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Prìlogoc

'Ena apì ta pio endiafèronta qarakthristik� twn kataskeuastik¸n formalism¸n pou touc
diaqwrÐzei apì touc antÐstoiqouc klasikoÔc eÐnai h apodoq  mh�paragìmenwn kanìnwn. To
gegonìc autì eÐqe parathrhjeÐ  dh apì thn dekaetÐa tou 50, ìmwc mìlic to 2001 brèjhke mia
pl rhc aparÐjmhsh aut¸n twn kanìnwn gia thn perÐptwsh thc intouisionistik c protasiak c
logik c. To sqetikì je¸rhma ofeÐletai sth Rosalie Iemhoff kai basÐsthke se apotelèsmata
twn Dick de Jongh, Albert Visser kai Silvio Ghilardi. Ta majhmatik� ergaleÐa pou qrhsi-
mopoi jhkan sth di�rkeia thc apìdeixhc autoÔ tou jewr matoc odhgoÔn se qarakthrismì thc
intouisionistik c protasiak c logik c tìso se suntaktikì ìso kai se shmasiologikì epÐpedo.

Sth sunèqeia to endiafèron strèfetai stic sunepeÐc epekt�seic thc intouisionistik c pro-
tasiak c logik c, stic legìmenec endi�mesec protasiakèc logikèc. Ekmetalleuìmenoi ton kurÐa-
rqo rìlo thc intouisionistik c protasiak c logik c sto plègma twn endi�meswn protasiak¸n
logik¸n kai genikeÔontac kat�llhla tic mejìdouc pou èqoun  dh anaptuqjeÐ, katal goume se
apotelèsmata perigraf c twn apodekt¸n kanìnwn gia merikèc apì tic pio gnwstèc, istorikèc
kai shmantikèc logikèc. H pl rhc perigraf  twn apodekt¸n kanìnwn opoiasd pote endi�meshc
protasiak c logik c eÐnai h epìmenh prìklhsh.
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1 Definitions and basic results

1.1 Syntax

The alphabet of the propositional language L consists of:

• the propositional variables p0, p1, . . .

• the propositional constant ⊥

• the propositional connectives: ∧, ∨, →

• the punctuation marks: ( and )

The formulas of L are inductively defined as

• the constant ⊥ and all propositional variables are L–formulas

• if ϕ, ψ are L–formulas then (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ) are also L–formulas

The set of variables and the set of formulas of L are denoted by VarL and ForL respec-

tively.

We prefer to limit the alphabet, in order to have shorter inductive definitions and proofs.

As a result, the propositional constant > and the propositional connectives ¬ and ↔ are not

included in our language, but are introduced as abbreviations in the usual way:

> = (⊥ → ⊥)

(¬ϕ) = (ϕ → ⊥)

(ϕ ↔ ψ) = ((ϕ → ψ) ∧ (ψ → ϕ))

We will also use the notation
n∧

i=1
ϕi = ϕ1 ∧ ϕ1 . . . ϕn and

∧
Γ to denote the conjunction

of the formulas of the finite set Γ. The corresponding notation for disjunction is defined

analogously. Finally, we define

∧
∅ = > and

∨
∅ = ⊥

A restricted finite language is presented in § 2.7.1.

1.2 Intuitionistic propositional calculus

As the main objective of this text is to investigate metamathematical properties, we will

present a Hilbert–style formal system for intuitionistic propositional logic. However, in the

few cases where an actual formal proof will be needed, we will deploy the corresponding

natural deduction system.

Intuitionistic Propositional Calculus (IPC) consists of the following axiom schemes

1



1 DEFINITIONS AND BASIC RESULTS

→ A → (B → A)

(A → (B → C)) → ((A → B) → (A → C))

∧ A → (B → A ∧B)

A ∧B → A

A ∧B → B

∨ A → A ∨B

B → A ∨B

(A → C) → ((B → C) → (A ∨B → C))

⊥ ⊥ → A

and its unique inference rule is modus ponens, namely

From A and A → B conclude B

Classical propositional calculus CPC is obtained by replacing the ⊥–axiom with the law

of double negation ¬¬A → A or equivalently with the law of the excluded middle A ∨ ¬A.

Definition 1.1. A derivation in IPC of a formula ϕ from assumptions Γ is a finite sequence of

formulas θ1, . . . , θn = ϕ, each of which either is an axiom of IPC or belongs to Γ or is obtained

by applying the modus ponens rule to two formulas occurring earlier in the sequence. If such

a derivation exists, we write Γ ` ϕ.

Theorem 1.2 (Deduction Theorem). If Γ ∪ {ϕ} ` ψ then Γ ` ϕ → ψ.

Proof. By induction on the length of any given derivation θ1, . . . , θn ≡ ψ, we prove that

Γ ` ϕ → θi.

1.3 Intermediate logics

Definition 1.3. A substitution is an extension to ForL of a function from VarL to ForL, that

commutes with the connectives. Notice that by this requirement ⊥ and > are fixed points of

every substitution.

Definition 1.4. A logic in the language L is any set L ⊆ ForL which satisfies the following

conditions:

1. L is closed under modus ponens, i.e L is a theory

2. L is closed under substitution, i.e. if ϕ ∈ L then σ(ϕ) ∈ L for every substitution σ

According to the above definition IPC and CPC are logics. The set ForL is also a logic;

the inconsistent logic.

2



1.3 Intermediate logics

Lemma 1.5. For every logic L and every formula ϕ,

L̀ ϕ ⇐⇒ for every substitution σ, L̀ σ(ϕ)

Proof. The left–to–right holds since L is closed under substitution and the right–to–left is

shown using the identity substitution.

Observe that in classical propositional logic we only have to be concerned about variable

free substitutions.

Definition 1.6. An intermediate logic in the language L is any consistent logic extending

IPC.

The term “intermediate” is justified by the following theorem.

Theorem 1.7.

1. For every variable free formula ϕ, ϕ ∈ IPC or ¬ϕ ∈ IPC

2. All intermediate logics contain the same variable free formulas

3. Every intermediate logic is a subset of classical logic

Proof.

1. By induction on the construction of ϕ

2. By the first item and the consistency of every intermediate logic

3. ϕ ∈ L⇒ for every substitution σ : σ(ϕ) ∈ L

⇒ for every variable free substitution σ : σ(ϕ) ∈ L

⇒ for every variable free substitution σ : σ(ϕ) ∈ CPC [by the second item]

⇒ ϕ ∈ CPC [by the nature of classical logic]

Definition 1.8. Derivations in an intermediate logic L are defined similarly to IPC, but

now in addition to the axioms of IPC we can use the extra axioms of L. In case we are not

aware of an axiomatisation of L, then this merely means that we may use every L–theorem.

Observe that

Γ L̀ ϕ ⇐⇒ there is a finite set ∆ of formulas in L such that Γ ∪∆ ` ϕ

⇐⇒ Γ ∪ L ` ϕ

therefore the deduction theorem holds for every intermediate logic.

The set of consequences of a set of formulas Γ in an intermediate logic L is denoted by

CnL(Γ), i.e.

CnL(Γ) = {ϕ ∈ ForL | Γ L̀ ϕ}

3



1 DEFINITIONS AND BASIC RESULTS

1.4 The slash method

Kleene introduced in [Kle62] the notion of slash to investigate disjunction and existence

properties under implication for intuitionistic arithmetic. We present Aczel’s alternative

version which has the additional property of being closed under deduction.

Definition 1.9. (Aczel slash for IPC) Let Γ be a set of formulas and ϕ a formula. Γ | ϕ is

defined by induction on the construction of ϕ

Γ | ϕ ⇐⇒ Γ ` ϕ, if ϕ is a propositional variable or ⊥
Γ | ϕ ∧ ψ ⇐⇒ Γ | ϕ and Γ | ψ
Γ | ϕ ∨ ψ ⇐⇒ Γ | ϕ or Γ | ψ
Γ | ϕ → ψ ⇐⇒ Γ ` ϕ → ψ and (Γ | ϕ ⇒ Γ | ψ)

Theorem 1.10. Let Γ be a (possibly empty) set of formulas.

1. Γ | ϕ ⇒ Γ ` ϕ

2. (∀ψ ∈ Γ : Γ | ψ) ⇒ (Γ ` ϕ ⇒ Γ | ϕ)

Proof.

1. By induction on formula ϕ

2. By induction on the derivation Γ ` ϕ

If we denote Kleene’s slash with |K then a straightforward induction on the construction

of formula ϕ establishes that

Γ|Kϕ and Γ ` ϕ ⇐⇒ Γ | ϕ

Therefore, result 1.10.2 holds for both versions.

The next theorem, as well as theorem 1.26, indicate the power of the slash–method in

obtaining results related to the disjunction property.

Definition 1.11. A set of formulas X has the disjunction property if

ϕ ∨ ψ ∈ X ⇒ ϕ ∈ X or ψ ∈ X

Theorem 1.12. IPC has the disjunction property

Proof. Let ` ϕ∨ψ. Then |ϕ∨ψ, by theorem 1.10.2 for empty Γ, hence |ϕ or |ψ, therefore

` ϕ or ` ψ by theorem 1.10.1.

In 1968 de Jongh confirmed Kleene’s conjecture that IPC is characterised in terms of the

slash relation. In order to state this result we need some generalisations.

4



1.5 Propositional rules

Definition 1.13. A formula ϕ has the L–disjunction property if for all formulas ψ, θ

ϕ L̀ ψ ∨ θ ⇒ ϕ L̀ ψ or ϕ L̀ θ

The slash relation can be defined for every intermediate logic L, by replacing ` with L̀.

Theorem 1.14 (De Jongh). IPC is the only intermediate logic with the property that for

every formula ϕ

ϕ |L ϕ ⇐⇒ ϕ has the L–disjunction property

Proof. In [dJ70]

1.5 Propositional rules

Definition 1.15. A propositional rule is an expression of the form
ϕ1, . . . , ϕn

ψ
, where

ϕ1, . . . , ϕn, ψ are propositional formulas.

In the current framework we may as well assume that every rule, except modus ponens,

has a single premise.

Definition 1.16. The derivations in an intermediate logic with additional rules R are defined

similarly to the derivations in intermediate logics, but now in addition to modus ponens we

can use the rules of R. In other words,

Γ `R
L

ϕ ⇐⇒ there is finite sequence of formulas θ1, . . . , θn = ϕ, each of which is

either an axiom of L

or it belongs to Γ

or there are i1, . . . , ik < i such that
θi1 , . . . , θik

θi

is an instance of

a rule of R or of modus ponens

Note that adding a rule to a formal system is weaker than adding the corresponding

axiom scheme. For example, it is not generally true that ϕ → ψ is derivable in IPC plus the

inference rule
ϕ

ψ
.

Definition 1.17. A set of formulas X is closed under a rule if whenever there are formulas

ϕ1, . . . , ϕn in X such that ϕ1, . . . , ϕn/ψ is an instance of the rule, then ψ is also in X. X is

closed under a set of rules R if it is closed under every rule of R.

Definition 1.18. A rule
ϕ, . . . , ϕn

ψ
is derivable in an intermediate logic L if the conclusion

is derivable in L from the premises, i.e. if
n∧

i=1
ϕi L̀ ψ.

5



1 DEFINITIONS AND BASIC RESULTS

In view of lemma 1.5, instead of demanding “for every substitution σ, σ(
n∧

i=1
ϕi) L̀ σ(ψ)”

we chose the more intuitive “
n∧

i=1
ϕi L̀ ψ”, which by the deduction theorem is also equivalent

to “ L̀

n∧
i=1

ϕi → ψ”.

Modus ponens is derivable in IPC. It is also not difficult to establish that

¬¬¬ϕ

¬ϕ
and

ϕ

ψ → ϕ

are both derivable in IPC. Since derivability is stable under extensions, these rules are also

derivable in every intermediate logic.

The addition of derivable rules to a formal system may result in shorter formal proofs,

therefore it is a method used to obtain proof–theoretic results. However, it is gratuitous in

terms of theory, since it does not enlarge the set of provable formulas. On the other hand,

the addition of non–derivable rules invalidates the corresponding deduction theorem, thus

rendering `R
L

impractical.

1.6 Admissibility

The admissible rules of a theory are the rules under which the theory is closed. In our context

this is formed as

Definition 1.19. The rule ϕ/ψ is admissible in the intermediate logic L if the conclusion is

derivable in L whenever the premise is derivable in L, i.e. if for every substitution σ

L̀ σ(ϕ) ⇒ L̀ σ(ψ)

In such a case we write ϕ |∼
L

ψ.

Observe that every derivable rule is also admissible.

Theorem 1.20. For every intermediate logic L and every formula ϕ

1. |∼
L

ϕ ⇐⇒ >/ϕ is admissible in L ⇐⇒ L̀ ϕ

2. If every admissible rule of L is also admissible in an intermediate logic L′ then L ⊆ L′

Proof.

1. |∼
L

ϕ ⇐⇒ >|∼
L

ϕ

⇐⇒ ∀σ ( L̀ σ(>) ⇒ L̀ σϕ)

⇐⇒ ∀σ ( L̀> ⇒ L̀ σϕ) [since σ(>) ≡ >]

⇐⇒ ∀σ L̀ σϕ [since L̀>]

⇐⇒ L̀ ϕ [by lemma 1.5]

2. ϕ ∈ L ⇒ >/ϕ is admissible in L ⇒ >/ϕ is admissible in L′ ⇒ ϕ ∈ L′

6



1.6 Admissibility

The converse of the second part of the above theorem is not valid, since unlike derivability,

admissibility is not stable under extensions.

