≤ n,∀µ ∈Mn+k′′ , υπάρχει κάποιο l ∈ N έτσι που
EXP ∗ ` pl ≈ yi και EXP

∗ ` ql ≈ tµ(y1, . . . , yn, x1, . . . , xk′′).
(3.4)

∀k, l ∈ N∗, k ≤ l, αν EXP ∗ ` ∀y1 . . . ynx1 . . . xl−1(pk ≈ pl ∧ qk ≈ ql)
τότε k = l.

(3.5)

Η 3.2 έχει οντολογική υφή και μας λέει ότι οι δυάδες της απαρίθμησης έχουν

ως πρώτο μέλος συναρτησιακό σύμβολο που ερμηνεύεται ως ανάγωγο πολυώνυμο

ή yi και ως δεύτερο μέλος συναρτησιακό σύμβολο που ερμηνεύεται ως μονώνυμο.

Οι 3.3,3.4 μας λένε ότι η απαρίθμηση είναι εξαντλητική ως προς τις δυάδες

ανάγωγων-μονωνύμων και yi−μονωνύμων.
Τέλος η 3.5 μας λέει ότι η απαρίθμηση είναι απέριττη, για παράδειγμα τα επόμενα

δεν θα μπορούσαν να ήταν διαφορετικά στοιχεία της απαρίθμησης, < ty2
1+y1+1, ty3

1
>

και < t1+y2
1+y1

, ty3
1
> αφού EXP ∗ ` ∀y1(ty2

1+y1+1 ≈ t1+y2
1+y1

∧ ty3
1
≈ ty3

1
).

Είναι εύκολο να δούμε ότι μία τέτοια απαρίθμηση μπορεί να κατασκευαστεί αν

ορίσουμε μία κανονική μορφή στα μονώνυμα και έπειτα στα πολυώνυμα περίπου

παρόμοια με τους Ορισμούς 1.8-1.11.

Στη συνέχεια, ορίζουμε ακολουθίες όρων της L∗, < ui >i∈N∗ , < si >i∈N∗ ,
< τi >i∈N∗ ως εξής:

u1 = p1, s1 = q1, τ1 = pq1
1 (3.6)

Για i ∈ N∗
,

ui+1 = pi+1(y1, . . . , yn, τ1, . . . , τi)
si+1 = qi+1(y1, . . . , yn, τ1, . . . , τi)
τi+1 = u

si+1
i+1

(3.7)

Το επόμενο θεώρημα μας λέει ότι κάθε όρος της L∗
μπορεί να αναπαρασταθεί

από κάποιον όρο σε κανονική μορφή. Κατα κύριο λόγο η κανονική μορφή είναι

ένα πολυώνυμο όπου έχει ως ῾῾ μεταβλητές ᾿᾿ άλλους όρους. Η ιδέα είναι ότι

αναπαριστώντας κάθε όρο με πολυώνυμο τότε η εξίσωση δύο πολυωνύμων θα είναι

αξίωμα της EXP ∗
όμως αυτά τα δύο πολυώνυμα είναι ίσα για συγκεκριμένες τιμές

(δηλαδή τους όρους που έχουν ως ορίσματα) επομένως αρκεί να δείξουμε ότι τα

ορίσματα των κανονικών μορφών είναι αλγεβρικά ανεξάρτητα επί του R.

Θεώρημα 3.1.

΄Εστω f όρος της L με μεταβλητές μεταξύ των y1, . . . , yn. Τότε υπάρχει ένα αυ-

στηρά θετικό πολυώνυμο ρf ∈ Pn+m έτσι που EXP
∗ ` f ≈ tρf (y1,...,yn,τ1,...,τm).
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Απόδειξη:

Με επαγωγή στον όρο f .

• Εαν f είναι η σταθερά 1, τότε 1 είναι αυστηρά θετικό πολυώνυμο και N |=
1 ≈ t1 (όπου t1 είναι νέο συναρτησιακό σύμβολο που ῾῾ μπήκε ᾿᾿ στην L∗

επειδή 1 είναι θετικό πολυώνυμο) 1, επομένως η εξίσωση 1 ≈ t1 είναι αξίωμα
της EXP ∗

και EXP ∗ ` 1 ≈ t1.

• Εαν f είναι μεταβλητή, έστω η yi, τότε όμοια με πριν yi είναι αυστηρά θετικό

πολυώνυμο και EXP ∗ ` yi ≈ tyi
.

• ΄Εστω f είναι της μορφής h + g, όπου για τους h, g υπάρχουν αυστηρά
θετικά πολυώνυμα ρh ∈ Pn+m′ , ρg ∈ Pn+m′′ , έτσι που EXP ∗ ` h ≈
tρh

(y1, . . . , yn, τ1, . . . , τm′) και EXP ∗ ` g ≈ tρg (y1, . . . , yn, τ1, . . . , tm′′).
Τότε επιλέγουμε ως αυστηρά θετικό πολυώνυμο το ρh + ρg (άθροισμα αυ-

στηρά θετικών πολυωνύμων είναι αυστηρά θετικό πολυώνυμο) και δείχνουμε

το ζητούμενο, έχουμε ότι N |= tρh
(y1, . . . , yn, x1, . . . , xm′)+

tρg (y1, . . . , yn, x1, . . . , xm′′) ≈ tρh+ρg (y1, . . . , yn, x1, . . . , xm),
όπου m = max{m′,m′′} (προφανώς δεν παίζει ρόλο αν πρώτα δώσουμε τι-
μές στα πολυώνυμα και μετά τα προσθέσουμε ή το αντίστροφο). Επομένως

tρh
(y1, . . . , yn, x1, . . . , xm′) + tρg (y1, . . . , yn, x1, . . . , xm′′) ≈

tρh+ρg (y1, . . . , yn, x1, . . . , xm) (3.8)

είναι αξίωμα του EXP ∗
. Η εξής τυπική απόδειξη ολοκληρώνει τον συλλο-

γισμό μας

1.f ≈ h+ g Υπόθεση

2.h ≈ tρh
(y1, . . . , yn, τ1, . . . , τm′) Επαγωγική Υπόθεση

3.g ≈ tρg (y1, . . . , yn, τ1, . . . , τm′′) Επαγωγική Υπόθεση

4.f ≈ tρh
+ tρg

Κ.Πρόσθεσης

5.tρh
+ tρg

≈ tρh+ρg
3.8 Κ.Αντικατάστασης

6.f ≈ tρh+ρg
Κ.Μεταβατικότητας

• ΄Εστω f της μορφής h ·g. Τότε όμοια με πριν το αυστηρά θετικό πολυώνυμο
που αναπαριστά τον όρο f είναι το ρh · ρg.

• ΄Εστω f της μορφής hg
, όπου για τους h, g ισχύει η επαγωγική υπόθεση.

Τότε παρατηρούμε ότι λόγω της 3.1 και επειδή κάθε αυστηρά θετικό πο-

λυώνυμο (εκτός του 1) γράφεται ως άθροισμα μονωνύμων , hg ≈ t
tρg
ρh και

t
tρg
ρh ≈ (ta1 ·. . .·tak

)(tβ1+...+tβλ
) ·(ta1 ·. . .·tak

)ξ
όπου a1, . . . , ak είναι ανάγωγα

πολυώνυμα, β1, . . . , βλ είναι (μη-σταθερά) μονώνυμα και ξ είναι φυσικός.

Επομένως αρκεί να δείξουμε ότι εαν ρ ∈ Pn+m0 είναι ανάγωγο πολυώνυμο,

και µ ∈Mn+m1 , τότε υπάρχει αυστηρά θετικό a ∈ Pn+m2 έτσι που:

EXP ∗ ` ta(y1, . . . , yn, τ1, . . . , τm2) ≈

tρ(y1, . . . , yn, τ1, . . . τm0)
tµ(y1,...,yn,τ1,...τm1 )

Διακρίνουμε περιπτώσεις (για το ρ):

1
Θα χρησιμοποιούμε για ευκολία και καλύτερη εποπτεία αυτή την ισοδύναμη διατύπωση του

W N(1 ≈ t1) = 1.
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1. Εαν ρ είναι το σταθερό ανάγωγο πολυώνυμο 1 τότε μπορούμε να πά-
ρουμε το a να είναι ταυτοτικά το 1 και έχουμε
1.tρ(y1, . . . , yn, τ1, . . . τm0) ≈ 1 Υπόθεση

2.ttµ
ρ ≈ 1 Αξίωμα 1.5(ii)

3.ta(y1, . . . , yn) ≈ 1 Υπόθεση

4.ta ≈ t
tµ
ρ Κ.Μεταβατικότητας

2. Εαν ρ ∈ Pn+m0 ή ρ(y1, . . . , yn, x1, . . . , xm0) είναι κάποιο από τα yi

τότε από τις 3.3,3.4 αντίστοιχα, έχουμε ότι υπάρχει κάποιο l ∈ N∗
έ-

τσι που EXP ∗ ` pl ≈ tρ(y1, . . . , yn, x1, . . . , xm0) και EXP
∗ ` ql ≈

tµ(y1, . . . , yn, x1, . . . , xm1), άρα μπορούμε να πάρουμε m2 = l και
a(y1, . . . , yn, x1, . . . , xl) ∈ Pn+l το xl. Τότε η εξής τυπική απόδειξη

ολοκληρώνει τον συλλογισμό μας

1.tρ(y1, . . . , yn, x1, . . . , xm0) ≈ pl 3.3 ή 3.4
2.tµ(y1, . . . , yn, x1, . . . , xm1) ≈ ql 3.3 ή 3.4
3.ttµ

ρ ≈ pql

l 1, 2,Κ.Αντικατάστασης
4.ta(y1, . . . , yn, τ1, . . . , τl) ≈ τl Ταυτότητα και Κ.Αντικατάστασης

5.pql

l ≈ τl 3.6 ή 3.7
6.ttµ

ρ ≈ ta Κ.Μεταβατικότητας

3. Η περίπτωση που μένει, αφού ρ είναι ανάγωγο, είναι να είναι κάποιο από
τα xi. ΄Εστω ρ(y1, . . . , yn, x1, . . . , xm0) είναι το xj , για j ≤ m0. Τότε

έχουμε EXP ∗ ` tρ(y1, . . . , yn, τ1, . . . , τm0) ≈ τj . Ακόμα EXP
∗ `

τj ≈ tρ′(y1, . . . , yn, τ1, . . . , τk′)τµ′ (y1,...,yn,τ1,...,τk′′ ) για κάποια k′, k′′ ≤
j − 1 και ρ′ ∈ Pn+k′ , µ

′ ∈ Pn+k′′ (από τις 3.6,3.7), επομένως αυτή η

περίπτωση ανάγεται στην προηγούμενη αντικαθιστώντας το ρ με ρ′ και
το µ με µ · µ′ ως εξής:
1.tρ ≈ tρ′(y1, . . . , yn, τ1, . . . , τk′)τµ′ (y1,...,yn,τ1,...,τk′′ ) Υπόθεση

2.ttµ
ρ ≈ (t

tµ′

ρ′ )tµ Κ.Αντικατάστασης

3.(t
tµ′

ρ′ )tµ ≈ t
(tµ′ ·tµ)

ρ′ Αξίωμα1.8
4.(tµ′ · tµ) ≈ tµ′·µ Υπόθεση

5.t
(tµ′·µ)

ρ′ ≈ ta Περίπτωση 2
6.ttµ

ρ ≈ ta Κ.Μεταβατικότητας

Και αυτό ολοκληρώνει την απόδειξη.