Theorem 1.21. Consider an intermediate logic L and formulas ϕ, ψ.

1. If ϕ |∼
L

ψ then C̀PC ϕ → ψ, therefore L + (ϕ → ψ) is consistent

2. Every admissible rule of CPC is derivable

Proof.

1. Let σ be variable free substitution. By theorem 1.7, σ(ϕ) ∈ IPC or ¬σ(ϕ) ∈ IPC. In

the first case we have that

` σ(ϕ) ⇒ L̀ σ(ϕ) ⇒ L̀ σ(ψ) ⇒ L̀ σ(ϕ) → σ(ψ) ⇒ L̀ σ(ϕ → ψ) ⇒ C̀PC σ(ϕ → ψ)

and in the second that

` ¬σ(ϕ) ⇒` σ(ϕ → ψ) ⇒ C̀PC σ(ϕ → ψ)

Therefore in any case σ(ϕ → ψ) is in CPC, so ϕ → ψ is in CPC, by theorem 1.7.

The extended logic is consistent since

L + (ϕ → ψ) ⊆ CPC + (ϕ → ψ) = CPC

2. By the first item for L = CPC

Intuitionistically, the situation is as usual more complicated. Probably Harrop first ob-

served that the Kreisel–Putnam rule

¬A → B ∨ C

(¬A → B) ∨ (¬A → C)

is admissible though not derivable in IPC. Later, Mints observed that

(A → B) → A ∨ C

((A → B) → A) ∨ ((A → B) → C)

is a rule of the same kind. Abstracting more, de Jongh and Visser discovered an infinite

collection of non–derivable, admissible rules and conjectured that they form a basis for intu-

itionistic propositional logic.

Definition 1.22. A set or rules R is a basis for the admissible rules of an intermediate logic

L if for all formulas ϕ, ψ,

ϕ |∼
L

ψ ⇐⇒ ϕ `R
L

ψ

7



1 DEFINITIONS AND BASIC RESULTS

Iemhoff’s theorem which confirmed in [Iem01b] this conjecture is one of the main theorems

presented in this thesis. Meanwhile, Rybakov showed that the problem of whether a rule is

admissible in IPC or not is decidable and that there is no finite basis for IPC.

We end this section with some remarks about the bases.

Lemma 1.23. Let L be an intermediate logic and let R be a set of rules that are derivable

in L. Then,

1. for all formulas ϕ, ψ

ϕ `R
L

ψ ⇐⇒ ϕ L̀ ψ

2. if R is a basis for admissibility in L, then L does not have non–derivable admissible

rules

Proof.

1. By induction on the length of given derivation

2. By the previous item

It will also become clear in § 4.4, that even if two logics have the same basis for admissi-

bility, they do not have the same set of admissible rules, unless they are equal.

1.7 The Visser rules

Definition 1.24. For n ≥ 1, Vn is the rule

(A → B ∨ C) ∨D

n∨
i=1

(A → Ei) ∨ (A → B) ∨ (A → C) ∨D

where A ≡
n∧

i=1
(Ei → Fi). The collection of all Visser rules is denoted by V . The restricted

Vn rule is defined by omitting the disjunct D from both premise and conclusion.

Observe, that both Kreisel–Putnam and Mints rule are instances of the restricted V1 rule.

Theorem 1.25. Let L be an intermediate logic.

1. If Vn is admissible in L then so is the restricted Vn. If L has the disjunction property

then the converse also holds

2. The Vn and the restricted Vn rule are equiderivable in L

3. If Vn is admissible (derivable) in L, then for every m ≤ n, Vm is also admissible

(derivable) in L

8
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4. If V1 is not admissible in L then none of the Visser rules is admissible in L

5. [First observed by Roziere in [Roz93]] If V1 is derivable in L, then every Visser rule is

derivable in L. Therefore, either all or none of the Visser rules are derivable in L

Proof.

1. and 2. By the fact that the formulas ϕ ↔ ϕ ∨ ⊥ and (ϕ → ψ) → (ϕ ∨ θ → ψ ∨ θ) are

both derivable in IPC

3. Just observe that A ≡
m∧

i=1
(Ei → Fi) is equivalent to A ∧

n−m∧
i=1

(E1 → F1)

4. By the previous item

5. Let L be an intermediate logic in which V1 is derivable. For clarity we will only show

that V2 is also derivable in L. The general case is similar. So,

(E1 → F1) ∧ (E2 → F2) → B ∨ C

is equivalent to

(E1 → F1) → ((E2 → F2) → B ∨ C)

and using the assumption to the antecedent and the transitivity of implication we obtain

(E1 → F1) → ((E2 → F2) → E2) ∨ ((E2 → F2) → B) ∨ ((E2 → F2) → C)

Now by two consecutive uses of V1 (as a scheme) or equivalently by using the generalised

form 1.27 of the Visser rules we get

((E1 → F1) → E1) ∨ ((E1 → F1) → ((E2 → F2) → E2))

∨ ((E1 → F1) → ((E2 → F2) → B))

∨ ((E1 → F1) → ((E2 → F2) → C))

which obviously implies

(A → E1) ∨ (A → E2) ∨ (A → B) ∨ (A → C)

where A ≡ (E1 → F1) ∧ (E2 → F2).

Theorem 1.26. The Visser rules are admissible in IPC

Proof. By the fact that IPC has the disjunction property, theorem 1.12, and the previous

theorem it suffices to show that the restricted Visser rules are admissible in IPC. So assume

that A ` B ∨ C, where A ≡
n∧

i=1
(Ei → Fi). If A | A then A | B ∨ C by theorem 1.10.2, hence

A | B or A | C, therefore A ` B or A ` C by theorem 1.10.1. If A - A then there exists

an i ≤ n such that A - Ei → Fi, hence A | Ei, since A ` Ei → Fi, therefore A ` Ei by

theorem 1.10.1.

9



1 DEFINITIONS AND BASIC RESULTS

The following generalised form of the Visser Rules is particularly convenient.

Definition 1.27. For each m, the Vnm rule is of the form

(A →
m∨

i=1
Bi) ∨ C

n∨
i=1

(A → Ei) ∨
m∨

i=1
(A → Bi) ∨ C

where A ≡
n∧

i=1
(Ei → Fi).

Observe that Vn2 = Vn and that

Vn0 =
¬A ∨ C

n∨
i=1

(A → Ei) ∨ C
and Vn1 =

(A → B) ∨ C

n∨
i=1

(A → Ei) ∨ (A → B) ∨ C

are both derivable in IPC. Therefore, rarely will we refer to them.

Theorem 1.28. Let X be a set of propositional formulas which is closed under deduction in

IPC. If it is closed under the Vn rule, then it is closed under every Vnm rule.

Proof. Trying to simplify a little bit the notation, we define the formulas

A =
n∧

i=1

(Ei → Fi) e =
n∨

i=1

(A → Ei) bk =
k∨

i=1

(A → Bi)

It is already mentioned that for m = 0, 1 the corresponding implications are derivable in IPC,

therefore they are in X. For m ≥ 2, the proof proceeds by induction on m. The basis case is

treated by assumption. For the inductive step assume that

(A →
m+1∨

i=1

Bi) ∨ C ∈ X

Considering
m+1∨
i=1

Bi as
m∨

i=1
Bi ∨Bm+1, the fact that X is closed under the Vn rule implies that

e ∨ (A →
m∨

i=1

Bi) ∨ (A → Bm+1) ∨ C ∈ X

Reading the above formula as (A →
m∨

i=1
Bi)∨

(
e∨(A → Bm+1)∨C

)
and applying the induction

hypothesis we get that

e ∨ bm ∨ (
e ∨ (A → Bm+1) ∨ C

) ∈ X

which is equivalent to

e ∨ bm+1 ∨ C ∈ X

10
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1.8 A proof system for admissibility

The fact that we cannot rely on the well–known properties of L̀ in order to manipulate

`R
L

makes this notion rather cumbersome. Furthermore, there is a lurking danger of using

accidentally properties that do not hold in general, for example the deduction theorem, in

the middle of a long, involved proof. So, instead of manipulating `R
L
–relation directly, we will

develop an equivalent, but easier to handle proof system.

1.8.1 A class of proof systems

Although we intend to use a single proof system, we define a whole class of them, exploiting

the fact that the theorem below holds in such a broad context.

Definition 1.29. Fix an intermediate logic L and a set of rules R. The PSL,R–proof system

is specified by the following axioms and rules:

Axioms L If ϕ L̀ ψ then ϕ B ψ

R If
ϕ1, . . . , ϕn

ψ
is an instance of a rule of R then

n∧
i=1

ϕi B ψ

Rules
θ B ϕ θ B ψ

Conj
θ B ϕ ∧ ψ

ϕ B θ θ B ψ
Cut

ϕ B ψ

Theorem 1.30. For every intermediate logic L, every set of rules R and all formulas ϕ, ψ

ϕ `R
L

ψ ⇐⇒ PSL,R `ϕ B ψ

Proof. ⇒) Let ξ1, . . . , ξn be a derivation of ϕ `R
L

ψ. We will inductively prove that PSL,R `
ϕ B ξi, for every i ≤ n. Formula ξ1 is either derivable in L or it is ϕ. In either case ϕ L̀ ξ1,

hence PSL,R `ϕ B ξ1 by the L–axiom.

Now consider ξi+1. If it is L–derivable or ϕ, then it is treated as above. If it is derived

from an application of modus ponens, then there are formulas ξj , ξj → ξi+1 which occur

earlier in the sequence and so

by I.H.
...

ϕ B ξj

... by I.H.

ϕ B ξj → ξi+1
Conj

ϕ B ξj ∧ (ξj → ξi+1)

by the L–axiom

⇓
ξj ∧ (ξj → ξi) B ξi+1

Cut
ϕ B ξi+1

If ξi+1 is derived from an application of a rule of R, then there are formulas ξi1 , . . . , ξim which

occur earlier in the sequence such that
ξi1 , . . . , ξim

ξi+1

is an instance of a rule of R. Therefore,

11



1 DEFINITIONS AND BASIC RESULTS

by I.H.
...

ϕ B ξi1

... by I.H.

ϕ B ξi2
Conj

ϕ B ξi1 ∧ ξi2

...

... by I.H.

ϕ B ξin
Conj

ϕ B
n∧

j=1
ξij

the R–axiom
⇓

n∧
j=1

ξij B ξi+1

Cut
ϕ B ξi+1

⇐) By induction on the depth of any given PSL,R–proof of ϕ B ψ. A single line proof

of ϕ B ψ is due to the L or the R–axiom. In either case, ϕ `R
L

ψ.

Now assume that there is an (n + 1)–deep PSL,R–proof of ϕ B ψ. If the last rule applied

is that of conjunction, then ψ ≡ ψ1 ∧ψ2 and there are PSL,R–proofs of ϕ B ψ1 and ϕ B ψ2 of

depth ≤ n. The induction hypothesis implies that ϕ `R
L

ψ1 and ϕ `R
L

ψ2, therefore ϕ `R
L

ψ1 ∧ψ2

by concatenating the derivations and appending the obvious three lines. The case of the cut

rule is similar.

1.8.2 The AR–proof system

As our main aim is to study the connection of the Visser rules with the admissible rules of

intuitionistic propositional logic, it is logical to focus on PSIPC,V . This proof system was

defined by Rosalie Iemhoff in [Iem01b] and it will be denoted as AR, standing for Admissible

Rules, and its axioms as I and V respectively.

Theorem 1.31 (Iemhoff). Let ϕ, ψ be formulas

1. If AR ` ϕ B ψ then AR ` ϕ ∨ θ B ψ ∨ θ

2. If AR ` ϕ B ψ then AR ` θ ∨ ϕ B θ ∨ ψ

3. If AR ` ϕ B θ and AR ` ψ B θ then AR ` (ϕ ∨ ψ) B θ

4. If AR ` ϕ B θ then AR ` ϕ ∧ ψ B θ

Proof.

1. The proof proceeds by induction on the depth of any given proof. For axioms, just

observe that ϕ → ψ ` ϕ ∨ θ → ψ ∨ θ and that if ϕ/ψ is an instance of a Visser rule then

ϕ ∨ θ/ψ ∨ θ is also an instance of the same Visser rule.

Now assume that there is an (n + 1)–deep AR–proof of ϕ B ψ. If the last rule applied

is that of conjunction, then ψ ≡ ψ1 ∧ ψ2 and there are AR–proofs of ϕ B ψ1 and ϕ B ψ2 of

depth ≤ n. Therefore,

12
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by I.H.
...

ϕ ∨ θ B ψ1 ∨ θ

... by I.H.

ϕ ∨ θ B ψ2 ∨ θ
Conj

ϕ ∨ θ B (ψ1 ∨ θ) ∧ (ψ2 ∨ θ)

by the I–axiom

⇓
(ψ1 ∨ θ) ∧ (ψ2 ∨ θ) B (ψ1 ∧ ψ2) ∨ θ

Cut
ϕ ∨ θ B (ψ1 ∧ ψ2) ∨ θ

The case of the cut rule is similar.

2. Assuming AR ` ϕ B ψ, we get that

by the I axiom

⇓
θ ∨ ϕ B ϕ ∨ θ

... by the previous item

ϕ ∨ θ B ψ ∨ θ
Cut

θ ∨ ϕ B ψ ∨ θ

by the I–axiom

⇓
ψ ∨ θ B θ ∨ ψ

Cut
θ ∨ ϕ B θ ∨ ψ

3. Assuming AR ` ϕ B θ and AR ` ψ B θ, we get that

by item 1
...

ϕ ∨ ψ B θ ∨ ψ

... by item 2

θ ∨ ψ B θ ∨ θ

by the I–axiom

⇓
θ ∨ θ B θ

Cut
θ ∨ ψ B θ

Cut
ϕ ∨ ψ B θ

4. Apply the cut rule to assumption and to ϕ∧ψ B ϕ, which is valid by the I–axiom.

1.9 Saturation

Definition 1.32. Let L be an intermediate logic and let X, Y be sets of formulas.

1. X is L–saturated if X L̀ ϕ ∨ ψ ⇒ ϕ ∈ X or ψ ∈ X

2. X is strongly L–saturated in Y if for every n ∈ ω and for all ϕ1, . . . , ϕn

If X L̀

n∨

i=1

ϕi then ϕi ∈ Y for some i ≤ n

Note that the following items could have been added in the previous definition.

1. X is strongly L–saturated if for every n ∈ ω and for all ϕ1, . . . , ϕn

If X L̀

n∨

i=1

ϕi then ϕi ∈ X for some i ≤ n

2. X is L–saturated in Y if X L̀ ϕ ∨ ψ ⇒ ϕ ∈ Y or ψ ∈ Y

13
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However, they both seem to lack mathematical interest. The first because it coincides with

the notion “X is L–saturated” and the second because it is weaker than what we need.

We start by listing some basic properties of the saturated sets.

Theorem 1.33 (Saturation properties). Let L be a logic and X, Y be sets of formulas.

1. X is L–saturated ⇐⇒ X is closed under deduction in L and has the disjunction

property

2. X is L–saturated ⇐⇒ X is strongly L–saturated in X

3. If X is L–saturated, then every subset of X is strongly L–saturated in X

4. If X is strongly L–saturated in Y , then X ⊆ Y

5. If X is strongly L–saturated in Y and Z ⊆ X then Z is also strongly L–saturated in Y

6. If X is strongly L–saturated in Y and X L̀ ϕ then X ∪{ϕ} is also strongly L–saturated

in Y

Proof. The first is proved using the fact that ` ϕ ↔ ϕ∨ϕ. The rest are completely trivial.

Theorem 1.34. Consider an intermediate logic L and a set of formulas Γ. Then for all

formulas ψ, ϕ the following are equivalent:

• Γ L̀ ψ → ϕ

• for every L–saturated set Y ⊇ Γ, ψ ∈ Y ⇒ ϕ ∈ Y

Proof. The left-to-right direction is obvious; the converse will be established by proving the

contrapositive. Assume that Γ 0L ψ → ϕ and let ξ0, ξ1, . . . be an enumeration of all formulas in

which every formula appears infinitely often. We inductively define a sequence Y0 ⊆ Y1 ⊆ . . .

of sets of formulas satisfying the invariant property Yi 0L ϕ, as follows:

Y0 = Γ ∪ {ψ}, ξi ∈ Yi+1 ⇐⇒ Yi ∪ {ξi} 0L ϕ

Clearly, Y =
⋃

i Yi contains ψ, but not ϕ. We will show that Y is also L–saturated, so

assume that Y L̀ η ∨ θ, hence there is an i such that Yi L̀ η ∨ θ. Pick indices j, k such that

k ≥ j > i, ξj ≡ η and ξk ≡ θ. If Yj ∪ {η} L̀ ϕ and Yk ∪ {θ} L̀ ϕ, then Yk ∪ {η ∨ θ} L̀ ϕ, hence

Yk L̀ ϕ, a contradiction. Therefore, η ∈ Yj+1 or θ ∈ Yk+1, and so η or θ is in Y .

Corollary 1.35. Consider an intermediate logic L, a set of formulas Γ and a formula ϕ.

Then,

1. Γ L̀ ϕ ⇐⇒ ϕ is contained in every L–saturated superset of Γ

2. Γ L̀¬ϕ ⇐⇒ there is no consistent L–saturated superset of Γ containing ϕ

Proof. Apply theorem 1.34 to ψ ≡ > and ϕ ≡ ⊥ respectively.
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2.1 Kripke models

We start by setting up the notation for the semantics.

Definition 2.1. A Kripke frame is a partially ordered set, i.e. a pair 〈W,≤〉 where W is a

non–empty set and ≤ is a partial order on W . The elements of W are called nodes. If W

has a ≤–minimum element then the frame is rooted.

According to the preceding definition, a Kripke frame is not necessarily rooted or finite

or even connected if it is considered as a graph! For example, the following structure is a

well-defined Kripke frame.

b c e

a

========

¢¢¢¢¢¢¢¢
d

Definition 2.2. A Kripke model over the language L is a tuple 〈W,≤, V 〉, where 〈W,≤〉 is a

Kripke frame and V is a function from W to P(VarL) that satisfies the following monotonicity

condition:

u ≤ v ⇒ V (u) ⊆ V (v), for all u, v ∈ W

Definition 2.3. Let K = 〈W,≤, V 〉 be a Kripke model and let u be a node of W . By

induction on the construction of a formula ϕ we define the notion of being true in K at u (or

ϕ is forced at u) as follows

• K, u ° p ⇐⇒ p ∈ V (u)

• K, u 1 ⊥

• K, u ° ϕ ∧ ψ ⇐⇒ K, u ° ϕ and K, u ° ψ

• K, u ° ϕ ∨ ψ ⇐⇒ K, u ° ϕ or K, u ° ψ

• K, u ° ϕ → ψ ⇐⇒ ∀v ≥ u, K, v ° ϕ ⇒ K, v ° ψ

It follows from the definition that the abbreviated connectives behave properly

• K, u ° >

• K, u ° ¬ϕ ⇐⇒ ∀v ≥ u K, v 1 ϕ

• K, u ° ϕ ↔ ψ ⇐⇒ ∀v ≥ u (K, v ° ϕ ⇐⇒ K, v ° ψ)

Although we demand the monotonicity condition only for propositional variables, it turns

out that it holds for every formula.
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Lemma 2.4. For every formula ϕ, for every Kripke model K and for all nodes u, v of K

If K, u ° ϕ and u ≤ v then K, v ° ϕ

Proof. By induction on the construction of ϕ.

Definition 2.5.

• A Kripke model K satisfies a formula ϕ (notation K |= ϕ) if ϕ is true at every node of

K

• A class of Kripke models K satisfies a formula ϕ if ϕ is satisfied in every model of K

• A Kripke frame F satisfies a formula ϕ if ϕ is satisfied in every model based on F

• A class of Kripke frames F satisfies a formula ϕ if ϕ is satisfied in every frame of F

• The theory of a Kripke model K, denoted by Th(K), is the set of formulas satisfied by

K. The term “theory” is justified by the fact it is closed under modus ponens. The

notion is extended to classes of models and frames in the obvious way.

• Two Kripke models K, M are equivalent if they have the same theory, i.e. if for all

formulas ϕ:

K |= ϕ ⇐⇒ M |= ϕ

The theory of every rooted Kripke model has obviously the disjunction property. There-

fore, if a rooted Kripke model is a model of an intermediate logic L, then its theory is by

theorem 1.33 an L–saturated set. This result does not in general hold for non–rooted models,

as the following two–node example establishes

p q

Figure 1: A model the theory of which does not have the disjunction property

2.1.1 Generated submodels

Only the case of implication in the inductive definition 2.3 differentiates the Kripke model

truth from the classical one, since all the other connectives are also treated locally. However

even in this case, the nodes below a given node u cannot affect what formulas are true at u.

This observation suggests the following definition.

Definition 2.6.

• A frame 〈W,≤〉 is a subframe of a frame 〈Z,¹〉 if W ⊆ Z and ≤ is the restriction of ¹
in W
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• A subframe is generated if it is upwards closed

• The subframe of a frame F generated by a node u consists of all nodes of F greater or

equal to u and is denoted by Fu. Such frames are also called generated rooted subframes

• A model 〈W,≤, V 〉 is a (generated) submodel of 〈Z,¹, U〉 if 〈W,≤〉 is a (generated)

subframe of 〈Z,¹〉 and V (w) = U(w) for every node w of W

Theorem 2.7. Let u be a node of a Kripke model K. Then, for every formula ϕ

Ku |= ϕ ⇐⇒ K,u ° ϕ

Proof. By induction on the construction of ϕ.

2.1.2 Soundness

Theorem 2.8 (Soundness). If Γ ` ϕ then ϕ is satisfied in every Kripke model the theory of

which is a superset of Γ.

Proof. This is a quite easy and rather tedious proof, so we will only provide a sketch of it.

First, we show that each axiom of IPC is satisfied by every Kripke model. The closure under

modus ponens is treated by the fact that a theory of a model is obviously a theory. Then we

prove by induction on the length of the given derivation ξ1, . . . , ξn of Γ ` ϕ that each ξi is

satisfied in every Kripke model the theory of which is a superset of Γ.

The completeness theorem of IPC with respect to Kripke frames is deferred until § 2.3.

2.1.3 Kripke frames and intermediate logics

Definition 2.9. Given a substitution σ and a Kripke model K, we construct the Kripke

model σ∗(K) based on the frame of K and with assignment Vσ defined as:

p ∈ Vσ(u) ⇐⇒ Ku |= σ(p)

for every propositional variable p and every node u of K. The monotonicity condition K

satisfies implies that σ∗(K) is a well–defined Kripke model.

Lemma 2.10. For every Kripke model K, every substitution σ and every formula ϕ

σ∗(K) |= ϕ ⇐⇒ K |= σ(ϕ)

Proof. By a straightforward induction on the construction of formula ϕ

Theorem 2.11. The set of formulas satisfied in the arbitrary class of Kripke frames is an

intermediate logic.
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Proof. Let L be the set of formulas satisfied in a class of Kripke frames F . By the soundness

theorem 2.8, IPC ⊆ L. Consider a formula ϕ in L, a substitution σ and a Kripke model

K = 〈W,≤, V 〉 based on some frame F in F . The model σ∗(K) is also based on F , thus it

satisfies ϕ, therefore K |= σ(ϕ) by lemma 2.10.

The converse of the above theorem does not hold, see for example [CZ97], where a Kripke

incomplete intermediate logic is constructed. This result demonstrates the inadequacy of the

Kripke semantics in the general framework of intermediate logics and turns our attention to

algebraic semantics (Heyting algebras) and relational semantics (general frames).

2.1.4 Extension property

We end this section by defining a property which, as we will show in § 3.3, characterises

intuitionistic propositional logic. The variations related to intermediate logics and the Visser

rules are defined in § 4.3.

Definition 2.12. Let K1, . . . ,Kn be rooted Kripke models and let X be a set of formulas.

The structure (
n∑

i=1
Ki)X is constructed by taking an isomorphic copy of each Ki so that their

frames are disjoint and then adding below the roots a new node r at which a propositional

variable is true if and only if it belongs to X. Therefore (
n∑

i=1
Ki)X is a well–defined Kripke

model if and only if X ⊆ ~p, where ~p is the set of propositional variables satisfied in every Ki.

We also define,
n∑

i=1

Ki = (
n∑

i=1

Ki)~p and (
n∑

i=1

Ki)′ = (
n∑

i=1

Ki)∅

Observe that (
n∑

i=1
Ki)′ is always well–defined. This construction is due to Smorynski,

see [Smo73], and is called (Smorynski) gluing.
∑

is the Smorynski operator.

Definition 2.13.

• Two rooted Kripke models are variants if they are based on the same frame and their

assignments may only differ in the roots.

• A class of rooted Kripke models K has the extension property up to n, if for every

K1, . . . , Kn ∈ K there exists a variant of
n∑

i=1
Ki in K .

• A class of rooted Kripke models has the extension property if it has the extension

property up to n, for every n ≥ 1.

• A set of formulas has the extension property (up to n) if its class of rooted Kripke

models has the extension property (up to n).
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Note that by adding below the root r of a Kripke model K a new node at which exactly

the same as r propositional variables are true, we get a variant of
∑

K which is equivalent

to K, as a bounded morphic preimage. Therefore, every set of formulas has the extension

property up to 1.

Definition 2.14. A class of Kripke models is stable if it is closed under generated rooted

submodels.

2.2 Truth–preserving operations

We proceed to investigate several truth–preserving operations between Kripke models.

2.2.1 Isomorphisms

The forcing relation of a Kripke model 〈W,≤, V 〉 is completely determined by the assignment

V and the≤–structure of its domain. By relabelling the elements of W and suitably modifying

the ordering and the assignment we obtain an essentially identical Kripke model.

Definition 2.15. A bijective function f from model K = 〈W,≤, V 〉 to model K ′ = 〈W ′,≤′
, V ′〉 is an isomorphism if for all nodes u, v of K

1. V (u) = V ′(f(u))

2. u ≤ v ⇐⇒ f(u) ≤′ f(v)

Theorem 2.16. If f is an isomorphism from K to K ′ then,

1. for all u ∈ K : Th(Ku) = Th(K ′
f(u))

2. K and K ′ are equivalent

Proof. will come as a corollary of theorem 2.20.

2.2.2 Bounded morphisms

Model–isomorphism is not expected to capture the whole notion of model–equivalence. For

example, the models in figure 2 are equivalent, though not isomorphic for cardinality reasons.