Εαν f είναι όρος της L∗
και y1, . . . , yn οι μεταβλητές που εμφανίζονται σε αυ-

τόν τότε συμβολίζουμε με f την μετάφραση αυτού του όρου στο N ή στο R+
.

Αυτό δεν δημιουργεί σύγχυση διότι από την μία N ⊆ R+
, και από την άλλη η

συνάρτηση που μεταφράζει την f στην δομή R+
καθορίζεται πλήρως από την συ-

νάρτηση που μεταφράζει την f στην N (για κάθε g όρο της L∗
, αν N |= f ≈ g

τότε R+ |= f ≈ g).
Το επομένο λογικό βήμα είναι να αποδείξουμε ότι οι συναρτήσεις y1, . . . , yn, τ1,

. . . , τk, . . . είναι αλγεβρικά ανεξάρτητες. Αυτό είναι αρκετό για να εξασφαλίσουμε
το εξής θεώρημα.

Θεώρημα 3.2.

΄Εστω f, g όροι της L έτσι που N |= f ≈ g. Τότε EXP ∗ ` f ≈ g.
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΄Αμεσο πόρισμα του θεωρήματος αυτού είναι ότι η EXP ∗
αποτελεί βάση, με κάπως

ανορθόδοξο τρόπο, αφού η EXP ∗
είναι θεωρία σε διαφορετική γλώσσα, για την

εξισωτική θεωρία της N.
΄Ενα πολύ ενδιαφέρον ανοιχτό ερώτημα είναι αν η EXP ∗

αποτελεί βάση για

την εξισωτική θεωρία την N∗
, όπου N∗

η φυσική επέκταση της N στην γλώσσα
L∗
.

Η απόδειξη της αλγεβρικής ανεξαρτησίας των y1, . . . , yn, τ1, . . . , τk, . . . δεν είναι
ένα ιδιαίτερα εύκολο ζήτημα και θα αφιερώσουμε τις επόμενες παραγράφους για

να αναπτύξουμε τα εργαλεία που χρειαζόμαστε για την επίτευξη του στόχου μας.

΄Ενα από αυτά είναι η διαφορική άλγεβρα, για να κάνουμε όμως χρήση της διαφο-

ρικής άλγεβρας χρειαζόμαστε την ισχυρότητα του συνεχούς. Το αποτέλεσμα του

προηγούμενου κεφαλαίου που μας επιτρέπει το ῾῾ πέρασμα ᾿᾿ από το διακριτό στο

συνεχές αποδεικνύεται καθοριστικής σημασίας.

3.2 Διαφορική ΄Αλγεβρα

Σε αυτό το κεφάλαιο θα κάνουμε χρήση Διαφορικής ΄Αλγεβρας για να αποδεί-

ξουμε ότι τα y1, . . . , yn, τ1, . . . , τk, . . . είναι αλγεβρικά ανεξάρτητα. Η χρήση της
διαφορικής άλγεβρας μοιάζει να είναι αναπόφευκτη. Οι προτάσεις που θα χρησι-

μοποιήσουμε είναι αρκετά ισχυρές και εκτός από την αλγεβρική ανεξαρτησία μας

δίνουν και την μορφή ῾῾ εκθετικών ᾿᾿ ή ῾῾ λογαριθμικών ᾿᾿ στοιχείων του διαφορικού

μας δακτυλίου. Αυτό, χρησιμοποιείται μαζί με την απαρίθμηση του προηγούμενου

κεφαλαίου (3.1-3.5) για να μπορέσουμε να χρησιμοποιήσουμε την επαγωγική υ-

πόθεση στο κύριο θεώρημα που θα αποδείξουμε στην συνέχεια. Ξεκινώντας από

κάτι φαινομενικά πολύ ισχυρότερο, την διαφορική ανεξαρτησία, θα ῾῾ επεκτείνουμε

᾿᾿ το διαφορικό σώμα μας δείχνοντας κάθε φορά την αλγεβρική ανεξαρτησία των

στοιχείων που προσθέτουμε.

Πριν ξεκινήσουμε την εφαρμογή ιδεών από την διαφορική άλγεβρα θα ήταν

χρήσιμο να αναφέρουμε κάποιους ορισμούς.

Ορισμός 3.2. Διαφορικός δακτύλιος R είναι ένας δακτύλιος εφοδιασμέ-
νος με μία ῾῾ παράγωγο ᾿᾿ d : R→ R έτσι που να ικανοποιεί τον κανόνα του Leibniz:

d(r1 · r2) = d(r1) · r2 + d(r2) · r1

.

Ορισμός 3.3. Διαφορικό σώμα F είναι ένα σώμα εφοδιασμένο με μία ῾῾
παράγωγο ᾿᾿ d : F → F που ικανοποιεί τον κανόνα του Leibniz.

΄Ενα φυσικό παράδειγμα διαφορικού σώματος είναι το σώμα των ρητών συναρ-

τήσεων επί των μιγαδικών σε μία μεταβλητή, εφοδιασμένο με την συνηθισμένη

παράγωγο ως προς την μεταβλητή αυτή.

Ακόμα δεν είναι δύσκολο να δει κανείς ότι η θεωρία των διαφορικών σωμάτων

απαρτίζεται από τα συνηθισμένα αξιώματα της θεωρίας σωμάτων μαζί με τα εξής

αξιώματα για την παράγωγο:

∀u∀vd(u · v) ≈ d(u) · v + d(v) · u

∀u∀vd(u+ v) ≈ d(u) + d(v)

.
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Ορισμός 3.4. Εαν F είναι διαφορικό σώμα τότε το k = {u ∈ F |d(u) = 0}
ονομάζεται το σώμα σταθερών του F .

3.3 Αλγεβρική Ανεξαρτησία

Τώρα είμαστε σε θέση να παρουσιάσουμε τα αποτελέσματα από την διαφορική

άλγεβρα που θα χρειαστούμε. Θεωρούμε ότι όλα τα σώματα έχουν χαρακτηριστική

0.

Πρόταση 3.1.

΄Εστω F,G διαφορικά σώματα (με παράγωγο ′
), F ⊆ G, που έχουν το ίδιο σώμα

σταθερών, και έστω a ∈ G υπερβατικός επί του F . Τότε:

(i)Εαν b ∈ F και a′ = b′ · a (στο G), τότε F (a) είναι κλειστό για ′
και εαν

X,Y ∈ F (a) είναι τέτοια που X ′ = Y ′ ·X τότε X = am · u και Y = m · b+ v, για
κάποιο m ∈ Z και u, v ∈ F έτσι που u′ = v′ · u.

(ii) Εαν b ∈ F − {0} και a′ = b′

b (στο G) τότε F (a) είναι κλειστό για ′
και

εαν X,Y ∈ F (a) είναι τέτοια που X ′ = Y ′ ·X τότε X = bm · u και Y = m · a+ v,
για κάποιο m ∈ Z και u, v ∈ F έτσι που u′ = v′ · u.

Πρόταση 3.2.

΄Εστω F,G διαφορικοί δακτύλιοι (με παράγωγο ′
) και F σώμα, F ⊆ G, που έχουν

το ίδιο σώμα σταθερών, ακόμα έστω a ∈ G είναι αλγεβρικός επί του F . Τότε:

(i) Εαν b ∈ F και a′ = b′ · a, τότε am = u και m · b = v για κάποιο m ∈ Z− {0}
και u, v ∈ F έτσι που u′ = v′ · v.

(ii) Εαν b ∈ F − {0} και a′ = b′

b , τότε a ∈ F .

Τώρα μπορούμε να αντιστοιχίσουμε στην ακολουθία τ1, τ2, . . . των όρων μία
ακολουθία F0, F1, . . . σωμάτων συναρτήσεων με πεδία ορισμού υποσύνολα του
R+
.

Πρώτα, για i = 1, . . . , n, έστω ότι Yi = Yi(r) είναι συναρτήσεις (R+ → R+)
πραγματικά αναλυτικές και διαφορικά ανεξάρτητες επί του R. Για παράδειγμα,
οι Y

(j)
i (η j-οστή παράγωγος της Yi) για i = 1, . . . , n, j ∈ N είναι διαφορικά

ανεξάρτητες επί του R.
Παρατήρηση:Εαν f1, f2, . . . είναι τυχαίες πραγματικά αναλυτικές και αλγεβρικά
ανεξάρτητες συναρτήσεις, και εαν η ακέραια περιοχή R[f1, f2, . . .] είναι κλειστή για
παραγώγιση, τότε το σώμα R(f1, f2, . . .) είναι με φυσικό τρόπο ένα διαφορικό σώμα
συναρτήσεων με πεδία ορισμού ανοικτά διαστήματα του R+

. Αυτό συμβαίνει διότι

εαν a, b ∈ R[f1, f2, . . .] και b δεν είναι ταυτοτικά 0, τότε η συνάρτηση a
b είναι άπειρα

παραγωγίσιμη στο σύνολο Db = {r ∈ R+|b(r) 6= 0}, και η συλλογή όλων των Db

συνόλων (όπου b ∈ R[f1, f2, . . .]) δημιουργεί ένα γνήσιο φίλτρο υποσυνόλων του
R+
. Επομένως από δω και στο εξής μπορούμε να μιλάμε για το διαφορικό σώμα

R(f1, f2, . . .) (όποτε οι f1, f2, . . . ικανοποιούν τις παραπάνω συνθήκες).
Χρησιμοποιώντας την προηγούμενη παρατήρηση, έστω ότι F−1 είναι το διαφο-

ρικό σώμα R(Y (j)
i |i = 1, . . . , n, j ∈ N). Θεωρούμε την συνάρτηση logY1(= r 7→

logY1(r)), επειδή logY1 = Y ′
i

Yi
∈ F−1 έχουμε ότι ο δακτύλιος F−1[logY1] είναι

κλειστός για παραγώγιση. Επομένως ο logY1 είναι υπερβατικός επί του F−1. Αν
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όχι, τότε από την Πρόταση 3.2(ii) θα είχαμε ότι logY1 ∈ F−1 και αυτό θα δη-