In terms of their theories, models (b), (c) and (d) contain redundant information and it seems

that they can be reduced to the plain model (a). This type of reduction is defined by relaxing

the order–preserving condition of isomorphism.

Definition 2.17. Let K = 〈W,≤, V 〉 and K ′ = 〈W ′,≤′, V ′〉 be Kripke models. A surjective

function f : K ³ K ′ is a bounded morphism1 if it satisfies the following conditions:

1. V (u) = V ′(f(u))

1In the literature is also known as reduction or p–morphism, which is short for pseudo–epimorphism.
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p p p

p p

(a) (b) (c) (d)

Figure 2: Equivalent Models

2. u ≤ v ⇒ f(u) ≤′ f(v)

3. f(u) ≤′ f(v) implies the existence of a w ≥ u such that f(w) = f(v)

If there is a bounded morphism from K to K ′, then we say that K ′ is a bounded morphic

image of K, and write K ³ K ′.

Theorem 2.18. If f is a bounded morphism from K to K ′ then,

1. for all u ∈ K : Th(Ku) = Th(K ′
f(u))

2. K and K ′ are equivalent

Proof. will come as a corollary of theorem 2.20.

2.2.3 Bisimulations

Consider once more models (b) and (c) of figure 2. The fact that there is no bounded

morphism between them can be established either intuitively, since neither one is considered

simpler than the other, or formally, since there is no surjective function between them that

preserves the assignment. However, they are equivalent indeed as bounded morphic preimages

of model (a). The notion that directly links such models, without referring to their reduct, is

bisimulation. It is a relational generalisation of bounded morphism whereby the directionality

from elaborate to plain is replaced by a back–and–forth system of moves between nodes of

models.

Definition 2.19.

1. A relation R ⊆ X × Y is serial if

(∀x ∈ X)(∃y ∈ Y )xRy

2. Let 〈W,≤〉 and 〈W ′,≤′〉 be posets. A relation R ⊆ W ×W ′ is a simulation preorder if

uRu′ & u ≤ v ⇒ ∃v′ ≥′ u′ : vRv′
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3. Let K = 〈W,≤, V 〉 and K ′ = 〈W ′,≤′, V ′〉 be Kripke models. A relation R ⊆ W ×W ′

is a bisimulation if it satisfies the following conditions:

• R and R−1 are serial

• uRu′ ⇒ V (u) = V ′(u′)

• R is a simulation preorder (forth–condition)

• R−1 is a simulation preorder (back–condition)

Theorem 2.20. If R is a bisimulation of K to K ′ then,

1. for all u ∈ K : uRu′ ⇒ Th(Ku) = Th(K ′
u′)

2. K and K ′ are equivalent

Proof.

1. By induction on the construction of the arbitrary formula ϕ. The basis is true by

the second condition of the definition of “bisimulation” and the cases of disjunction and

conjunction are straightforward. For the case of implication, assume that Ku |= ϕ1 → ϕ2

and let v′ ≥′ u′ such that K ′
v′ |= ϕ1. Back–condition implies that there exists a v ≥ u such

that vRv′. Therefore,

K ′
v′ |= ϕ1

I.H.=⇒ Kv |= ϕ1

⇓ [since Ku |= ϕ1 → ϕ2 and v ≥ u]

K ′
v′ |= ϕ2

I.H.⇐= Kv |= ϕ2

Forth–condition treats similarly the other direction.

2. Assume that K |= ϕ and let u′ be a node of K ′. The fact that R−1 is serial implies

that there is a u in K such that uRu′. Therefore, K ′
u′ |= ϕ by the previous item and so

K ′ |= ϕ, since u′ was arbitrary. The other direction is symmetrical.

The preceding comments and definitions convincingly establish that

isomorphism ⇒ bounded morphism ⇒ bisimulation

thus theorems 2.16 and 2.18 are in fact corollaries of theorem 2.20.

Note that the frame counterparts of the above operations, which are defined by dropping

the condition relating the assignments, are also of interest. Such an example we will meet in

the proof of theorem 2.28.

2.3 Completeness results for IPC

Following Craig Smorynski in [Smo73], we present several well–known completeness results

for intuitionistic propositional logic.
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2.3.1 The canonical model

Definition 2.21. The canonical model K = 〈W, 4,V〉 of IPC is defined as follows:

• W is the set of all IPC–saturated sets of propositional formulas

• 4 is the subset relation

• V maps each node u to the set of propositional variables contained in the IPC–saturated

set associated with u

Each node of K is identified with the IPC–saturated set attached to it. Note that K is

rooted, with root Cn(∅), which is IPC–saturated because IPC has the disjunction property.

Theorem 2.22. For every IPC–saturated set X

Th(KX) = X

Proof. By induction on the construction of the arbitrary formula ϕ; the basis is true by

definition.

∧ KX |= ϕ1 ∧ ϕ2 ⇐⇒ KX |= ϕ1 and KX |= ϕ2

⇐⇒ ϕ1 ∈ X and ϕ2 ∈ X [by the induction hypothesis]

⇐⇒ ϕ1 ∧ ϕ2 ∈ X [because X is closed under deduction]

∨ KX |= ϕ1 ∨ ϕ2 ⇐⇒ KX |= ϕ1 or KX |= ϕ2

⇐⇒ ϕ1 ∈ X or ϕ2 ∈ X [by the induction hypothesis]

⇐⇒ ϕ1 ∨ ϕ2 ∈ X [because X is IPC–saturated]

→ KX |= ϕ1 → ϕ2 ⇐⇒ ∀Y ≥ X (KY |= ϕ1 ⇒ KY |= ϕ2)

⇐⇒ ∀Y ⊇ X (ϕ1 ∈ Y ⇒ ϕ2 ∈ Y ) [by the induction hypothesis]

⇐⇒ ϕ1 → ϕ2 ∈ X [by theorem 1.34]

Theorem 2.23 (Strong completeness). If Γ 0 ϕ then there exists a Kripke model that satisfies

every formula in Γ, but not ϕ.

Proof. Assume that Γ 0 ϕ. By corollary 1.35, there exists an IPC–saturated superset ∆ of Γ

which does not contain ϕ. Therefore by theorem 2.22, K∆ is the Kripke model we are looking

for.

The completeness theorem for Γ = ∅ was first proved by Saul Kripke. Strong completeness

is due independently to Peter Aczel, Melvin Fitting and Richmond Thomason.

A corollary of the strong completeness theorem is that every intermediate logic L is sound

and strongly complete with respect to a class of models, since

Γ L̀ ϕ ⇐⇒ Γ ∪ L ` ϕ
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2.3 Completeness results for IPC

2.3.2 Finite tree theorem

Definition 2.24.

• A Kripke frame F = 〈W,≤〉 is a tree if it is rooted and for every node u ∈ F the set of

its predecessors {v ∈ F | v ≤ u} is linearly ordered and finite

• A Kripke frame is an n–ary tree if it is a tree such that every node has at most n

immediate successors. Note that a 0–ary tree consists just of its root. A unary tree is

also called linear

• An n–ary tree is full if every non–terminal node has exactly n immediate successors

Theorem 2.25 (Smorynski). For every formula ϕ and every countermodel M = 〈W,≤, V 〉
of ϕ there is a finite tree submodel K of M which does not satisfy ϕ and is such that

(∀ψ ∈ S)(∀u ∈ K)(Ku |= ψ ⇐⇒ Mu |= ψ) (2.1)

where S is the set of subformulas of ϕ.

Proof. First, we define the function f : M → P(S) as follows:

f(u) = {ψ ∈ S | Mu |= ψ} = Th(Mu) ∩ S

Note that

1. the values of f are finite by assumption

2. f is monotonically non–decreasing by the monotonicity condition Kripke models satisfy

3. (∀u, v ∈ M)(f(u) = f(v) ⇒ Th(Mu) ∩ S = Th(Mv) ∩ S)

The nodes of the submodel K are selected inductively and are denoted by βσ, where σ is

a finite sequence of natural numbers that keeps track of their order. Let u be any node of M

that does not force ϕ. Define β〈〉 = u.

Assume that βσ is already selected. The property we would like to hold is that for every

u ≥ βσ there is a βτ ≥′ βσ such that f(βτ ) = f(u) (where ≤′ will be the ordering of model

K). So, define

Wσ = {u ∈ M | u ≥ βσ and f(u) ⊃ f(βσ) and

∀v ∈ M : βσ < v < u ⇒ f(v) = f(βσ) or f(v) = f(u)}

If Wσ = ∅ then the process stops for this specific branch and the node βσ will be a leaf of

K. Otherwise, although Wσ is in general infinite, f [Wσ] is finite, since S is finite. So, let

u0, . . . , um be nodes in Wσ such that

1. ∀v ∈ Wσ ∃ i : f(v) = f(ui), i.e f [{u0, . . . , um}] = f [Wσ]
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2. i 6= j ⇒ f(ui) 6= f(uj)

Define βσ∗〈i〉 = ui. In this way, we are assured that the branching of K is finite. Moreover,

the length of every sequence σ is ≤ |S|, hence the height is also finite.

The submodel K = 〈W ′,≤′, V ′〉 is defined as follows

• W ′ consists of all the βσ that have been defined

• ≤′ is the usual ordering of finite sequences, i.e.

βσ ≤′ βτ ⇐⇒ ∃ρ : τ = σ ∗ ρ

Note that βσ ≤′ βτ ⇒ βσ ≤ βτ

• V ′ = V ¹ W ′

We proceed to prove (2.1) by induction on the construction of the arbitrary subformula

of ϕ.

Kβσ |= p ⇐⇒ p ∈ V ′(βσ) ⇐⇒ p ∈ V (βσ) ⇐⇒ Mβσ |= p

The cases of conjunction and disjunction are straightforward. For the case of implication,

assume that Kβσ |= θ → ψ and consider a u ≥ βσ such that Mu |= θ. Then, f(u) ⊇ f(βσ) so

there is a βτ ≥′ βσ such that

f(βτ ) = f(u) (2.2)

Therefore,

Mu |= θ
(2.2)
=⇒ Mβτ |= θ

I.H.=⇒ Kβτ |= θ

⇓ [since Kβσ |= θ → ψ and βτ ≥′ βσ]

Mu |= ψ
(2.2)⇐= Mβτ |= ψ

I.H.⇐= Kβτ |= ψ

For the other direction, assume that Mβσ |= θ → ψ and let βτ ≥′ βσ such that Kβτ |= θ.

Then,

Kβτ |= θ
I.H.=⇒ Mβτ |= θ

⇓ [since Mβσ |= θ → ψ and βτ ≥′ βσ]

Kβτ |= ψ
I.H.⇐= Mβτ |= ψ

Finally, the fact that K |6= ϕ is a result of the way the root of K is defined and (2.1).

Corollary 2.26 (Kripke). IPC is (sound and) complete with respect to finite tree models.

Proof. Consider a non–derivable in IPC formula ϕ and let M be its countermodel. Define F

as the set of subformulas of ϕ and S = {ϕ}. By the previous theorem, there is a finite tree

model K which does not satisfies ϕ.
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Figure 3: A finite tree extension

2.3.3 Extension theorem

Definition 2.27. Let T = 〈W,≤〉, T ′ = 〈W ′,≤′〉 be finite trees such that T is a subframe of

T ′. Then, T ′ is a finite tree extension of T if for all nodes u, v of T

u ≤ v ⇒ @w′ ∈ T ′ \ T : u ≤′ w′ ≤′ v

Theorem 2.28 (Smorynski). Consider a finite tree T and a model K based on T . Then, for

every finite tree extension T ′ of T , there is an extension K ′ of K such that:

∀u ∈ K : Th(Ku) = Th(K ′
u)

Proof. Let r be the root of T and define TE as T ′r\T , where T ′r is the subframe of T ′ generated

by r. Associate with each node u of T a terminal (in T ) node tu ≥ u and define the function

f : T ′r ³ T as follows:

• If u ∈ T then f(u) = u

• If u ∈ TE then there is a maximum predecessor pu of u in T , since the trees T ′r and T

share the same root. Define f(u) = tpu

We proceed to establish that f is a (frame) bounded morphism from T ′r to T . So, assume

that u ≤′ v and distinguish cases.

1. If u, v ∈ T then f(u) = u ≤ v = f(v)

2. If u ∈ T and v ∈ TE then f(u) = u ≤ pv ≤ tpv = f(v)

3. If u ∈ TE then also v ∈ TE and so pu = pv. Therefore f(u) = tpu = tpv = f(v)

For the other condition, we should prove that whenever f(u) ≤ f(v), then there exists a

w ≥′ u such that f(w) = f(v). By distinguishing we get that
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1. If u, v ∈ T then u = f(u) ≤ f(v) = v, hence w = v

2. If u ∈ T and v ∈ TE then u = f(u) ≤ f(v) = tpv , hence w = tpv

3. If u ∈ TE then tpu = f(u) ≤ f(v) = tpv , therefore tpu = tpv , hence w = u

Define K ′
r as the Kripke model based on T ′r with assignment V ′ = V ◦ f . By the weak

preserving property of bounded morphism V ′ satisfies the monotonicity condition, hence K ′
r

is well–defined. f is now a model bounded morphism from K ′
r to K, therefore for every

u ∈ K,
Th(Ku) = Th((K ′

r)f(u)) [by theorem 2.18]

= Th((K ′
r)u) [by the definition of f ]

Finally, the model K ′ is any extension of K ′
r based on T ′.

Corollary 2.29. Let K be a class of finite tree models such that every finite tree can be

embedded in a model of K , in the sense that for every finite tree there exists a finite tree

extension of it in K . Then IPC is (sound and) complete with respect to K .

Corollary 2.30. IPC is (sound and) complete with respect to full, non–linear trees.

2.4 From a class of models to a single model

Exploiting the generality of the Kripke model definition, we may obtain a single Kripke model

equivalent to a whole class of models, by replacing every model of the class with an isomorphic

copy so that their domains are disjoint. This section develops this idea more rigorously.

2.4.1 The model K +

Let K be a class of models indexed by A and for each α ∈ A let Kα = 〈Wα,≤α, Vα〉 be the

model of K with index α. We define the Kripke model K + = 〈W+,≤+, V +〉 as follows:

• W+ = {〈α, x〉 | x is a node of the model Kα of K }

• 〈α, x〉 ≤+ 〈β, y〉 ⇐⇒ α = β and x ≤α y

• V +(〈α, x〉) = Vα(x)

In other words, W+ is the disjoint union of Wα and ≤+, V + are the inherited ordering and

assignment respectively. K + is obviously well-defined and a straightforward induction on

the construction of the arbitrary formula ϕ can establish that

K +
〈α,x〉 |= ϕ ⇐⇒ Kα

x |= ϕ, for all 〈α, x〉 ∈ W+

therefore

K + |= ϕ ⇐⇒ K |= ϕ

To avoid confusion, from now on x, y, z will denote the nodes of the models of K and u,

v, w the nodes of K +.
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2.4.2 The model K +'

We will now construct a more compact model which is still equivalent to the class, by merging

the identical branches of K +. So, let ' be the following equivalence relation on W+:

u ' v ⇐⇒ K +
u and K +

v are isomorphic

Define the Kripke model K +' = 〈W,≤, V 〉 as follows:

• W = W+/'

• [u] ≤ [v] ⇐⇒ ∃u′ ≥+ u : u′ ' v

• V ([u]) = V +(u)

We have yet to establish (a) that ≤ is a partial order on W+,

(b) that V is indeed a function and (c) that V satisfies the monotonicity condition. But

first, we list some properties that interconnect the two models and derive from the notion of

model–isomorphism.

Lemma 2.31. Let v, w be nodes of K +. Then,

v ' w ⇒ V +(v) = V +(w) (2.3)

v ' w ⇒ (∀w′ ≥+ w)(∃v′ ≥+ v) w′ ' v′ (2.4)

v ≤+ w ⇒ [v] ≤ [w] (2.5)

[v] < [w] ⇒ ∃v′ >+ v : v′ ' w (2.6)

v ≤ v′ ≤ v′′ & v ' v′′ ⇒ v ' v′ ' v′′ (2.7)

Now, we turn to prove that K +' is indeed a well–defined Kripke model.

(a) ≤ is a partial order.

Reflexivity Trivial

Antisymmetry Assume that [u] ≤ [v] and [v] ≤ [u]. Since two equivalence classes are

either equal or disjoint, it suffices to show that u ' v. By definition, there are nodes

u′ ≥+ u and v′ ≥+ v such that u′ ' v and v′ ' u.
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)))i)i)i)i)i)i)i)i)i)i)i)i
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u′ ' v and v ≤+ v′, therefore there exist by (2.4) a u′′ ≥+ u′ such that u′′ ' v′. Then,

v′ ' u′′ ⇒ u ' u′′
(2.7)
=⇒ u ' u′ ⇒ u ' v

Transitivity Assume that [u] ≤ [v] and [v] ≤ [w]. Hence there are nodes u′ ≥+ u and

v′ ≥+ v such that u′ ' v and v′ ' w.
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u′ ' v and v ≤+ v′, therefore there exist by (2.4) a u′′ ≥+ u′ such that u′′ ' v′, hence

u′′ ' w and so [u] ≤ [w].

(b) Let u, v be '–equivalent nodes of K +. Then

V ([u]) = V +(u)
(2.3)
= V +(v) = V ([v])

(c) Assume that [u] ≤ [v], hence there is a node u′ ≤+ u such that u′ ' v. Then

V ([u]) = V +(u) ⊆ V +(u′) = V ([u′]) = V ([v])

Finally, observe that the surjective mapping u 7→ [u] is a bounded morphism, as prop-

erty (2.5) and the definitions of V and ≤ verify. Therefore K + and K +' are equivalent, by

theorem 2.18.

2.5 Set tight predecessor

In order to show that an intermediate logic L has certain extension properties we will usually

have to construct a model of L by gluing together given models of L using the Smorynski

operator. In general, the L–provable formulas are not forced downwards in the new root, so

we have to search for an additional condition, the satisfaction of which will guarantee that

the extended model is indeed a model of L. There is where the notion of tight predecessor

emerges. Its exact definition arose in a reversed way; it is the notion for which theorem 2.33

holds.

Definition 2.32. Let L be an intermediate logic and let X1, . . . , Xn be L–saturated sets of

propositional formulas. The set Y is a (set) tight predecessor of X1, . . . , Xn in L if

1. Y is L–saturated
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2. Y ⊆
n⋂

i=1
Xi

3. for every L–saturated set Y ′ ⊃ Y there exists an i such that Xi ⊆ Y ′

Theorem 2.33 (Tight Predecessor Property). Consider models K1, . . . , Kn of an interme-

diate logic L such that there exists a tight predecessor Y of their theories in L. Then

Th((
∑

Ki)Y ) = Y

Proof. Let M = (
∑

Ki)Y . The proof proceeds by induction on the construction of an arbi-

trary formula ϕ. The basis is true by definition.

∧ M |= ϕ1 ∧ ϕ2 ⇐⇒ M |= ϕ1 and M |= ϕ2

⇐⇒ ϕ1 ∈ Y and ϕ2 ∈ Y [by the induction hypothesis]
⇐⇒ ϕ1 ∧ ϕ2 ∈ Y [because Y is closed under deduction in L]

∨ M |= ϕ1 ∨ ϕ2 ⇐⇒ M |= ϕ1 or M |= ϕ2

⇐⇒ ϕ1 ∈ Y or ϕ2 ∈ Y [by the induction hypothesis]
⇐⇒ ϕ1 ∨ ϕ2 ∈ Y [because Y is L–saturated]

→ (ϕ1 → ϕ2) ∈ Y ⇒ (ϕ1 → ϕ2) ∈ Th(Ki), for all i ≤ n
⇒ Ki |= ϕ1 → ϕ2, for all i ≤ n
⇒ M |= ϕ1 → ϕ2 [because Y is closed under deduction in L and

by the induction hypotheses for ϕ1 and ϕ2]

Now, assume that M |= ϕ1 → ϕ2 and let Y ′ ⊇ Y be an L–saturated set that contains

ϕ1. By theorem 1.34, it suffices to show that ϕ2 ∈ Y ′.

If Y ′ = Y then using the induction hypotheses for ϕ1, ϕ2 we get that

ϕ1 ∈ Y ′ ⇒ M |= ϕ1 ⇒ M |= ϕ2 ⇒ ϕ2 ∈ Y ′

If Y ′ ⊃ Y then there is an i ≤ n such that Th(Ki) ⊆ Y ′, thus ϕ1 → ϕ2 ∈ Y ′ and so

ϕ2 ∈ Y ′.

Corollary 2.34. Under the hypotheses of theorem 2.33, (
∑

Ki)Y is a model of L.

Proof. L̀ ϕ ⇒ Y L̀ ϕ ⇐⇒ ϕ ∈ Y ⇐⇒ (
∑

Ki)Y |= ϕ

2.5.1 The construction of a tight predecessor

Definition 2.35. Let X be a set of formulas. Then IX = {ϕ → ψ | ϕ /∈ X and ψ ∈ X}

Lemma 2.36. IX ⊆ Cn(X), for every set of formulas X, therefore IX ⊆ X if X is closed

under deduction in IPC.
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Proof.

ϕ → ψ ∈ IX ⇒ ψ ∈ X ⇒ ψ ∈ Cn(X) ⇒ ϕ → ψ ∈ Cn(X)

Lemma 2.37. Let L be an intermediate logic, X, Y be sets of formulas such that Y is

strongly L–saturated in X and ϕ, ψ be formulas such that Y ∪{ϕ∨ψ} is strongly L–saturated

in X. Then at least one of Y ∪ {ϕ} or Y ∪ {ψ} is strongly L–saturated in X.

Proof. Assume that Y ∪{ϕ∨ψ} is strongly L–saturated in X and Y ∪{ϕ} is not strongly L–

saturated in X, so there are B1, . . . , Bn none of which belongs to X such that Y ∪{ϕ} L̀

n∨
i=1

Bi.

Let A1, . . . , Am be formulas such that Y ∪ {ψ} L̀

m∨
i=1

Ai.
n∨

i=1
Ai ∨

n∨
i=1

Bi is derived in L from

Y ∪ {ϕ∨ψ}, as it is derived in L by both Y ∪ {ϕ} and Y ∪ {ψ}. Therefore, since no Bi is in

X, there is an i ≤ m such that Ai is in X, hence Y ∪ {ψ} is strongly L–saturated in X.

Theorem 2.38 (Tight Predecessor Construction). Let L be an intermediate logic, X1, . . . , Xn

be L–saturated sets of formulas and X =
n⋂

i=1
Xi. If there is a Y0 ⊇ IX which is strongly L–

saturated in X, then there exists a tight predecessor Y ⊇ Y0 of X1, . . . , Xn in L.

Proof. Let ξ0, ξ1, . . . be an enumeration of all formulas in which each formula appears in-

finitely often. Given Y0 satisfying the hypotheses, we define inductively a sequence of sets of

formulas Y0 ⊆ Y1 ⊆ . . . as follows:

ξi ∈ Yi+1 ⇐⇒ Yi ∪ {ξi} is strongly L–saturated in X

Define Y =
⋃

i Yi and observe that Y is strongly L–saturated in X, since each Yi is strongly

L–saturated in X, hence Y ⊆ X by theorem 1.33.

We will show that Y is L–saturated, so assume that Y L̀ A ∨B, hence there is an i such

that Yi L̀ A ∨ B. Remember that each formula appears infinitely often in the enumeration

of formulas we chose, so there are indices a, b, k such that ξa ≡ A, ξb ≡ B, ξk ≡ A ∨ B and

k > a ≥ i, k > b ≥ i. Yk ∪{A∨B} is strongly L–saturated in X, since Yk is and Yk L̀ A∨B,

therefore Yk ∪ {A} or Yk ∪ {B} is strongly L–saturated in X by lemma 2.37, hence Ya ∪ {A}
or Yb ∪ {B} is strongly L–saturated in X. Therefore A or B belongs to Y .

Consider an L–saturated Y ′ ⊃ Y . Let ϕ ∈ Y ′ \ Y and let i be an index such that

ξi ≡ ϕ. If Y ∪ {ϕ} were strongly L–saturated in X, then so would be its subset Yi ∪ {ϕ},
therefore ϕ would be in Yi+1, hence in Y contrary to the assumption. Hence Y ∪ {ϕ} is not

strongly L–saturated in X, so there exist A1, . . . , Ak none of which belongs to X such that

Y ∪ {ϕ} L̀

k∨
i=1

Ai. Since Y ′ is L–saturated and Y ∪ {ϕ} ⊆ Y ′, it follows that for some j,

Aj ∈ Y ′ , thus Aj ∈ Y ′ \X.

Towards a contradiction, assume that there exists an L–saturated Y ′ ⊃ Y such that

Xi * Y ′ for all i ≤ n, hence for each i ≤ n there is a formula Bi ∈ Xi \ Y ′. Therefore
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n∨
i=1

Bi ∈ X \ Y ′, since X and Y ′ are closed under deduction in L, thus Aj →
n∨

i=1
Bi ∈ IX ,

where Aj is the formula in Y ′ \X of the previous part of the proof. But IX ⊆ Y0 ⊆ Y ⊆ Y ′

and Y ′ is closed under deduction in L, so
n∨

i=1
Bi ∈ Y ′, contradicting the L– saturation of

Y ′.

A converse also holds.

Corollary 2.39. Consider L–saturated sets X1, . . . , Xn and let X =
n⋂

i=1
Xi. Then the fol-

lowing are equivalent:

• There exists a tight predecessor of X1, . . . , Xn in L

• IX is strongly L–saturated in X

Proof. ⇒) First, we will show that IX ⊆ Y , where Y is a tight predecessor of X1, . . . , Xn

in L. So, let ϕ → ψ ∈ IX and let Y ′ ⊇ Y be an L–saturated set that contains ϕ. By

theorem 1.34 it suffices to show that ψ ∈ Y ′. Y ′ cannot be equal to Y , because it contains

ϕ, while Y does not, as a subset of X. So Y ′ ⊃ Y , hence there exists an i such that Xi ⊆ Y ′.

ψ ∈ X ⊆ Xi ⊆ Y ′, so ψ ∈ Y ′.

Now, consider formulas ξ1, . . . , ξn such that IX L̀

n∨
i=1

ξi, hence Y L̀

n∨
i=1

ξi. Y is L–saturated

therefore there is a ξi in Y , thus in X.

⇐) By theorem 2.38.

It is already mentioned that the above results will be used extensively in the following

sections in order to prove that an intermediate logic L has an extension property. The sketch

of those proofs is the following:

1. a preceding lemma will establish that the hypothesis of theorem 2.38 is satisfied,

2. thus (the proof of) theorem 2.38 will construct a tight predecessor,

3. which will be used by theorem 2.33 and corollary 2.34 to construct an extended model

of L.