μιουργούσε μία μη-τετριμμένη διαφορική εξάρτηση μεταξύ των Y
(j)
i . ΄Αρα, έχουμε

από την Πρόταση 3.1(ii) ότι εαν X,Y είναι στοιχεία του διαφορικού σώματος
F−1(logY1) τέτοια που X ′ = Y ′X, τότε X = cY m

1 για κάποιο m ∈ Z και c ∈ R.
Εύκολα μπορούμε να δούμε ότι επαναλαμβάνοντας τα ίδια επειξηρήματα για τα

logY2, logY3, . . . , logYn αποκτούμε το διαφορικό σώμα F0 := F−1(logY1, . . . , logYn).
Για το οποίο ισχύει:

Εαν X,Y ∈ F0 και X
′ = Y ′X, τότε

X = c
n∏

i=1

Y mi
i , για c ∈ R,mi ∈ Z(i = 1, . . . , n)

΄Εστω h(y1, . . . , yn) τυχαίος όρος της L∗. Συμβολιζουμε με h την συνάρτηση
R+ → R+

που ορίζεται ως h(r) = h(Y1(r), Y2(r), . . . , Yn(r)).
Η ιδέα μας είναι να χρησιμοποιήσουμε τις παραπάνω προτάσεις για να δείξου-

με την αλγεβρική ανεξαρτησία των τi επί του F0 (που περιέχει τα Yi). Ωστόσο

αυτό δεν είναι τόσο εύκολο όπως στην περίπτωση των logYi διότι το F0[τ1], για
παράδειγμα, δεν είναι κλειστό για παραγώγιση. Λόγω της μορφής των τi(= usi

i )
είναι λογικό να προσθέσουμε στο F0 τις συναρτήσεις logui, διότι γνωρίζουμε ότι

(τi)′ = (ui
si)′ = (esi·logui)′ = (si · logui)′ ·τi, επομένως προσθέτοντας τις εν λόγω

συναρτήσεις ῾῾ κλείνουμε ᾿᾿ το σώμα ως προς την παραγώγιση και έτσι μπορούμε

να χρησιμοποιήσουμε τις Προτάσεις 3.1,3.2.

Στην συνέχεια διαχωρίζουμε κάποιες τεχνικές λεπτομέρειες των όρων pi, οι

οποίοι υπενθυμίζουμε ότι είναι είτε μεταβλητές yi ή νέα συναρτησιακά σύμβολα

που ερμηνεύονται ως ανάγωγα θετικά πολυώνυμα εκτός του 1 ή προβολών. ΄Ετσι
ορίζουμε τα εξής σύνολα:

V0 = {i ∈ N∗|pi είναι σταθερά }
V1 = {i ∈ N∗|∃j ∈ N, j ≤ n,EXP ∗ ` pi ≈ yj}
V2 = {i ∈ N∗ − (V0 ∪ V1)| για κανένα j < i δεν έχουμε EXP ∗ ` pi ≈ pj}.

Παρατηρήσεις:

1. Στην περίπτωση που i ∈ V0 έχουμε ότι pi είναι θετικός πρώτος.

2. Για κάθε j ∈ N− (V0 ∪ V1) έχουμε ότι υπάρχει j2 ∈ V2 έτσι που j2 ≤ j και
EXP ∗ ` pj ≈ pj2 .

Στην συνέχεια αποδεικνύουμε ότι τα Y1, . . . , Yn, τ1, . . . , τn είναι αλγεβρικά α-
νεξάρτητα.

Θεώρημα 3.3.

(I)i(a) Οι συναρτήσεις {τj |j ∈ N∗, j ≤ i} ∪ {loguj |j ∈ V2, j ≤ i} είναι αλγεβρικά
ανεξάρτητες επί του F0 και

(b) ο δακτύλιος που γεννάνε επί του F0 είναι κλειστός για παραγώγιση.

(II)i ΄Εστω Fi το διαφορικό σώμα F0(τ1, . . . , τi, loguj |j ∈ V2, j ≤ i) που γεν-
νάται από τις συναρτήσεις του (I)i. Εαν X,Y ∈ Fi και X

′ = Y ′ ·X, τότε:

X = c
n∏

j=1

Y
mj

j

i∏
j=1

τj
lj

∏
j≤i

j∈V2

uj
kj
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για κατάλληλους ακεραίους m1, . . . ,mn, l1, . . . , li, kj(j ≤ n, j ∈ V2) και c ∈ R.

Απόδειξη:

Με επαγωγή στο i.

• Για i = 0 το ζητούμενο ισχύει τετριμμένα.

• ΄Εστω ότι ισχύει για i ≥ 0. Δείχνουμε ότι ισχύει για i + 1. Διακρίνουμε
περιπτώσεις:

Περίπτωση 1η. i+ 1 ∈ V2.

Δείχνουμε πρώτα ότι ο logui+1 είναι υπερβατικός επί του Fi. Από τις 3.6,3.7

έχουμε ότι ui+1 = pi+1(Y1, Y2, . . . , Yn, τ1, . . . , τ i), επομένως ui+1 ∈ Fi.

Επειδή (logui+1)′ = u′i+1
ui+1
, εαν logui+1 ήταν αλγεβρικός επί του Fi, θα είχαμε

από την Πρόταση 3.2(ii) ότι logui+1 ∈ Fi. ΄Ομως u
′
i+1 = (logui+1)′ ·

ui+1, επομένως από την Επαγωγική Υπόθεση (II)i, έχουμε:

ui+1 = pi+1(Y1, . . . , Yn, τ1, . . . , τ i) = c

n∏
j=1

Y
mj

j

i∏
j=1

τ
lj
j

∏
j≤i

j∈V2

uj
kj .

για κατάλληλα mj , lj , kj ∈ Z και c ∈ R. Χρησιμοποιώντας ξανά τις 3.6,3.7,
έχουμε:

pi+1(Y1, . . . , Yn, τ1, . . . , τ i) = c
n∏

j=1

Y
mj

j

i∏
j=1

τ
lj
j

∏
j≤i

j∈V2

(pj(Y1, . . . , Yn, τ1, . . . , τ j−1))kj .

Από το (I)i(a), μπορούμε να δούμε αυτή την εξίσωση ως πολυωνυμική ταυτό-
τητα στις ῾῾ μεταβλητές ᾿᾿ Y1, . . . , Y,τ1, . . . , τi, και επειδή pi+1 είναι ανάγωγο,

μπορεί να ισχύει μία από τις εξής περιπτώσεις:

(a)EXP ∗ ` pi+1 ≈ yj , j ≤ n, j ∈ N.
(b)EXP ∗ ` pi+1 ≈ xj , j ≤ n, j ∈ N.
(c)EXP ∗ ` pi+1 ≈ pj , j ≤ n, j ∈ N.
(d) η pi+1 είναι σταθερή.

Προφανώς, οι περιπτώσεις (a), (c), (d) δεν ισχύουν επειδή το i + 1 ∈ V2.

Ακόμα το (b) είναι αδύνατο επειδή ο pi+1 δεν μπορεί να είναι κάποια προβο-

λή. Επομένως, ο logui+1 είναι υπερβατικός επί του Fi.

Χρησιμοποιώντας την Πρόταση 3.1(ii), την Επαγωγική Υπόθεση (II)i

και το γεγονός ότι ο δακτύλιος F [logui+1] είναι κλειστός για παραγώγιση
παίρνουμε το εξής:

Αν X,Y ∈ Fi(logui+1) και X ′ = Y ′ ·X, τότε

(II)i+ 1
2

X = c
n∏

j=1

Y
mj

j

i∏
j=1

τ
lj
j

∏
j≤i+1
j∈V2

uj
kj .

για κατάλληλα mj , lj , kj ∈ Z και c ∈ R.
Στη συνέχεια θα δείξουμε ότι ο τ i+1 είναι υπερβατικός επί του Fi(logui+1).
΄Εχουμε ότι

(τ i+1)′ = (usi+1
i+1 )′τ i+1.
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και

si+1logui+1 = qi+1(Y1, . . . , Yn, τ1, . . . , τ i) · logui+1 ∈ Fi(logui+1).

Επομένως, αν προς άτοπο, ο τ i+1 ήταν αλγεβρικός επί του Fi(logui+1), θα
είχαμε (χρησιμοποιώντας την Πρόταση 3.2(i), και το (II)i+ 1

2
) ότι

τm
i+1 = c

n∏
j=1

Y
mj

j

i∏
j=1

τ
lj
j

∏
j≤i+1
j∈V2

uj
kj .

Για κάποιο m ∈ Z− {0}, κατάλληλα mj , lj , kj ∈ Z και c ∈ R.
Λογαριθμίζοντας, χρησιμοποιώντας τις 3.6,3.7 και εξισώνοντας τους συντε-

λεστές του logui+1, έχουμε:

m · qi+1(Y1, . . . , Yn, τ1, . . . , τ i) = ki+1

Αυτό όμως συνεπάγεται ότι ο qi+1 είναι σταθερό πολυώνυμο, και επειδή είναι

μονώνυμο έχουμε ότι EXP ∗ ` qi+1 ≈ 1. Το τελευταίο έρχεται σε αντίφαση
με το γεγονός ότι το σύνολο Mr δεν περιέχει το μονώνυμο 1, για κάθε
r ∈ N∗

.

΄Αρα στην περίπτωση που i + 1 ∈ V2 έχουμε αποδείξει τα (I)i(a), (II)i(b)
και εύκολα βλέπουμε από τα (II)i+ 1

2
και την Πρόταση 3.1(i) ότι ισχύει

το (II)i+1.

Περίπτωση 2η. i+ 1 /∈ V2.

Σ΄ αυτή την περίπτωση έχουμε είτε (a) pi+1, επομένως η ui+1 είναι σταθερή,

είτε (b) i + 1 ∈ V1, επομένως ui+1 = Yj0 , για κάποιο j0 ∈ N∗, j0 ≤ n, ή
(c) i + 1 /∈ V0 ∪ V1, αλλά EXP

∗ ` pi+1 ≈ pj0 , για κάποιο j0 ≤ i, j0 ∈ N∗

και φυσικά μπορούμε να πάρουμε το j0 ∈ V2, επομένως ui+1 = uj0 .

Παρατηρούμε ότι σε κάθε περίπτωση ο logui+1 ∈ Fi. Επομένως, si+1logui+1

= qi+1(Y1, . . . , Yn, τ1, . . . , τi) · logui+1 ∈ Fi, και επειδή (τ i+1)′ =
(si+1logui+1)′ τ i+1, αρκεί να δείξουμε ότι ο τ i+1 είναι υπερβατικός επί του

Fi.