We end this section with a final remark. The tight predecessor, if any, is not in general

unique. It is therefore possible for a tight predecessor to be suitable for our purposes, whereas

another one is not. Cases where selection is involved occur when the process is iterated more

than once, i.e. when we would like to obtain a tight predecessor of a tight predecessor, see

figure 4. Such an example is lemma 4.15 and its proof shows a possible solution. Namely,

to direct the construction of the first tight predecessor by including a specific set of formulas

∆, apart from IX , to the initial set Y0. In this way, you will be assured that the formulas in

∆ are also contained in the tight predecessor. This example shows that theorem 2.38 should

be considered as an algorithm. Given a finite collection of L–saturated sets X1, . . . , Xn, its
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X0

X1 X2 Xn

Z

?

Y

Y’

...

Figure 4: Selection of tight predecessors. While both Z and Y are
tight predecessors of X1, . . . , Xn, Y is preferable since it has a tight
predecessor with X0, whereas Z has not.

input is a set Y0 which is strongly L–saturated in
n⋂

i=1
Xi and its output is a tight predecessor

Y of X1, . . . , Xn in L, that is a superset of Y0.

2.6 AR–models

Rosalie Iemhoff defined in [Iem01b] a class of models characterising the AR–proof system,

being thus closely related to the admissible rules of intuitionistic propositional logic.

Definition 2.40. A node u of a Kripke model K is a (node) tight predecessor of a finite

collection of nodes u1, . . . , un of K if

1. ∀i : u ≤ ui (henceforth, this will be denoted as u ≤ u1, . . . , un)

2. (∀v > u)(∃i)(ui ≤ v)

Definition 2.41. A Kripke model K is an AR–model if every finite collection u1, . . . , un of

nodes of K has a tight predecessor in K.2

In contrast to the well-known classes of models, like trees or linear models, the AR–models

are defined by a technical property which does not provide insight into their form. Their links

with the canonical model and the classes of models with the extension property established

below, indicate high complexity and dense connectivity. However, we are not able yet to

visualise them.

Definition 2.42. A set of formulas is adequate if it is closed under subformulas.

Theorem 2.43.

1. For every stable class with the extension property K of finite rooted Kripke models

there exists an AR–model M equivalent to K

2The original definition also included that an AR–model should be rooted.
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2. For every AR–model M and for every finite, adequate set S there exists a stable class

with the extension property K of finite rooted models such that

Th(K ) ∩ S = Th(M) ∩ S

Proof.

1. Consider M and S satisfying the hypotheses. If Th(M) ⊇ S then we define K = ∅,
which is trivially a stable class with the extension property and its theory is ForL,

therefore

Th(M) ∩ S = S = Th(K ) ∩ S

Now, assume that Th(M) + S and define K as the class of all finite rooted submodels

K of M satisfying the condition:

(∀u ∈ K)(Th(Ku) ∩ S = Th(Mu) ∩ S) (2.8)

By assumption there is a formula ϕ ∈ S such that M |6= ϕ. Theorem 2.25 constructs

a finite rooted submodel of M that satisfies (2.8) and does not satisfy ϕ. Hence, K is

not empty and does not satisfy ϕ, therefore by contrapositive reasoning Th(K ) ∩ S ⊆
Th(M)∩S. Furthermore, Th(M) ⊆ Th(K ) since K contains generated submodels of

M , therefore Th(M) ∩ S = Th(K ) ∩ S.

K is stable, since if a model K satisfies (2.8) then every generated submodel Ku of it

also satisfies this condition.

As far as the extension property is concerned, consider models K1, . . . , Kn in K and let

u be the tight predecessor in M of their roots. Q = (
n∑

i=1
Ki)V (u) is a well–defined finite

rooted submodel of M . Moreover, every successor of u satisfies (2.8). A straightforward

induction on the construction of the arbitrary formula ϕ in S shows that u does the

same.

2. Consider a stable class with the extension property K of finite rooted Kripke models

and let K +' be the model obtained by the method described in § 2.4. Let [u1], . . . , [un]

be nodes of K +' ; remember that each ui is equal to 〈αi, xi〉, where xi is a node of the

model Kαi contained in K . The stability of K implies that each (Kαi)xi is in K ,

hence there is a variant K of
n∑

i=1
(Kαi)xi in K , since K has the extension property.

Let r be the isomorphic copy of the root of K in K +; we will show that [r] is the tight

predecessor we are looking for.

First, note that [r] ≤ [u1], . . . , [un], by property (2.5). Now consider a [v] > [r]. There

exists, by (2.6), a r′ >+ r such that r′ ' v. The fact that r is tight predecessor of

u1, . . . , un in K + implies that for some i : ui ≤+ r′. Therefore [ui] ≤ [r′], by (2.5).
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Definition 2.44. A set X of propositional formulas is closed under the AR–proof system if

for all formulas ϕ, ψ

ϕ ∈ X and AR ` ϕ B ψ ⇒ ψ ∈ X

Theorem 2.45. If S is an IPC–saturated set closed under the AR–proof system then KS is

an AR–model, where K is the canonical model of IPC.

Proof. The key observation is that since the domain of K is the set of all IPC–saturated sets,

the node tight predecessor coincides with the set tight predecessor in this model. So, let

X1, . . . , Xn be IPC–saturated supersets of S and define X =
n⋂

i=1
Xi and Y0 = S∪IX . Observe

that S ⊆ Y0 ⊆ X. In order to construct a tight predecessor Y ⊇ S of X1, . . . , Xn, it suffices

by theorem 2.38 to prove that Y0 is strongly IPC–saturated in X.

So, assume that Y0 `
k∨

i=1
ϕi. Therefore there are formulas E1 → F1, . . . , Em → Fm ∈ IX

such that S `
m∧

i=1
(Ei → Fi) →

k∨
i=1

ϕi. Define A =
m∧

i=1
(Ei → Fi) and observe that

A →
k∨

i=1
ϕi

m∨
i=1

(A → Ei) ∨
k∨

i=1
(A → ϕi)

is an instance of the Vmk rule. The fact that S an IPC–saturated set closed under the AR–

proof system along with theorem 1.28 imply that there is an i ≤ m such that A → Ei ∈ S or

there is a j ≤ k such that A → ϕj ∈ S. Furthermore, X is a closed under deduction in IPC

superset of S that contains A, therefore, either there is an i ≤ m such that Ei ∈ X or there

is a j ≤ k such that ϕj ∈ X. But the first is impossible by the definition of Ei, hence there

is a j ≤ k such that ϕj ∈ X.

This theorem indicates the high correlation between the AR–proof system and the AR–

models and it justifies their common name. Moreover, the complexity of the canonical model

is reflected upon the AR–models, revealing once more their intricate nature.

2.7 Bounded bisimulations

2.7.1 Restriction into finite language

Definition 2.46. Consider a finite set of propositional variables ~p.

• The language L(~p)

– The alphabet of L(~p) is the same as that of language L defined in § 1.1, but

restricted to the propositional variables of ~p. In other words, VarL(~p) = ~p
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2.7 Bounded bisimulations

– The formulas of L(~p) are defined analogously and its set is denoted by ForL(~p)

– A formula ϕ is over ~p if ϕ ∈ ForL(~p)

• Kripke models over ~p

– The restriction of a model 〈W,≤, V 〉 over ~p is the model 〈W,≤, V ′〉, where the

image of every node u ∈ W under the assignment V ′ : W → P(~p) is

V ′(u) = V (u) ∩ ~p

– The ~p–theory of a Kripke model K is the set of formulas over ~p that are valid in

K. In other words,

~p–Th(K) = Th(K) ∩ ForL(~p)

– A Kripke model 〈W,≤, V 〉 is over ~p if the variables forced in its nodes are among

those of ~p, i.e. if

∀u ∈ W : V (u) ⊆ ~p

– The class of Kripke models over ~p of a formula ϕ is denoted by Mod~p(ϕ) or by

mere Mod(ϕ) if it is obvious the set of propositional variables we are referring to

Theorem 2.47. Let ~p be a finite set of propositional variables.

1. Consider a Kripke model K and let K ′ be its restriction over ~p. Then K and K ′ have

the same ~p–theory.

2. Consider a class K of Kripke models and let K ′ be the class of the restrictions over ~p

of models in K . Then,

(a) the two classes have the same ~p–theory

(b) if K has the extension property, then so does K ′

(c) if K is stable, then so is K ′

3. For all formulas ϕ, ψ over ~p

ϕ ` ψ ⇐⇒ Mod~p(ϕ) ⊆ Mod~p(ψ)

Proof. The first is shown by induction on the arbitrary formula over ~p, the second is trivial

and the last is a corollary of the completeness theorem 2.26.
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2.7.2 Bounded bisimulations

In this section we turn our attention to another kind of equivalence, wherein we are no longer

interested in models with the same theory, but in models satisfying the same formulas of a

certain complexity. Two equivalent definitions of the same notion are presented; the first is

in terms of back–and–forth conditions and the second in terms of Ehrenfeucht games.

The back–and–forth method was invented by Roland Fräıssé in order to study elementary

equivalence in model theory and it was later formulated as a game by Andrzej Ehrenfeucht.

Kit Fine in [Fin74] adapted this technique to the context of Kripke semantics for modal logic

and Silvio Ghilardi in [Ghi99] presented an analogue for intuitionistic propositional logic.

Definition 2.48 (back–and–forth conditions).

Consider two finite rooted Kripke models K, K ′ over a finite set of propositional variables

~p. Let r, r′ be respectively their roots. The relations ∼n (n–bisimilarity) and ≤n (n–

subsumption) are defined inductively as follows

K ≤0 K ′ ⇐⇒ V (r) ⊇ V ′(r′)

K ∼0 K ′ ⇐⇒ K ≤0 K ′ and K ′ ≤0 K

K ≤n+1 K ′ ⇐⇒ (∀u ∈ K)(∃u′ ∈ K ′)(Ku ∼n K ′
u′)

K ∼n+1 K ′ ⇐⇒ K ≤n+1 K ′ and K ′ ≤n+1 K

The relation ∼ω defined as

K ∼ω K ′ ⇐⇒ ∀n K ∼n K ′

is a bisimulation.

Definition 2.49 (Ehrenfeucht games).

Let ~p be a finite set of propositional variables. Consider two finite rooted Kripke models

K, K ′ over ~p and fix a number n ≥ 13. The n–round Ehrenfeucht game on K, K ′ has two

players, usually named Spoiler and Duplicator, and is played as follows:

• At the first round Spoiler selects a node in one model, Duplicator a node in the other.

• At the (i + 1)–th round, Spoiler selects one of the two models, name it M1 and let M2

be the other. Let w1, w2 be the nodes chosen from M1 and M2 respectively at the

previous round. Then, Spoiler picks a node ≥1 w1 and Duplicator picks a node ≥2 w2.

In this way sequences u1, . . . , un, u′1, . . . , u
′
n of nodes of K and K ′ respectively are cre-

ated. Duplicator wins if he succeeds in keeping the forcing of propositional variables pairwise

identical, i.e. if V (ui) = V ′(ui), for every i ≤ n. Otherwise, Spoiler wins.

3We avoid defining a 0–round game, since in that game the players could not actually play. Besides,
0–bisimilarity is checked by just looking at the propositional variables forced at the roots.
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2.7 Bounded bisimulations

It is not hard to prove that for n ≥ 1 the Kripke models K, K ′ are n–bisimilar if and

only if Duplicator has a winning strategy in the n–round game on K, K ′. Moreover, the

relation K ≤n K ′ is characterised similarly by a variant of the above game, in which Spoiler

is required to select a node from K at the first round.

We proceed to define a measure of complexity for formulas and state the main result

about bounded bisimulations.

Definition 2.50. The complexity (or the implicational degree) of a formula ϕ is inductively

defined as

• c(p) = 0

• c(ϕ1 ◦ ϕ2) = max{c(ϕ1), c(ϕ2)}, where ◦ ∈ {∧,∨}

• c(ϕ1 → ϕ2) = max{c(ϕ1), c(ϕ2)}+ 1

In other words, c(ϕ) is the maximum number of nested implications in ϕ.

Theorem 2.51 (Ghilardi). Let ~p be a finite set of propositional variables. Consider two

finite rooted Kripke models K, K ′ over ~p and fix a number n ≥ 0.

1. K ≤n K ′ ⇐⇒ for every formula ϕ over ~p with c(ϕ) ≤ n

K ′ |= ϕ ⇒ K |= ϕ

2. K ∼n K ′ ⇐⇒ for every formula ϕ over ~p with c(ϕ) ≤ n

K ′ |= ϕ ⇐⇒ K |= ϕ

Proof. In [Ghi99].

We end this section by grouping some results into a theorem.

Definition 2.52. Let ~p be a finite set of propositional variables and K a class of finite

rooted Kripke models over ~p. Fix a number n. 〈K 〉n is the class of the finite rooted Kripke

models M over ~p for which there exists a model K ∈ K such that M ≤n K. In other words

〈K 〉n is the smallest ≤n–closed class of Kripke models extending K .

Note that for every formula ϕ over ~p and for every n ≥ c(ϕ),

K |= ϕ ⇒ 〈K 〉n |= ϕ

Theorem 2.53 (Ghilardi). Let ~p be a finite set of propositional variables and consider a

class K of finite rooted Kripke models over ~p.

1. K is downwards closed under ≤n if and only if K = Mod~p(ϕ) for some formula ϕ

over ~p with c(ϕ) ≤ n.

2. If K is stable and has the extension property then so does 〈K 〉n for every n.

Proof. In [Ghi99].
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3 INTUITIONISTIC PROPOSITIONAL LOGIC

3 Intuitionistic propositional logic

3.1 Projectivity

3.1.1 Substitutions as mappings

In this section we will elaborate on the substitution construction used in § 2.1.3 on page 17,

therefore we repeat the definition 2.9.

Definition 3.1. Given a substitution σ and a Kripke model K, we construct the Kripke

model σ∗(K) based on the frame of K and with assignment Vσ defined as:

p ∈ Vσ(u) ⇐⇒ Ku |= σ(p)

for every propositional variable p and every node u of K. The monotonicity condition K

satisfies implies that σ∗(K) is a well–defined Kripke model.

If we consider a class of Kripke models as a kind of an algebraic space S, then each

formula A may be considered as a subspace of S; the subspace containing the models that

satisfy A. In this context, a substitution is a mapping between such subspaces.

Theorem 3.2. Let σ, τ be substitutions, A be a formula and K be a Kripke model. Then,

1. (σ∗(K))u = σ∗(Ku)

2. K |= σ(A) ⇐⇒ σ∗(K) |= A

3. (στ)∗(K) = τ∗(σ∗(K))

4. σ∗(K) = τ∗(K) ⇐⇒ for all variables p : K |= σ(p) ↔ τ(p)

Proof.

1. (σ∗(K))u |= p ⇐⇒ K |= σ(p) ⇐⇒ σ∗(Ku) |= p

2. By a straightforward induction on the construction of the formula A

3. (στ)∗(K) |= p ⇐⇒ K |= (στ)(p)

⇐⇒ K |= σ(τ(p))

⇐⇒ σ∗(K) |= τ(p)

⇐⇒ τ∗(σ∗(K)) |= p

4. σ∗(K) = τ∗(K) ⇐⇒ for all u ∈ K, for all variables p : (σ∗(K)u |= p ⇔ τ∗(K)u |= p)

⇐⇒ for all u ∈ K, for all variables p : (Ku |= σ(p) ⇔ Ku |= τ(p))

⇐⇒ for all u ∈ K, for all variables p : Ku |= σ(p) ↔ τ(p)

⇐⇒ for all variables p : K |= σ(p) ↔ τ(p)
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In view of theorem 3.2.1 the term σ∗(K)u is not ambiguous. We will also write σ∗τ∗(K)

instead of σ∗(τ∗(K)) and abusing the notation we will denote with V (K) the set of proposi-

tional variables forced in the root of a rooted Kripke model K.

Definition 3.3. A unifier σ of a formula A is a substitution such that ` σ(A). A formula is

unifiable if it has at least one unifier.

Theorem 3.4. For every formula A the following are equivalent:

1. A is unifiable

2. 0 ¬A

3. there exists a one–node model of A

4. 0CPC¬A

Proof. 1 → 2) Because IPC is consistent and closed under substitutions, as an intermediate

logic

2 → 3) Since IPC is complete with respect to finite models, see corollary 2.26, there

exists a finite model K that does not satisfy ¬A. Therefore any one–node model generated

by a leaf of K satisfies A

3 → 4) Trivial

4 → 1) Since 0CPC¬A, there exists a variable–free substitution σ such that C̀PC σ(A). By

theorem 1.7, either σ(A) or ¬σ(A) are derivable in IPC, therefore ` σ(A).

3.1.2 Projective substitutions

Definition 3.5. Let A be a formula and σ be a substitution.

1. σ is a projective substitution for A if for every variable p

A ` σ(p) ↔ p

2. A is projective if there exists a projective unifier of A

Theorem 3.6 (Properties of projective substitutions). Let σ be a projective substitution for

the formula A. Then,

1. For every formula B : A ` σ(B) ↔ B (a generalisation of the projectivity condi-

tion)

2. A ` σ(A)

3. If K |= A then σ∗(K) = K

4. The class of projective substitutions for A is closed under composition
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Proof.

1. A straightforward induction on the construction of B, based on the fact that the basis

holds by definition and the substitution commutes with the connectives

2. By the previous item

3. If K |= A then for every propositional variable p : K |= σ(p) ↔ p, therefore σ∗(K) = K,

by applying theorem 3.2.4 for τ equal to the identity substitution.

4. If τ is also a projective substitution for A then,

A ` τ(p) ↔ p

therefore,

σ(A) ` σ(τ(p)) ↔ σ(p)

Since A ` σ(A) by a previous item, we can rewrite this as

A ` σ(τ(p)) ↔ σ(p)

and so since A ` σ(p) ↔ p

A ` σ(τ(p)) ↔ p

Theorem 3.7. Let C be a projective formula and let σ be a projective unifier of C. Then C

is an axiom for σ, which means that for every formula A,

` σ(A) ⇐⇒ C ` A

Proof. The left–to–right holds because

` σ(A) ⇒ C ` σ(A) ⇒ C ` A

and the right–to–left since

C ` A ⇒ σ(C) ` σ(A)

` σ(C)

}
⇒ ` σ(A)
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3.1.3 θ–substitutions

Definition 3.8. Let A be a formula and a be a set of propositional variables. Then, the

substitution θ a
A is defined as

θ a
A(p) =

{
A → p, if p ∈ a

A ∧ p, if p /∈ a

Theorem 3.9 (Properties of θ–substitutions). Let A be a formula, a be a set of propositional

variables and K be a Kripke model.

1. Every θ a
A–substitution is a projective substitution for A

2. ` θ a
A(θ a

A(p)) ↔ θ a
A(p), for every propositional variable p

3. (θ a
A)∗(θ a

A)∗(K) = (θ a
A)∗(K)

Proof.

1. If p ∈ a then

A ` θ a
A(p) ↔ p ⇐⇒ A ` (A → p) ↔ p

and if p /∈ a then

A ` θ a
A(p) ↔ p ⇐⇒ A ` (A ∧ p) ↔ p

Both are derivable in IPC.

2. If p ∈ a then

` θ a
A(θ a

A(p)) ↔ θ a
A(p) ⇐⇒ ` (θ a

A(A) → (A → p)) ↔ (A → p)

The left–to–right implication is shown using the deduction theorem and the fact that

A ` θ a
A(A), established in theorem 3.6. The right–to–left is an axiom of IPC.

If p /∈ a then

` θ a
A(θ a

A(p)) ↔ θ a
A(p) ⇐⇒ ` θ a

A(A) ∧A ∧ p ↔ A ∧ p

Now, the left–to–right implication is an axiom of IPC and the right–to–left is shown

using A ` θ a
A(A).

3. Corollary of the above item by theorem 3.2.4

The θ try to make models satisfy A. Therefore, they leave intact, identical the models

that do satisfy A nad

Theorem 3.10. Let A be a formula, a be a set of propositional variables and K be a rooted

Kripke model. Define M = (θ a
A)∗(K).
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1. If K |= A then M = K

2. If K |6= A then one of the following holds:

(a) V (M) = a

(b) V (M) ⊂ a and for all propositional variables p ∈ a \V (M) there is a node u of K

different from the root such that Ku |= A and Ku |6= p

Proof.

1. By theorems 3.6.3 and 3.9.1.

2. Let p be a propositional variable in V (M).

p ∈ V (M) ⇐⇒ (θ a
A)∗(K) |= p ⇐⇒ K |= θ a

A(p)

Since K does not satisfy A, θ a
A(p) cannot be A∧ p, therefore θ a

A(p) ≡ A → p and p ∈ a.

Now, let q be a propositional variable in a \ V (M), thus θ a
A(q) ≡ A → q and M |6= q.

Therefore, K |6= A → q, so a node u of K forces A but not q. Moreover, u is different

from the root, since K does not satisfy A.

Corollary 3.11. Let A be a formula, a be a set of propositional variables and K be a one-node

Kripke model. Then,

K |6= A ⇒ V ((θ a
A)∗(K)) = a

Corollary 3.12. Let A be a formula and K be a rooted Kripke model which does not satisfy

A. If there is a variant K ′ of K which satisfies A, then (θ V (K′)
A )∗(K) = K ′.

Proof. Define M = (θ V (K′)
A )∗(K). Observe that K, K ′ and M are all based on the same

frame, name it F . For every node u of F different from the root, it holds that Ku = K ′
u |= A,

therefore Mu = Ku = K ′
u, by theorem 3.6.3. By theorem 3.10, either V (M) = V (K ′) and so

M = K ′, or there is a propositional variable p that is satisfied by K ′ and it is refuted by a

node u of K different from the root, which is impossible since K and K ′ are variants.

3.1.4 Projectivity and the extension property

Definition 3.13. Let A be a formula over a finite set of propositional variables ~p. Let

a1, a2, . . . , as be a linear ordering of the subsets of ~p such that

ai ⊆ aj ⇒ i ≤ j (3.1)

For each i ≤ s, we define the substitution θA ↓ i = θ as
A . . . θ ai

A . The substitution θA is defined

as θA ↓ 1.
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Note that by theorem 3.6.4 θA is a projective substitution for A as a composition of

projective substitutions, and that θ ∗A = (θ a1
A )∗ . . . (θ as

A )∗ by theorem 3.2.

Theorem 3.14. Let A be a formula over a finite set of propositional variables ~p. Then, the

following are equivalent:

1. A is projective

2. Mod~p(A) has the extension property 4

3. θA is a unifier for A

Proof. 1 → 2) Assume that A is a projective formula; let σ be its projective unifier. Let

K1, . . . , Kn be finite rooted models over ~p that satisfy A. Then,

` σ(A) ⇒
n∑

i=1

Ki |= σ(A) ⇒ σ∗(
n∑

i=1

Ki) |= A

therefore by theorem 3.2.1

(
n∑

i=1

σ∗(Ki))X |= A

where X = {p ∈ ~p |
n∑

i=1
Ki |= σ(p)}. By theorem 3.6.3 and the fact that each Ki satisfies A

we have that

(
n∑

i=1

Ki)X |= A

So, Mod~p(A) has the extension property.

2 → 3) By theorem 3.2 and the fact that IPC is complete with respect to finite rooted

models, see corollary 2.26, it suffices to establish that for every finite rooted Kripke model

K, (θA)∗(K) is a model of A. We will prove by fan induction on K that for every u ∈ K

there exists an i such that

(θA ↓ i)∗(Ku) |= A

and that if Ku |6= A then i is maximum with that property, i.e for every j > i

(θA ↓ j)∗(Ku) |6= A

Note that the first condition is satisfied by every node u of K that forces A, since then

for every i, (θA ↓ i)∗(Ku) = Ku.

Let u be a leaf of K that does not force A. Since A is unifiable there exists by theorem 3.4

a one–node model that satisfies A. Therefore, there exists a maximum index i such that the

one–node model M defined as

M |= p ⇐⇒ p ∈ ai

4See § 2.7.1 for the definition of Mod~p(A)
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satisfies A. By corollary 3.11 and the fact that i is maximum, we obtain that

(θA ↓ i)∗(Ku) = (θ ai
A )∗(Ku) = M |= A

Let u be a non-terminal node of K that does not force A and let u1, . . . , un be its immediate

successors. By the induction hypothesis for each ui that does not force A there is a ji such

that Mi = (θA ↓ ji)∗(Kui) is a model of A. Moreover, the fact that ji is maximum with

that property implies that V (Mi) ⊆ aji , by theorem 3.10. For each node ui that forces A we

define Mi = Kui , so in any case Mi satisfies A.

Let j = min{ji} and consider N = (θA ↓ j)∗(Ku) (if for every i, Kui |= A, then take N as

Ku). If N |= A then j is a maximum such index since it is equal to a ji, which is maximum

for Kui . If N |6= A then for every i such that Kui |= A we have that

Nui = (θA ↓ j)∗(Kui) = Kui = Mi

and for every i such that Kui |6= A we have that

Nui = (θA ↓ j)∗(Kui)

= (θ aj

A )∗(θ aj+1

A )∗ . . . (θA ↓ ji)∗(Kui) [by the definition of (θA ↓ j)∗]

= (θ aj

A )∗(θ aj+1

A )∗ . . . (Mi) [by the definition of Mi]

= Mi [by theorem 3.10.1 since Mi |= A]

So, N is a model in which A is forced at every node different from the root. The fact that

A has the extension property implies that there exists a variant Q of N that satisfies A; let

aq = V (Q). Observe that since for every i, aq ⊆ V (Mi), then for every ui that does not force

A, aq ⊆ aji , thus aq ⊆ aj and so q ≤ j by equation (3.1).

If there exists an index k such that q < k < j and (θA ↓ k)∗(Ku) |= A, then select the

maximum such index.

Otherwise, consider (θA ↓ q + 1)∗(Ku). Obviously, it is variant of Q that does not satisfy

A. Therefore by corollary 3.12, Q = (θ aq

A )∗(θA ↓ q + 1)∗(Ku) = (θA ↓ q)∗(Ku) and so q is the

index we are looking for.

For the root of K there exists an i such that (θA ↓ i)∗(K) |= A, therefore θ ∗A(K) |= A.

3 → 1) By the definition of θA

3.1.5 Projectivity and admissibility

Definition 3.15. Let A be a formula.