΄Εστω προς άτοπο, ότι ο τ i+1 είναι αλγεβρικός επί του Fi. Τότε από την

Πρόταση 3.2(i) και την Εαπγωγική Υπόθεση (II)i, έχουμε ότι:

τm
i+1 = c

n∏
j=1

Y
mj

j

i∏
j=1

τ
lj
j

∏
j≤i

j∈V2

uj
kj .

Για κάποιο m ∈ Z− {0}, κατάλληλα mj , lj , kj ∈ Z και c ∈ R.
Λογαριθμίζοντας και λαμβάνοντας υπόψη τις 3.6,3.7, έχουμε ότι:

msi+1logui+1 = logc+
n∑

j=1

mj logYj +
i∑

j=1

ljsj loguj +
∑
j≤i

j∈V2

kjuj . (3.9)

΄Εστω

V j
1 = {v ∈ V1|v ≤ i και EXP ∗ ` pv ≈ yj}, για j = 1, . . . , n
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V j
2 = {v ∈ N∗|v ≤ i και EXP ∗ ` pv ≈ pj}, για j ∈ V2, j ≤ i.

Τότε μπορόυμε να αναδιατάξουμε το άθροισμα στην 3.9 ως εξής:

msi+1logui+1 = (logc+
∑

j≤i
j∈V0

ljsj loguj) +
∑n

i=1[(logYj)·

·(mj +
∑

v∈V j
1
lvsv)] +

∑
j≤i

j∈V2

[(loguj) · (kj +
∑

v∈V j
2
lvsv)].

(3.10)

Λόγω των 3.6,3.7 κάθε sj μπορεί να γραφτεί ως πολυώνυμο στις Y1, . . . , Yn,
τ1, . . . , τ j−1 και επειδή το σύνολοA = {Y1, . . . , Yn, logY1, . . . , logYn, τ1, . . . ,
τ i, uj , loguj |j ≤ i, j ∈ V2} είναι αλγεβρικά ανεξάρτητο επί του R, μπορούμε
να εξισώσουμε τους συντελεστές στην 3.10.

Τώρα θυμόμαστε τις περιπτώσεις που διακρίναμε στην αρχή.

(a) ui+1 είναι σταθερά. Τότε η 3.10 μας δίνει:

msi+1logui+1 = logc+
∑
j≤i

j∈V0

ljsj loguj

Επειδή όμως κάθε sj που εμφανίζεται στο παραπάνω άθροισμα είναι μη-

σταθερό μονώνυμο στις Y1, Y2, . . . , Yn, τ1, . . . , τ i. Κάθε uj είναι πρώ-

τος αριθμός, και οι λογάριθμοι των πρώτων είναι γραμμικά ανεξάρτητοι

επί του Z. Η παραπάνω ισότητα μπορεί να ισχύει μόνο εαν si+1 = sj

και ui+1 = uj , για κάποιο j ≤ i (j ∈ V0). ΄Ομως τότε θα είχαμε (από
την αλγεβρική ανεξαρτησία του A) ότι EXP ∗ ` qi+1 ≈ qj ∧pi+1 ≈ pj ,

που είναι αδύνατο λόγω της 3.5.

(b) ui+1 = Yj0 , για κάποιο j0 ∈ N∗
,j0 ≤ i. Τότε η 3.10 μας δίνει:

msi+1 = mj0 +
∑

v∈V
j0
1

lvsv.

΄Οπως στην προηγούμενη περίπτωση, αυτό συνεπάγεται ότι si+1 = sv,

για κάποιο v ≤ i (v ∈ V j0
1 ), που είναι αδύνατο αφού ui+1 = uv (= Yj0

από τον ορισμό του V j0
1 ).

(c) ui+1 = uj0 , για κάποιο j0 ∈ V2,j0 ≤ i. Τότε η 3.10 μας δίνει:

msi+1 = kj0 +
∑

v∈V
j0
2

lvsv.

Ξανά, με παρόμοια επιχειρήματα όπως στην προηγούμενη περίπτωση το

παραπάνω είναι αδύνατο επειδή έρχεται σε αντίφαση με την 3.5.

Τελικά ο τ i+1 είναι υπερβατικός επί του Fi, και αυτό ολοκληρώνει την από-

δειξη του θεωρήματος.

Επανερχόμαστε τώρα στην απόδειξη του Θεωρήματος 3.2.

Θεώρημα 3.2.

΄Εστω f, g όροι της L έτσι που N |= f ≈ g. Τότε EXP ∗ ` f ≈ g.
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Απόδειξη:

΄Εστω f, g όροι της L, οι οποίοι περιέχουν τις y1, . . . , yn και για τους οποίους

ισχύει N |= f ≈ g. Τότε, επειδή οι νόμοι στους φυσικούς και τους πραγματι-
κούς είναι οι ίδιοι έχουμε ότι R+ |= f ≈ g. ΄Εστω ρf , ρg αυστηρά θετικά πο-

λυώνυμα τέτοια που EXP ∗ ` f ≈ tρf
(y1, . . . , yn, τ1, . . . , τm) και EXP ∗ ` g ≈

tρg
(y1, . . . , yn, τ1 . . . , τm′) (όπως στο Θεώρημα 3.1).
Επειδή R+ |= EXP , έχουμε ότι R+ |= tρf

(y1, . . . , yn, τ1, . . . , τm) ≈ tρg (y1, . . . ,
yn, τ1 . . . , τm′). Επομένως τρf

(Y1, . . . , Yn, τ1, . . . , τm) = τρg (Y1, . . . , Yn, τ1, . . . ,
τm′). Από το Θεώρημα 3.3, έχουμε ότι Y1, . . . , Yn, τ1, . . . , τm′′ (όπου m′′ =
max{m,m′}), συνεπώς R+ |= tρf

≈ tρg
. Επειδή η παραπάνω, είναι εξίσωση όρων

που δεν περιέχουν το σύμβολο exp και είναι ταυτότητα στους θετικούς πραγμα-
τικούς (άρα και στους φυσικούς) έχουμε ότι, EXP ∗ ` tρf

≈ tρg
, άρα EXP `

tρf
(y1, . . . , yn, τ1, . . . , τm) ≈ tρg (y1, . . . , yn, τ1 . . . , τm′). Και EXP ` f ≈ g.
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Κεφάλαιο 4

Εξωτικοί Κανόνες

Στο παρόν κεφάλαιο ακολουθούμε την απόδειξη του A.J. Wilkie αποδεικνύοντας
ότι υπάρχουν εξωτικοί κανόνες ως προς τις ισότητες στους φυσικούς.

4.1 Υπολογισμός αναπαράστασης

Υπολογίζουμε μία αναπαράσταση του όρου f0 σύμφωνα με το Θεώρημα 3.1.
Χωρίς βλάβη της γενικότητας μπορούμε να υποθέσουμε ότι η απαρίθμηση που κα-

τασκευάσαμε ξεκινάει ως εξής:

p1 = tρ(x) (όπου ρ είναι το θετικό πολυώνυμο x 7→ x2 − x+ 1),q1 = y
p2 = (x+ 1), q2 = x
p3 = (x2 + x+ 1), q3 = x
p4 = (x2 + x3), q4 = y
p5 = (x+ 1), q5 = y
p6 = (x2 + x+ 1), q6 = y
p7 = (x5 + x6), q7 = x
p8 = x1, q8 = x.

Σύμφωνα με την παραπάνω απαρίθμηση, υπολογίζουμε τις ακολουθίες όρων u, s, τ ,
κι έχουμε:

u1 = tρ(x), s1 = y, τ1 = tρ(x)y

u2 = (x+ 1), s2 = x, τ2 = (x+ 1)x

u3 = (x2 + x+ 1), s3 = x, τ3 = (x2 + x+ 1)x

u4 = (τ2 + τ3), s4 = y, τ4 = ((x+ 1)x + (x2 + x+ 1)x)y

u5 = (x+ 1), s5 = y, τ5 = (x+ 1)y

u6 = (x2 + x+ 1), s6 = y, τ6 = (x2 + x+ 1)y

u7 = (τ5 + τ6), s7 = x, τ7 = ((x+ 1)y + (x2 + x+ 1)y)x

u8 = τ1, s8 = x, τ8 = (tρ(x)y)x
.

Τώρα μπορούμε να αναπαραστήσουμε τον όρο f0 με ένα θετικό πολυώνυμο. ΄Ε-
χουμε:

f0 = ((x+1)x +(x2 +x+1)x)y((x3 +1)y +(x4 +x2 +1)y)x = ((x+1)x +(x2 +
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x+ 1)x)y((x+ 1)y + (x2 + x+ 1)y)x(tρ(x)y)x = τ4τ7τ8

Παρατήρησεις:

1. Αν η απαρίθμηση ήταν διαφορετική τότε και το πολυώνυμο που θα αναπαρι-

στούσε τον όρο f0 θα ήταν διαφορετικό, ωστόσο η μορφή του θα παρέμενε
η ίδια, δηλαδή θα ήταν μονώνυμο με τρεις παράγοντες.

2. Για την συγκεκριμένη απαρίθμηση η αναπαράσταση είναι μοναδική σύμφωνα

με το Θεώρημα 3.3.

4.2 Αφαιρώντας ένα αξίωμα

Το επομένο λογικό βήμα είναι να ψάξουμε για ένα μοντέλο της EXP που δεν ικα-
νοποιεί την ισότητα f0 ≈ g0. Γνωρίζοντας ότι υπάρχει ένα μοντέλο μιάς λιγότερο
ισχυρής θεωρίας, της EXP χωρίς το αξίωμα 1.8, που δεν ικανοποιεί την εν λόγω
ισότητα, αρκεί να δείξουμε ότι εαν EXP ` f0 ≈ g0 τότε EXP

− ` f0 ≈ g0, όπου
με EXP−

συμβολίζουμε την πιο ῾῾ αδύναμη ᾿᾿ θεωρία.

Για την απόδειξη θα χρειαστούμε μία πλειάδα νέων λημμάτων. Στο τέλος

θα είμαστε σε θέση να δείξουμε ότι σε μία απόδειξη της ισότητας f0 ≈ g0 δεν
χρειαζόμαστε ουσιαστικά το αξίωμα 1.8 και αυτό μας εξασφαλίζει το ζητούμενο.

Λήμμα 4.1.

(i)Εαν m, r, k ∈ N και m = rk
τότε EXP− ` m ≈ rk

.

(ii) Εαν f είναι όρος της L και k ∈ N και N |= f ≈ k τότε EXP− ` f ≈ k.
(iii)Για f, g, h όρους της L και k ∈ N εαν είτε N |= f ≈ k ή N |= g ≈ k ή
N |= h = 1 τότε EXP− ` (hg)f ≈ h(gf)

.

Απόδειξη:

(i)Με επαγωγή στο k.

• Για k = 1 έχουμε ότι m = r και EXP− ` r = r1 (αξίωμα 1.5(i))

• ΄Εστω ότι ισχύει για k, δηλαδή εαν p = rk
τότε EXP− ` p ≈ rk

. Δείχνουμε

ότι ισχύει για k+1. ΄Εστωm = rk+1
τότεm = p·r και έχουμε στην EXP−

:

1.rk+1 ≈ rk · r1 1.7
2.rk+1 ≈ rk · r 1.5(i)
3.rk+1 ≈ p · r Ε.Υ

4.rk+1 ≈ m 1.1− 1.4.

(ii)Με επαγωγή στον όρο f .

• Εαν f είναι η σταθερά 1 τότε 1 ∈ N και N |= 1 ≈ 1 και EXP− ` 1 ≈ 1 ως
λογικό αξίωμα.

• Εαν f είναι μεταβλητή τότε το ζητούμενο ισχύει τετριμμένα αφού για κανένα
φυσικό k δεν ισχύει N |= f ≈ k.

Για την επόμενη περίπτωση θα χρειαστούμε τα εξής υπολήμματα:

Υπολήμμα 4.1.1.

Αν N 6|= f ≈ m για κάθε m ∈ N τότε για κάθε k ∈ N υπάρχει αποτίμηση u τέτοια
που u(f) > k.
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Απόδειξη:

Με επαγωγή στον όρο f .

• ΄Εστω f η σταθερά 1 τότε N |= f ≈ 1 και το ζητούμενο ισχύει τετριμμένα.

• ΄Εστω f είναι η μεταβλητή x τότε για τυχαίο k ∈ N επιλέγουμε την αποτίμηση
που δίνει τιμή k + 1 στην μεταβλητή x και έχουμε το ζητούμενο.

• ΄Εστω f της μορφής h+g όπου για τους h, g ισχύει το ζητούμενο και ακόμα
N 6|= h+ g ≈ m για κάθε m ∈ N. Τότε ισχυριζόμαστε ότι για τουλάχιστον
έναν από τους δύο όρους h, g ισχύει ότι N 6|= h ≈ k για κάθε k ∈ N.
Πράγματι, αν όχι, τότε ισχύει N |= h ≈ k και N |= g ≈ l για κάποια k, l ∈ N.
Επομένως N |= h+ g ≈ k+ l και εύκολα N |= f ≈ m για m = k+ l, άτοπο.

Επομένως χωρίς βλάβη της γενικότητας υποθέτουμε ότι αυτό που δείξαμε

ισχύει για τον h. Συνεπώς από την Επαγωγική Υπόθεση έχουμε ότι υπάρχει
αποτίμηση έτσι που για τυχαίο k ∈ N u(h) > k και εύκολα u(h+ g) > k.

• ΄Ομοια εαν f είναι της μορφής h · g.

• ΄Εστω f είναι της μορφής hg
όπου για τους h, g ισχύει το ζητούμενο και

ακόμα N 6|= hg ≈ m για κάθε m ∈ N τότε εύκολα μπορούμε να δείξουμε
ότι N 6|= h ≈ 1 και N 6|= h ≈ k ή N 6|= g ≈ l. Επομένως χωρίς βλάβη
της γενικότητας μπορούμε να υποθέσουμε ότι N 6|= g ≈ l επομένως από την
Επαγωγική Υπόθεση έχουμε ότι υπάρχει αποτίμηση u έτσι που για τυχαίο
k, u(g) > k και χρησιμοποιώντας ότι N 6|= h ≈ 1 έχουμε ότι u(hg) > k.

Υπολήμμα 4.1.2.

Αν N |= h+ g ≈ k για κάποιο k ∈ N τότε υπάρχουν m, r ∈ N έτσι που m+ r = k
και N |= h ≈ m και N |= g ≈ r.

Απόδειξη:

Αρχικά είναι εύκολο να δούμε ότι για κάποια m, r ισχύει N |= h ≈ m και N |= g ≈
r. Αν όχι, τότε N 6|= h ≈ m και από το Υπολήμμα 4.1.1 έχουμε ότι υπάρχει
αποτίμηση έτσι που u(h) > k επομένως και u(h+ g) > k που είναι άτοπο.

Στη συνέχεια υποθέτουμε προς άτοπο ότι m + r = n 6= k. Τότε έχουμε
N |= h+ g ≈ m+ r επομένως εύκολα N |= h+ g ≈ n και από την υπόθεση έχουμε
N |= h+ g ≈ k , άτοπο.

Τώρα είμαστε σε θέση να προχωρήσουμε την επαγωγή μας.

• ΄Εστω f της μορφής h + g όπου για τους h, g ισχύει το ζητούμενο και
N |= h+ g ≈ k. Τότε από Υπολήμμα 4.1.2 N |= h ≈ m και N |= g ≈ r
όπου m+ r = k. Επομένως από την Επαγωγική Υπόθεση έχουμε EXP− `
h ≈ m και EXP− ` g ≈ r άρα EXP− ` h+ g ≈ m+ r. Από τα αξιώματα
1.1− 1.4 έχουμε ότι EXP− ` h+ g ≈ k.

• ΄Ομοια εαν f της μορφής h · g.

• ΄Εστω f της μορφής hg
και N |= hg ≈ k. Τότε διακρίνουμε περιπτώσεις:
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1. k > 1. Τότε N |= h ≈ m και N |= g ≈ r όπου mr = k. Επομένως
EXP− ` h ≈ m και EXP− ` g ≈ r άρα EXP− ` hg ≈ mr

και από

το (i) EXP− ` mr ≈ k. Συνεπώς EXP− ` hg ≈ k.

2. k = 1 και N |= hg ≈ 1. Τότε N |= h ≈ 1, (Αν όχι, τότε N |= h 6≈ 1
επομένως υπάρχει αποτίμηση u έτσι που u(h) 6= 1. Ακόμα έχουμε
u(g) = µ, όπου m ∈ N και u(h) = λ, όπου λ ∈ N − {0}. Τέλος, για
κανένα τέτοιο λ, µ δεν έχουμε λµ = 1 και το ζητούμενο έπεται.) άρα
από Επαγωγική Υπόθεση έχουμε EXP− ` h ≈ 1 και EXP− ` hg ≈
1g
και επειδή EXP− ` 1g ≈ 1 έχουμε EXP− ` hg ≈ 1.

(iii)Δείχνουμε την περίπτωση που N |= g ≈ k. Με επαγωγή στο k.

• Για k = 1 έχουμε N |= g ≈ 1 επομένως από το (ii) EXP− ` g ≈ 1 και
EXP− ` hg ≈ h1

. ΄Αρα EXP− ` hg ≈ h συνεπώς EXP− ` (hg)f ≈ hf
.

Ακόμα EXP− ` g · f ≈ 1 · f επομένως EXP− ` g · f ≈ f . ΄Αρα EXP− `
h(g·f) ≈ hf

και τελικά EXP− ` (hg)f ≈ h(g·f)
.

• ΄Εστω ότι ισχύει για k. Δείχνουμε ότι ισχύει για k+1. ΄Εστω N |= g ≈ k+1.
Τότε από το (ii) έχουμε ότι EXP− ` g ≈ k + 1 επομένως EXP− `
hg ≈ hk+1

και EXP− ` hk+1 ≈ hk · h1
. ΄Αρα EXP− ` hg ≈ hk · h,

συνεπώς EXP− ` (hg)f ≈ (hk+1)f
και EXP− ` (hk+1)f ≈ (hk · h)f

.

Ακόμα EXP− ` (hk ·h)f ≈ (hk)f ·hf
και από Επαγωγική Υπόθεση έχουμε

EXP− ` h(k·f) · hf ≈ (hk)f · hf
και EXP− ` h(k·f) · hf ≈ h(k·f)+f

και

EXP− ` h(k·f)+f ≈ hf(k+1)
. Συνεπώς EXP− ` (hk+1)f ≈ h(k+1)·f

.

Στη συνέχεια θα εργαστούμε στα πλαίσια της θεωρίας αποδείξεων δεδομένου ότι

η κεντρική ιδέα μας είναι ότι μπορούμε να αντικαταστήσουμε τυχαία απόδειξη της

εξίσωσης f0 ≈ g0 από το EXP με μία από το EXP
−
. Γι΄ αυτό το λόγο γίνομαστε

πιο συγκεκριμένοι σχετικά με τις τυπικές αποδείξεις. Θα βλέπουμε μία τυπική α-

πόδειξη, I, ως ένα πεπερασμένο δέντρο του οποίου κάθε κορυφή είναι μία εξίσωση
της L. Οι μεγιστικές κορυφές είναι αξιώματα ή εξισώσεις της μορφής f ≈ f και
έχουμε τους εξής κανόνες:

f ≈ g
(= C)

g ≈ f

f ≈ g g ≈ h
(= M)

f ≈ h
f1 ≈ f2 g1 ≈ g2

(+I)
(f1 + g1) ≈ (f2 + g2)

f1 ≈ f2 g1 ≈ g2
(·I)

(f1 · g1) ≈ (f2 · g2)
f1 ≈ f2 g1 ≈ g2

(EI)
(fg1

1 ) ≈ (fg2
2 )

Οι επόμενοι ορισμοί είναι τεχνικοί αλλά μεγάλης σημασίας αφού διαχωρίζουν τις

ουσιαστικές εφαρμογές του κανόνα (EI) καθώς και τις ουσιαστικές εμφανίσεις ό-
ρων σε άλλους όρους. Αυτό θα μας φανεί ιδιαίτερα χρήσιμο στην συνέχεια όπου θα

μπορέσουμε να αντικαταστήσουμε όλο το ῾῾ κλαδί ᾿᾿ της απόδειξης που καταλήγει

σε έναν μη ουσιαστικό κανόνα (EI) με μία απόδειξη από το EXP−
.

Ορισμός 4.1. Μία εφαρμογή του κανόνα (EI) καλείται ανούσια εαν N |=
f1 ≈ 1.

Ορισμός 4.2. Μία μεγιστική κορυφή μιάς απόδειξης, I, καλείται ουσιαστική
αν καμία ανούσια εφαρμογή του κανόνα (EI) δεν γίνεται πιο κάτω από αυτή στην
I
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Ορισμός 4.3. Εαν u, f είναι όροι της L τότε οριζουμε την έννοια ο u εμφα-
νίζεται ουσιαστικά στον f ως εξής (αναδρομικά):
u εμφανίζεται ουσιαστικά στην σταθερα 1 αν-ν ο u είναι η σταθερα 1.
u εμφανίζεται ουσιαστικά στην μεταβλητή x αν-ν ο u είναι η μεταβλητή x.
u εμφανίζεται ουσιαστικά στον όρο h+ g αν-ν ο u είναι ο h+ g ή ο u εμφανίζεται
ουσιαστικά στον h ή στον g.
u εμφανίζεται ουσιαστικά στον όρο h · g αν-ν u είναι ο h · g ή ο u εμφανίζεται
ουσιαστικά στον h ή στον g.
u εμφανίζεται ουσιαστικά στον hg

αν-ν N 6|= h ≈ 1 και ο u είναι ο hg
ή ο u

εμφανίζεται ουσιαστικά στον h ή στον g.

Παρατήρηση:Θα μπορούσαμε πιό απλά να πούμε ότι ο u είναι υποόρος του f .
Αυτό δεν το κάνουμε διότι θέλουμε να κρατήσουμε ένα ουσιαστικό χαρακτηριστικό

των γνήσιων υποόρων ῾῾ πολυωνύμων ᾿᾿ με θετικούς συντελεστές, δηλαδή ότι οι

τιμές τους είναι μικρότερες από αυτές των όρων στους οποίους ανήκουν, κάτι που

γίνεται ακόμα πιο έντονο αν επιτρέψουμε εκθετικοποίηση.

Λήμμα 4.2.

΄Εστω I απόδειξη του f ≈ g (της L) και e ≈ h ουσιαστική μεγιστική κορυφή της
I. Τότε υπάρχει όρος f∗ της L έτσι που N |= f ≈ f∗ και είτε N |= e ≈ 1 ή e
εμφανίζεται ουσιαστικά στον f∗.

Απόδειξη:

Με επαγωγή στο ύψος της απόδειξης.

• Βάση. ΄Εστω ότι f ≈ g είναι αξίωμα ή της μορφής f ≈ f . Τότε είναι και η
μόνη ουσιαστική μεγιστική κορυφή και αν f δεν είναι της μορφής 1h

(όπου

σε αυτή την περίπτωση N |= f ≈ 1 ) επιλέγω ως f∗ τον ίδιο τον f και έχουμε
N |= f ≈ f και f εμφανίζεται ουσιαστικά στον f .

• ΄Εστω ότι ισχύει για κάθε απόδειξη ύψους ≤ n. Δείχνουμε ότι ισχύει για κά-
θε απόδειξη ύψους n+1. Διακρίνουμε περιπτώσεις ανάλογα με τον τελευταίο
κανόνα.

I
D

f ≈ g
(= C)

g ≈ f

.

Σ΄ αυτή την περίπτωση παρατηρούμε ότι οι ουσιαστικές μεγιστικές κο-

ρυφές παραμένουν οι ίδιες. Ακόμα για τον όρο e κάποιας ουσιαστικής
μεγιστικής κορυφής της μορφής e ≈ h ισχύει είτε N |= e ≈ 1 ή εμφα-
νίζεται ουσιαστικά σε κάποιον όρο f∗ τέτοιον που N |= f∗ ≈ f . ΄Ομως
επειδη N |= f ≈ g έχουμε ότι N |= f∗ ≈ g και σε κάθε περίπτωση
μπορούμε να πάρουμε ως g∗ τον f∗.

I
D1

f ≈ g

D2

g ≈ h
(= M)

f ≈ h

.

Σ΄ αυτή την περίπτωση οι ουσιαστικές μεγιστικές κορυφές είναι αυτές

της D1 και αυτές της D2. Εαν e είναι όρος μεγιστικής κορυφής της D1

τότε είτε N |= e ≈ 1 ή e εμφανίζεται ουσιαστικά στον f∗ όπου N |=
f∗ ≈ f επομένως το ζητούμενο έπεται από την Επαγωγική Υπόθεση.
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Εαν e είναι όρος μεγιστικής κορυφής της D2 τότε είτε N |= e ≈ 1 ή e
εμφανίζεται ουσιαστικά στον h∗ όπου N |= h∗ ≈ h. ΄Ομως N |= f ≈ h
επομένως N |= h∗ ≈ f και το ζητούμενο έπεται για f∗ τον όρο h∗.

I
D1

f1 ≈ f2

D2

g1 ≈ g2
(+I)

(f1 + g1) ≈ (f2 + g2)
.

Σ΄ αυτή την περίπτωση οι ουσιαστικές μεγιστικές κορυφές είναι αυτές

της D1 και αυτές της D2. Εαν e είναι όρος μεγιστικής κορυφής από
την D1 τότε ο e εμφανίζεται ουσιαστικά στον f

∗
1 . Αν e είναι όρος

μεγιστικής κορυφής από την D2 τότε e εμφανίζεται ουσιαστικά στον
g∗1 . Επομένως επιλέγοντας ως (f1 + g1)∗ τον όρο (f∗1 + g∗1) έχουμε ότι
e εμφανίζεται ουσιαστικά στον (f∗1 + g∗1).

I
D1

f1 ≈ f2

D2

g1 ≈ g2
(·I)

(f1 · g1) ≈ (f2 · g2)
.

΄Ομοια με την προηγούμενη περίπτωση.

I
D1

f1 ≈ f2

D2

g1 ≈ g2
(EI)

(fg1
1 ) ≈ (fg2

2 )
.

Εδώ διακρίνουμε περιπτώσεις:

1. Αν N |= f1 ≈ 1 τότε δεν έχουμε καμία ουσιαστική μεγιστική
κορυφή αφού η απόδειξή μας καταλήγει με ανούσια εφαρμογή του

(EI).

2. Αν N 6|= f1 ≈ 1 τότε οι ουσιαστικές μεγιστικές κορυφές είναι αυτές
των D1 και D2 και ισχύουν τα ίδια με την περίπτωση (+I).

Το επόμενο αντιπαράδειγμα κάνει σαφές ότι η μεγιστική κορυφή πρέπει να είναι ου-

σιαστική διαφορετικά το προηγούμενο Λήμμα αποτυγχάνει. ΄Εστω η εξής απόδειξη:

Αξίωμα

1 ≈ 1

Αξίωμα

x2 + x ≈ x+ x2

(EI)
1x2+x ≈ 1x+x2

Θα δείξουμε ότι δεν υπάρχει όρος f∗ τέτοιος που N |= f∗ ≈ 1x2+x
και x2 + x

εμφανίζεται ουσιαστικά στον f∗. Πράγματι, με επαγωγή στον όρο f∗

• Αν f∗ είναι η σταθερά 1 τότε ο x2 + x δεν εμφανίζεται ουσιαστικά σ΄ αυτή.

• Αν f∗ είναι μεταβλητή τότε N 6|= f∗ ≈ 1 και το ζητούμενο ισχύει τετριμμένα.

• Αν f∗ της μορφής h+ g τότε N 6|= f∗ ≈ 1.

• Αν f∗ είναι της μορφής h · g τότε N |= h ≈ 1 και N |= g ≈ 1 και από την
Επαγωγική Υπόθεση ο x2 +x δεν εμφανίζεται ουσιαστικά στους h, g επίσης
δεν είναι της μορφής h · g επομένως δεν εμφανίζεται ουσιαστικά στον f∗.

• Αν f∗ της μορφής hg
τότε N |= h ≈ 1 και x2 +x δεν εμφανίζεται ουσιαστικά

στον f∗.
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Το επόμενο Λήμμα βρίσκεται στην ῾῾ καρδιά ᾿᾿ της απόδειξής μας και μας δίνει μία

προσέγγιση των τιμών ενός μη σταθερού υποόρου σε σχέση με αυτές του όρου

στον οποίο εμφανίζεται ουσιαστικά.

Λήμμα 4.3.

΄Εστω u(x, y), f(x, y) όροι της L. Τότε:
(i)∀m1,m2 ∈ N− {1} αν N 6|= f ≈ 1 τότε f(m1,m2) ≥ 2.
(ii)∃i ∈ {1, 2} τέτοιο που για κάθε m1,m2 ∈ N− {1} αν f δεν είναι σταθερά τότε
f(m1,m2) ≥ mi.

(iii)΄Εστω ότι u εμφανίζεται ουσιαστικά στον f και u δεν είναι σταθερα. Τότε είτε
(α)∃i ∈ {1, 2} έτσι που για αρκετα μεγάλα m1,m2 ∈ N,
f(m1,m2) ≥ u(m1,m2)

√
mi ή

(β) υπάρχουν όροι v, h τέτοιοι που είτε N |= f ≈ (v · u) + h ή N |= f ≈ v · u.

Απόδειξη:

(i)Με επαγωγή στον όρο f .

• ΄Εστω ότι ο f είναι η σταθερά 1. Τότε N |= f ≈ 1 επομένως το ζητούμενο
ισχύει τετριμμένα.

• ΄Εστω ότι ο f είναι μεταβλητή. Τότε είναι είτε η x ή η y, χωρίς βλάβη της
γενικότητας επιλέγουμε να είναι η x. Τότε N 6|= x ≈ 1 και f(m1,m2) = m1

όμως m1 ≥ 2, άρα ισχύει το ζητούμενο.

• ΄Εστω ότι ο f είναι της μορφής h + g, όπου για τους όρους h, g ισχύει το
ζητούμενο. Τότε διακρίνουμε περιπτώσεις:

1. ΄Εστω N |= h ≈ 1 και N |= g ≈ 1. Τότε f = h+ g = f + g = 1 + 1 =
2 ≥ 2.

2. Τουλάχιστον για έναν από τους δύο όρους, έστω για τον g, ισχύει
N 6|= g ≈ 1. Τότε από την Επαγωγική Υπόθεση έχουμε g(m1,m2) ≥ 2
άρα και h+ g(m1,m2) ≥ 2.

• ΄Εστω ότι f είναι της μορφής h · g, όπου για τους όρους h, g ισχύει το
ζητούμενο. Πάλι διακρίνουμε περιπτώσεις:

1. ΄Εστω N |= h ≈ 1 και N |= g ≈ 1. Τότε N |= f ≈ 1 και το ζητούμενο
ισχύει τετριμμένα.

2. Τουλάχιστον για έναν από τους δύο όρους, έστω για τον g, ισχύει
N 6|= g ≈ 1. Τότε από την Επαγωγική Υπόθεση έχουμε g(m1,m2) ≥ 2,
άρα και h · g(m1,m2) ≥ 2.

• ΄Εστω ότι f είναι της μορφής hg
, όπου για τους h, g ισχύει το ζητούμενο.

Διακρίνουμε περιπτώσεις:

1. ΄Εστω N |= h ≈ 1. Τότε N |= hg ≈ 1, επομένως το ζητούμενο ισχύει
τετριμμένα.

2. ΄Εστω N 6|= h ≈ 1. Τότε από την Επαγωγική Υπόθεση έχουμε h(m1,m2)
≥ 2, επομένως και hg(m1,m2) ≥ 2.
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(ii)Με επαγωγή στον όρο f .

• ΄Εστω ότι ο f είναι η σταθερά 1. Τότε f είναι σταθερή και το ζητούμενο
ισχύει τετριμμένα.

• ΄Εστω ότι ο f είναι μεταβλητή, χωρίς βλάβη της γενικότητας επιλέγουμε να
είναι η x. Τότε f(m1,m2) = m1 ≥ m1.

• ΄Εστω ότι ο f είναι της μορφής h+ g, όπου για τους h, g ισχύει το ζητούμε-
νο.Τότε διακρίνουμε περιπτώσεις:

1. Αν h, g είναι σταθερές, τότε f είναι σταθερά και το ζητούμενο ισχύει
τετριμμένα.

2. Τουλάχιστον μία από τις δύο, έστω η h δεν είναι σταθερή. Τότε α-
πό την Επαγωγική Υπόθεση έχουμε ότι υπάρχει i ∈ {1, 2} έτσι που
h(m1,m2) ≥ mi επομένως και h+ g(m1,m2) ≥ mi.

• ΄Ομοια εαν f είναι της μορφής h · g.

• Επίσης όμοια εαν f είναι της μορφής hg
.

(iii)Με επαγωγή στον όρο f .

• ΄Εστω ότι ο f είναι η σταθερά 1. Τότε u είναι επίσης η σταθερά 1 και u είναι
σταθερή.

• ΄Εστω ότι ο f είναι μεταβλητή, χωρίς βλάβη της γενικότητας επιλέγουμε να
είναι η x. Τότε επίσης ο όρος u είναι η μεταβλητή x και επομένως u δεν είναι
σταθερή. Εύκολα μπορούμε να διαπιστώσουμε ότι ισχύει το (b) επιλέγοντας
ως όρο v τη σταθερά 1 και έχουμε N |= x ≈ x · 1.

• ΄Εστω ότι ο f είναι της μορφής h + g, όπου για τους όρους h, g ισχύει το
ζητούμενο. Τότε διακρίνουμε περιπτώσεις:

1. Αν u είναι ο h+ g, τότε εύκολα ισχύει το (b) επιλέγοντας πάλι ως v τη
σταθερά 1.

2. Αν u εμφανίζεται ουσιαστικά σε κάποιον από τους δύο όρους, έστω
στον h, τότε αν από την Επαγωγική Υπόθεση ισχύει το (a) έχουμε ότι
υπάρχει i ∈ {1, 2} έτσι που για αρκετά μεγάλα m1,m2 h(m1,m2) ≥
u(m1,m2)

√
mi . Επομένως και h+ g(m1,m2) ≥ u(m1,m2)

√
mi .

Αν ισχύει το (b) τότε υπάρχουν όροι v, h1 έτσι που είτε N |= h ≈ v · u
ή N |= h ≈ v · u+ h1, οπότε επιλέγοντας ως v, h1 τους όρους v, g και
v, h1 + g αντίστοιχα έχουμε το ζητούμενο.

• ΄Εστω ότι ο f είναι της μορφής h · g, όπου για τους όρους h, g ισχύει το
ζητούμενο. Τότε διακρίνουμε περιπτώσεις:

1. Αν u είναι ο h · g, τότε εύκολα ισχύει το (b) επιλέγοντας ως v τη
σταθερά 1.
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2. Αν u εμφανίζεται ουσιαστικά σε κάποιον από τους δύο όρους, έστω
στον h, τότε αν από την Επαγωγική Υπόθεση ισχύει το (a), έχουμε
ότι υπάρχει i ∈ {1, 2} έτσι που για αρκετά μεγάλαm1,m2 h(m1,m2) ≥
u(m1,m2)

√
mi . Επομένως και h · g(m1,m2) ≥ u(m1,m2)

√
mi .

Αν ισχύει το (b). Τότε υπάρχουν όροι v, h1 έτσι που είτε N |= h ≈ v ·u
ή N |= h ≈ v ·u+h1. Επομένως, επιλέγοντας ως v, h1 τους όρους v · g
και v · g, h1 · g αντίστοιχα έχουμε το ζητούμενο.

• ΄Εστω ότι ο f είναι της μορφής hg
και u εμφανίζεται ουσιαστικά στον f

(οπότε θα έχουμε N 6|= h ≈ 1). Εαν u είναι ο hg
τότε όπως και στις

προηγούμενες περιπτώσεις ισχύει το (b) επιλέγοντας ως v τη σταθερά 1.
Διακρίνουμε περιπτώσεις:

1. Εαν u εμφανίζεται ουσιαστικά στον h τότε αν ισχύει το (a) έχουμε
ότι ∃i ∈ {1, 2} τέτοιο που για αρκετά μεγάλα m1,m2 h(m1,m2) ≥
u(m1,m2)

√
mi και hg(m1,m2) ≥ u(m1,m2)

√
mi .

Εαν ισχύει το (b) τότε υπάρχουν όροι v, h1 έτσι που είτε N |= h ≈ v ·u
ή N |= h ≈ v · u + h1. Διακρίνουμε επιπλέον περιπτώσεις ανάλογα με

το αν η g είναι σταθερή ή όχι. Στην περίπτωση που η g είναι σταθερή,
έστω η k, έχουμε ότι ισχύει το (b) με v, h1 τους όρους u

k−1 · vk
και

(v · u+ h1)k−1 · v, h1 · (v · u+ h1)k−1
αντίστοιχα.

Στην περίπτωση που η g δεν είναι σταθερή. Τότε από το (ii) ∃i ∈ {1, 2}
έτσι που g(m1,m2) ≥ mi, επομένως είτε hg(m1,m2) =
v · u(m1,m2)g(m1,m2) ≥ u(m1,m2)g(m1,m2) ≥ u(m1,m2)mi ≥
u(m1,m2)

√
mi ή hg(m1,m2) =

(v · u+ h1)(m1,m2)g(m1,m2) ≥ u(m1,m2)g(m1,m2) ≥ u(m1,m2)mi ≥
u(m1,m2)

√
mi . Συνεπώς ισχύει το (a).

2. Εαν u εμφανίζεται ουσιαστικά στον g και επειδή N 6|= h ≈ 1 από το
(i) έχουμε ότι h(m1,m2)g(m1,m2) ≥ 2g(m1,m2). Επομένως αν ισχύει το

(a) έχουμε hg(m1,m2) ≥ 2u(m1,m2)
√

mi ≥ u(m1,m2)
√

mi , άρα ισχύει

και πάλι το (a).
Στην περίπτωση που ισχύει το (b), έχουμε ότι g(m1,m2) ≥ u(m1,m2).

Επομένως, επειδή 2
√

u ≥ u έχουμε h
g
≥ 2u ≥ u

√
u
και επειδή u

√
u ≥

u
√

mi
έχουμε το ζητούμενο.

Στη συνέχεια θα δείξουμε ότι κανένας όρος της L δεν είναι ίσος με τον (x2 −
x + 1)x·y

, αφού πρώτα αποδείξουμε ένα Λήμμα που σιωπηρά χρησιμοποιούμε σε

όλο το κεφάλαιο.

Λήμμα 4.4.

΄Εστω u(x, y) όρος της L. Τότε ∀m1,m2 ∈ N, u(m1,m2) ≥ 1.

Απόδειξη:

Με επαγωγή στον όρο u.

• ΄Εστω ότι ο u είναι η σταθερά 1. Τότε u(m1,m2) = 1.
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• ΄Εστω ότι ο u είναι μεταβλητή, χωρίς βλάβη της γενικότητας επιλέγουμε να
είναι η x. Τότε u(m1,m2) = m1 και m1 ≥ 1.

• ΄Εστω ότι ο u είναι της μορφής f+g, όπου για τους f, g ισχύει το ζητούμενο.
Τότε u(m1,m2) = f + g(m1,m2) = f(m1,m2)+g(m1,m2) ≥Ε.Υ 1+1 ≥ 1.

• ΄Εστω ότι ο u είναι της μορφής f ·g, όπου για τους f, g ισχύει το ζητούμενο.
Τότε u(m1,m2) = f · g(m1,m2) = f(m1,m2) · g(m1,m2) ≥Ε.Υ 1 · 1 ≥ 1.

• Εστω ότι ο u είναι της μορφής fg
, όπου για τους f, g ισχύει το ζητούμενο.

Τότε u(m1,m2) = fg(m1,m2) = f(m1,m2)g(m1,m2) ≥Ε.Υ 11 ≥ 1.

Λήμμα 4.5.

΄Εστω f(x, y) όρος της L και f(1, 2) = 1. Τότε για κάποιο όρο g της L,

N |= f ≈ xg
ή N |= f ≈ 1.

Απόδειξη:

Με επαγωγή στον όρο f .

• ΄Εστω ότι ο f είναι η σταθερά 1. Τότε f(1, 2) = 1 και N |= f ≈ 1

• ΄Εστω ότι ο f είναι μεταβλητή. Τότε εαν είναι η μεταβλητη x έχουμε
f(1, 2) = 1 και επιλέγοντας ως g την σταθερά 1 έχουμε N |= f ≈ x1

. Εαν

f είναι η μεταβλητή y τότε f(1, 2) = 2 και το ζητούμενο ισχύει τετριμμένα.

• ΄Εστω ότι ο f είναι της μορφής h+v όπου για τους h, v ισχύει το ζητούμενο.
Τότε από το Λήμμα 4.4 έχουμε h+ v(1, 2) ≥ 2 επομένως το ζητούμενο
ισχύει τετριμμένα.

• ΄Εστω ότι ο f είναι της μορφής h · v όπου για τους h, v ισχύει το ζητούμενο.
Τότε αν h · v(1, 2) = 1 έχουμε h(1, 2) = 1 και v(1, 2) = 1. Διακρίνουμε
περιπτώσεις:

1. Αν N |= h ≈ 1 και N |= v ≈ 1 τότε N |= h · v ≈ 1.

2. Αν N |= h ≈ xg1 για κάποιο όρο g1 και N |= v ≈ 1 τότε N |= h · v ≈
xg1 · 1 επομένως για τον ίδιο όρο g1 έχουμε N |= h · v ≈ xg1 .

3. Αν N |= h ≈ 1 και N |= v ≈ xg1 για κάποιον όρο g1 όμοια με πριν.

4. Αν N |= h ≈ xg1 για κάποιο όρο g1 και N |= v ≈ xg2 για κάποιον όρο

g2, τότε επιλέγοντας ως όρο g τον g1 + g2 έχουμε N |= h · v ≈ xg1+g2 .

• ΄Εστω ότι ο f είναι της μορφής hv
, όπου για τους h, v ισχύει το ζητούμενο.

Τότε αν hg(1, 2) = 1 έχουμε h(1, 2) = 1 και αν N |= h ≈ 1 τότε N |= hv ≈ 1.
Εαν N |= h ≈ xg1 για κάποιο όρο g1, τότε επιλέγοντας ως όρο g τον g1 · v
έχουμε N |= hv ≈ xg1·v.

Πόρισμα 4.1.

Για κανένα όρο f(x, y) της L δεν ισχύει ∀m1,m2 ∈ N, f = (m2
1 −m1 + 1)m1·m2 .
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Απόδειξη:

΄Εστω, προς άτοπο, ότι f είναι ένας τέτοιος όρος. Τότε επειδή f(1, 2) = 1 υπάρχει
όρος g (Λήμμα 4.5) έτσι που N |= f ≈ xg

. ΄Ομως τότε f(2, 1) = 2g(2,1)
και

f(2, 1) = (22 − 2 + 1)2 = 32
κάτι που είναι αδύνατο.

Το προηγούμενο Πόρισμα είναι πολύ σημαντικό. Στην ουσία είναι αυτό που

χρειαζόμαστε για να δώσουμε απάντηση στο πρόβλημά μας. ΄Εχουμε βρεί μία ι-

σότητα στους φυσικούς που για να αποδειχθεί στο EXP έχει ῾῾ ανάγκη ᾿᾿ τον
συγκεκριμένο όρο δυστυχώς όμως αυτός ο όρος δεν είναι όρος της γλώσσας μας.

Η απάντηση θα έλεγε κανείς βασίζεται σε ένα αρκετά τεχνικό ζήτημα και δεν μας

αποκαλύπτει κάτι για τους νόμους στους φυσικούς, ωστόσο αυτή η μικρή τεχνική

λεπτομέρεια είναι αρκετή για να πούμε ότι το EXP δεν εξαντλεί όλους τους νό-
μους που χρειαζόμαστε για να δώσουμε απάντηση στο ζήτημα ισότητας δύο όρων

στους φυσικούς.

Αφού έχουμε εξοπλιστεί με όλα τα κατάλληλα εφόδια είμαστε έτοιμοι να διατυ-

πώσουμε το Λήμμα που μας επιτρέπει να αντικαταστήσουμε το EXP με το πιο
ασθενές EXP−

, τουλάχιστον στην απόδειξη της f0 ≈ g0.

Λήμμα 4.6.

Αν EXP ` f0 ≈ g0 τότε EXP
− ` f0 ≈ g0.

Απόδειξη:

΄Εστω I απόδειξη του f0 ≈ g0 από το EXP . Θα δείξουμε πώς θα την αντικατα-
στήσουμε με μία απόδειξη από το EXP−

.

(a) Για κάθε εμφάνιση εξίσωσης της μορφής fg1
1 ≈ fg2

2 με N |= f1 ≈ 1 αντικαθι-
στούμε τα πάντα πάνω από αυτήν με την εξής απόδειξη.

Λήμμα 4.1 (ii)
f1 ≈ 1 g1 ≈ g1

(EI)
fg1
1 ≈ 1g1

Αξίωμα

1g1 ≈ 1
(= T )

fg1
1 ≈ 1

Λήμμα 4.1 (ii)
f2 ≈ 1 g2 ≈ g2

(EI)
fg2
2 ≈ 1g2

Αξίωμα

1g2 ≈ 1
(= T )

fg2
2 ≈ 1

fg1
1 ≈ fg2

2

Αυτή είναι μία απόδειξη από το EXP−
.

(b)Για κάθε εμφάνιση εξίσωσης της μορφής (fg)h ≈ f (g·h)
σε μεγιστική κορυ-

φή που είτε g είναι σταθερή, είτε h είναι σταθερή είτε f είναι 1 επισυνάπτουμε
μία απόδειξή της από το EXP−

(Αυτό μπορεί να γίνει λόγω του Λήμματος

4.1(iii)).

Ισχυριζόμαστε ότι καμμία εφαρμογή του αξιώματος 1.8 δεν εμφανίζεται σε μεγιστι-
κή κορυφή της I. ΄Εστω προς άτοπο ότι (fg)h ≈ f (g·h)

είναι μία τέτοια εμφάνιση,

τότε από το (a) η εμφάνιση αυτή είναι ουσιαστική (διαφορετικά θα είχαμε αντικα-
ταστήσει όλο το ῾῾ κλαδί ᾿᾿ της απόδειξης με μία απόδειξη από το EXP−

που δεν

περιέχει το αξίωμα 1.8). Ακόμα από το (b) N 6|= f ≈ 1 επομένως N 6|= (fg)h ≈ 1
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συνεπώς από το Λήμμα 4.2 υπάρχει όρος f∗ έτσι που N |= f∗ ≈ f0 και (fg)h

εμφανίζεται ουσιαστικά στον όρο f∗. ΄Ομως πάλι από το (b) έχουμε ότι g και
h δεν είναι σταθερές και N 6|= f ≈ 1, επομένως από το Λήμμα 4.1(i), (ii) υ-

πάρχουν i, j ∈ {1, 2},∀m1,m2 ∈ N − {1} (fg)h(m1,m2) ≥ 2mi·mj . Επίσης,

f∗(m1,m2) = f0(m1,m2) = ((m1 + 1)m1 + (m2
1 +m1 + 1)m1)m2((m3

1 + 1)m2 +
(m4

1 +m2
1 + 1)m2)m1 ≤ (25m4

1)
m1·m2 ∀m1,m2 ∈ N.

Για κανένα k ∈ {1, 2} δεν έχουμε (25m4
1)

m1·m2 ≥ 2mi·mj ·
√

mk για αρκετά μεγάλα

m1,m2 ∈ N. Επομένως λόγω του Λήμματος 4.3(ιιι) υπάρχουν όροι v, h1 έτσι

που είτε N |= f∗ ≈ (v · u) + h1 ή N |= f∗ ≈ v · u όπου u είναι ο όρος (fg)h
.

Επειδή v, h1 είναι όροι της L θα έχουν μία αναπαράσταση στα τi (Θεώρημα
3.1), ακόμα N |= f∗ ≈ τ4 · τ7 · τ8 όμως το πολυώνυμο που αναπαριστά τον vu+h1

δεν μπορεί να είναι μονώνυμο με συντελεστή 1 επομένως έχουμε N |= f∗ ≈ v · u.
Τότε λόγω του Πορισματος 4.1 έχουμε τις εξής περιπτώσεις N |= u ≈ τ4 ή
N |= u ≈ τ7 ή N |= u ≈ τ4 · τ8 ή N |= u ≈ τ7 · τ8 ή N |= u ≈ τ4 · τ7 · τ8.
Από το Λήμμα 4.1 έχουμε (fg)h(2, 2) = k4

για κάποιο k ∈ N−{1}. Ακόμα
βρίσκουμε τ4(2, 2) = 582, τ7(2, 2) = 582, τ4 · τ8(2, 2) = 582 · 34

και τ7 · τ8(2, 2) =
582 · 34

όπου κανένα δεν είναι τέταρτη δύναμη. Η μόνη περίπτωση που μένει είναι

N |= (fg)h ≈ f0 πάλι όμως (fg)h(2, 3) είναι τέταρτη δύναμη αλλά f0(2, 3) =
583 · 3702 · 36

που δεν είναι. Και αυτό ολοκληρώνει την απόδειξη.

Τώρα είμαστε σε θέση να διατυπώσουμε το κύριο αποτέλεσμα της παραγράφου.

Θεώρημα 4.1. EXP 6` f0 ≈ g0

Απόδειξη:

Από το Λήμμα 4.6, αρκεί να βρούμε ένα μοντέλο A της EXP−
έτσι που A |=

∃x∃yf0(x, y) ≈ g0(x, y). Ορίζουμε το μοντέλο ώς εξής:

• |A| = N[z], τα πολυώνυμα με συντελεστές από το N, στην μεταβλητή z (στην
ουσία εδώ η z δεν είναι μεταβλητή αλλά ῾῾ αόριστη ᾿᾿).

• 1,+, · έχουν την φυσική ερμηνεία τους στο N[z].

• Η exp ορίζεται ως εξής:

– Για p(z) ∈ N[z], p(z)m = p(z) · p(z) . . . p(z)︸ ︷︷ ︸
m−φορές

για m ∈ N

– p(z)z =
{
zk, εαν k ∈ N και (z2 − z + 1)k|p(z), (z2 − z + 1)k+1 6 |p(z),
1, εαν δεν υπάρχει τέτοιο k

– p(z)z2
=

{
(z + 1)k, εαν k ∈ N και zk|p(z), zk+1 6 |p(z),
1, εαν δεν υπάρχει τέτοιο k

– p(z)zm

= 1 για m > 2 m ∈ N .

– p(z)
∑m

i=0 ai·zi

=
∏m

i=0(p(z)
zi

)ai , για ai ∈ ω κάνοντας την παραδοχή
ότι t0 = 1.

Εύκολα μπορούμε να επαληθεύσουμε ότι η A είναι μοντέλο της EXP−
αλλά

fA
0 [z, z2] = 1 και gA

0 [z, z2] = z + 1.
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4.3 Εν Κατακλείδι

Τέλος αναφέρουμε κάποια παραπλήσια αποτελέσματα και κάποια ανοιχτά προβλή-

ματα γύρω από τον συγκεκριμένο τομέα.

Ο R.Gurevič βρήκε ένα μοντέλο της EXP με 59 στοιχεία, στο οποίο η εξίσω-
ση τουWilkie δεν είναι ταυτότητα. Αργότερα, οι S.Burris και K.Yeats κατέβασαν
αρκετά το ρεκόρ βρίσκοντας ένα μοντέλο της EXP με 12 στοιχεία στο οποίο η
εξίσωση του Wilkie δεν είναι ταυτότητα.Ακόμα ο G.Asatryan έδειξε ότι κανένα
μοντέλο της EXP με δύο στοιχεία δεν προσφέρεται ως αντιπαράδειγμα όσον α-
φορά την εξίσωση του Wilkie. Λαμβάνοντας αυτά υπόψη, μπορούμε να πούμε ότι
υπάρχει πρόσφορο έδαφος στην μελέτη μοντέλων της EXP με αριθμό στοιχείων
από 3 έως 11. Η ανακάλυψη του μοντέλου με τον ελάχιστο αριθμό στοιχείων,το
οποίο προσφέρει αντιπαράδειγμα, αν και χωρίς κάποια πρακτική αξία δεν θα περάσει

απαρατήρητη από την μαθηματική κοινότητα.

΄Ενα επίσης αρκετά ενδιαφέρον ανοικτό πρόβλημα είναι, αν το Θεώρημα 3.2

μπορεί να επεκταθεί σε όρους της L∗
. Αν και το πρόβλημα φαίνεται διαισθητικά

εύκολο, η απόδειξή του θα μας έδινε αμέσως το ασθενέστεροΘεώρημα 3.2. Ε-

πομένως, η δυσκολία του πρέπει να ῾῾ περικλείει ᾿᾿ την δυσκολία τουΘεωρήματος

3.2, κάτι που αυτόματα το κάνει ένα πολύ δύσκολο πρόβλημα.
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