1. A formula B is contained in SA if and only if

(a) B is projective

(b) B ` A
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(c) c(B) ≤ c(A), where ‘c’ is the measure of complexity defined in § 2.7.2

2. A projective approximation ΠA of A is a subset of SA such that

(a) for every formula B ∈ SA, there exists a C ∈ ΠA such that B ` C

(b) if both C1, C2 are contained in ΠA and C1 ` C2, then C1 ≡ C2

Intuitively, ΠA is constructed by ordering the formulas of SA according to ` and then

selecting one formula from each maximal class of provably equivalent formulas in SA.

Therefore, ΠA is unique up to provable equivalence.

Theorem 3.16 (Ghilardi).

1. Every formula A has a finite projective approximation ΠA

2. Every unifier of a formula A is also a unifier of a formula in ΠA

Proof. In [Ghi99]

Definition 3.17. A formula C is stable for admissibility in IPC if for every formula A,

C |∼A ⇐⇒ C ` A

Theorem 3.18 (Ghilardi).

1. Every projective formula C is stable in IPC 5

2. For all formulas A, B,

A |∼ B ⇐⇒ for every C ∈ ΠA : C ` B

Proof.

1. Assume that C |∼A and let σ be a projective unifier of C.

` σ(C) ⇒` σ(A) ⇒ C ` σ(A) ⇒ C ` A

since C ` A ↔ σ(A)

2. ⇒) Assume that A |∼B and let C be a formula in ΠA, therefore C is projective and

derives A.
C ` A ⇒ C |∼A

⇒ C |∼B [by the transitivity of |∼ ]

⇒ C ` B [because C is stable, as projective]

⇐) Let σ be a unifier of A. By theorem 3.16.2, σ is also a unifier of a formula C ∈ ΠA.

By assumption C ` B, therefore ` σ(B).

5In fact, every projective formula is stable in every intermediate logic, see § 4.2.1
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3.1.6 Projectivity and the slash

Theorem 3.19. Let L be an intermediate logic and A a projective formula. Then for all

formulas B, C

L̀ A → B ∨ C ⇒ L̀ (A → B) ∨ (A → C)

Proof. Let σ be a projective unifier of A. So,

L̀ A → B ∨ C ⇒ L̀ σ(A) → σ(B) ∨ σ(C)

⇒ L̀ σ(B) ∨ σ(C) [since ` σ(A)]

Moreover,

A ` σ(B) ↔ B ⇒ ` σ(B) → (A → B) ⇒ L̀ σ(B) → (A → B)

Similarly, we obtain that L̀ σ(C) → (A → C). Therefore, L̀ (A → B) ∨ (A → C).

Corollary 3.20. If A is a projective formula, then for all formulas B, C

` A → B ∨ C ⇒` A → B or ` A → C

Definition 3.21. A set of formulas Γ is e–compact if whenever Γ ` A then there exists a

projective formula E such that Γ ` E and E ` A.6

Theorem 3.22. If a set of formulas Γ is e–compact then for every formula A,

Γ |A ⇐⇒ Γ ` A

Proof. The left–to–right holds by theorem 1.10.1. The other direction is proved by induction

on the construction of formula A. The cases of the propositional variable and the conjunction

are straightforward.

For disjunction, assume that Γ ` B ∨ C. Therefore, there exists a projective formula E

such that Γ ` E and E ` B ∨ C. By corollary 3.20 E ` B or E ` C, so Γ ` B or Γ ` C. By

the induction hypothesis Γ |B or Γ | C, hence Γ |B ∨ C.

For implication, assume that Γ ` B → C and Γ |B. Therefore Γ ` B, by theorem 1.10.1,

so Γ ` C, by modus ponens. Hence Γ | C by the induction hypothesis and so Γ |B → C.

Corollary 3.23. Every projective formula A satisfies A |A.

6The original definition, as produced by Visser in [Vis99], asserts that the formula E has the extension
property rather than it is projective. In view of theorem 3.14, the two notions coincide. In the same article
Visser proved that a set of formulas is e–compact if and only if it has the extension property.
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3.2 The admissible rules of intuitionistic propositional logic

3.2 The admissible rules of intuitionistic propositional logic

Building on Ghilardi’s results presented in [Ghi99], Iemhoff proved in [Iem01b] that the

Visser rules form a basis for admissibility in intuitionistic propositional logic, confirming thus

a conjecture by de Jongh and Visser.

Theorem 3.24 (Iemhoff). For all formulas ϕ, ψ the following are equivalent:

1. ϕ |∼ ψ

2. ψ is satisfied in every stable class of finite rooted Kripke models with the extension

property in which ϕ is satisfied

3. ψ is satisfied in every AR–model in which ϕ is satisfied

4. AR ` ϕ B ψ

5. ϕ `V ψ

Proof.

1 → 2) Assume that ϕ |∼ ψ and let K be a stable class with the extension property

of finite rooted Kripke models in which ϕ is satisfied. Let ~p be the set of propositional

variables of ϕ and ψ and let K ′ be the class containing the models of K restricted over ~p.

By theorem 2.47, K ′ is also a stable class with the extension property of finite rooted Kripke

models. Consider 〈K ′〉c(ϕ). Since it has the extension property by theorem 2.53.2, there

exists by theorem 2.53.1 a formula θ over ~p such that 〈K ′〉c(ϕ) = Mod~p(θ). Furthermore,

theorem 3.14 implies that θ is projective; let σ be its projective unifier. Then,

K |= ϕ ⇒ K ′ |= ϕ [by theorem 2.47]

⇒ 〈K ′〉c(ϕ) |= ϕ [by the remark after definition 2.52]

⇒ Mod~p(θ) |= ϕ [since 〈K ′〉c(ϕ) = Mod~p(θ)]

⇒ θ ` ϕ [by theorem 2.47]

⇒ θ |∼ ψ [since by assumption ϕ |∼ ψ]

⇒ θ ` ψ [since θ is stable in IPC as projective, see theorem 3.18.1]

⇒ Mod~p(θ) |= ψ

⇒ 〈K ′〉c(ϕ) |= ψ [since 〈K ′〉c(ϕ) = Mod~p(θ)]

⇒ K ′ |= ψ [since K ′ ⊆ 〈K ′〉c(ϕ)]

⇒ K |= ψ [by theorem 2.47]

2 → 3) Apply theorem 2.43 to the set S that contains the subformulas of ϕ and ψ.

3 → 4) In fact we will show the contrapositive, so assume that AR 0 ϕ B ψ. In order to

obtain an AR–model which satisfies ϕ and not ψ, it suffices by theorem 2.45 to construct a

closed under the AR–proof system, IPC–saturated set X that contains ϕ and not ψ.
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Let ξ0, ξ1, . . . be an enumeration of all formulas in which each formula appears infinitely

often. We define inductively a sequence X0 ⊆ X1 ⊆ . . . of finite sets of formulas satisfying

the invariant property AR 0
∧

Xi B ψ.

X0 = {ϕ} ξi ∈ Xi+1 ⇐⇒ AR 0
∧

Xi ∧ ξi B ψ

Define X =
⋃

i Xi.

X is closed under the AR–proof system Consider formulas η, θ such that η ∈ X and

AR ` η B θ; hence there is an i such that η ∈ Xi. Select an index j ≥ i such that ξj ≡ θ.

Towards a contradiction, assume that AR ` ∧
Xj ∧ θ B ψ. Then, applying the properties of

theorem 1.31, we obtain that

∧
Xj B

∧
Xj

∧
Xj B η

...
η B θ

Cut∧
Xj B θ

Conj∧
Xj B

∧
Xj ∧ θ

...∧
Xj ∧ θ B ψ

Cut∧
Xj B ψ

which is a contradiction by the invariant property Xj satisfies. Therefore θ is in Xj+1, thus

in X.

X is IPC–saturated Consider formulas η, θ such that X ` η ∨ θ; hence there is an i such

that Xi ` η ∨ θ. Select indices j, k such that k ≥ j ≥ i, ξj ≡ η and ξk ≡ θ. Towards a

contradiction, assume that AR ` ∧
Xj ∧ η B ψ and AR ` ∧

Xk ∧ θ B ψ. Then, applying the

properties of theorem 1.31, we obtain that

∧
Xk B

∧
Xk ∧ (η ∨ θ)

...∧
Xj ∧ η B ψ

∧
Xk ∧ η B ψ

...∧
Xk ∧ θ B ψ

∧
Xk ∧ (η ∨ θ) B ψ

Cut∧
Xk B ψ

which is a contradiction by the invariant property every Xi satisfies. Therefore η ∈ Xj+1 or

θ ∈ Xk+1, thus η or θ is in X.

4 → 5) Apply theorem 1.30 for L = IPC and R = V .

5 → 1) By theorem 1.26.

The importance of this theorem, apart from the apparent fact that it provides a basis for

admissibility, lies in the equivalences established during its proof. First, we get a proof system

for admissibility in IPC, namely AR. Second, admissibility is semantically characterised in

two ways, both related with the extension property. Moreover, a connection with parts of

the canonical model is established. And finally, it leads us to the next result.
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Corollary 3.25. The class of AR–models is not stable.

Proof. Assume that for every IPC–saturated set X, KX is an AR–model. Then for all

formulas ϕ, ψ

ϕ |∼ ψ ⇒ for every AR model K, K |= ϕ ⇒ K |= ψ [by theorem 3.24]

⇒ for every IPC–saturated set X, KX |= ϕ ⇒ KX |= ψ [by assumption]

⇒ for every IPC–saturated set X, ϕ ∈ X ⇒ ψ ∈ X [by theorem 2.22]

⇒ ϕ ` ψ [by theorem 1.34]

which is obviously a contradiction. Therefore, there exists a node X of the canonical model

such that KX is not an AR–model. However, K itself is an AR–model, by lemma 3.29 on

page 51.

3.3 A characterisation of intuitionistic propositional logic

In 1932 Gödel showed that the intuitionistic propositional logic has the disjunction property.

ÃLukasiewicz conjectured in 1952 that no proper consistent extension of IPC has the disjunc-

tion property, therefore this property characterises IPC among the intermediate logics. In

1957 Kreisel and Putnam disproved this conjecture by proving a specific counterexample,

now referred as the Kreisel–Putnam logic, see § 4.1. In 1962 Kleene conjectured that IPC

is characterised in terms of his ‘slash’, a relation with apparent disjunction features, and de

Jongh in 1968 confirmed this conjecture , see § 1.4. In this section we present the charac-

terisation discovered by Iemhoff, see [Iem01a]. In fact, it is a double characterisation. The

first is in terms of the disjunction property plus the admissibility of the Visser rules, thus

filling in the missing part of ÃLukasiewicz’s conjecture. The second is in terms of the extension

property, a semantically defined property extending the disjunction property.

3.3.1 Basic models

Theorem 3.26 (Smorynski). Let K be a finite tree model satisfying the property that each

terminal node t is characterised by a formula θt, in the sense that for every terminal node

z ∈ K

Kz |= θt ⇐⇒ z = t

Then,

1. [Node Characterisation Formulas] For every node u of K there is a formula ψu such

that for every v ∈ K

v ≥ u ⇐⇒ Kv |= ψu

2. [Generated Set Characterisation Formulas] For every generated set S of nodes of K

there is a formula βS such that S = {u ∈ K | Ku |= βS}
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3. [Substitution Property] For every model M based on the frame of K there is a substi-

tution σ such that for every formula ϕ and every node u of their joint frame

Mu |= ϕ ⇐⇒ Ku |= σ(ϕ)

Proof.

1. Let K be a model satisfying the hypothesis. For every node u of K define Tu to be the

set of terminal nodes above u and ψu = ¬¬ ∨
t∈Tu

θt. Then,

Kv |= ψu ⇐⇒ Kv |= ¬¬ ∨
t∈Tu

θt

⇐⇒ ∨
t∈Tu

θt is true at every leaf above v [because K is finite]

⇐⇒ Tu ⊇ Tv

⇐⇒ u ≤ v [because K is a tree–model]

2. Define βS =
∨

u∈S

ψu

3. For every propositional variable p we define σ(p) as βSp , where Sp is the generated set

of nodes of K at which p is true and βSp is its characterising formula defined in the

previous item. The property is proved by induction on the construction of the formula

ϕ. For the basis consider a propositional variable p.

⇒) Let u be a node of M at which p is true. Then ψu is one of the disjuncts of σ(p).

Observe that Ku |= ψu, therefore Ku |= σ(p).

⇐) Let u be a node of K at which σ(p) is true, hence a disjunct of σ(p) is true at

u. So, there is a node v ≤ u in M at which p is true, therefore p is true at u by the

monotonicity condition.

The proofs of the other cases are straightforward and are based on the fact that σ

commutes with the connectives.

Definition 3.27. A model K based on a finite tree is basic if

• A single propositional variable is true at the each leaf and is not true at any other leaf

• the non-terminal nodes do not force propositional variables

Note that every basic model satisfies the hypothesis of theorem 3.26, since each terminal

node is characterised by the propositional variable it forces. The basic models on full, non–

linear trees are singled out because of their following property.
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Theorem 3.28 (Unique Extension). Let n ≥ 2 and let K1, . . . , Kn be basic models on a full

n-ary tree that are disjoint, in the sense that the sets of propositional variables forced in their

leaves are disjoint. Then (
n∑

i=1
Ki)∅ is also a basic model on a full n-ary tree and it is the only

well-defined variant of
n∑

i=1
Ki.

Proof. Obvious

3.3.2 The characterisation

Lemma 3.29 (Iemhoff). Let L be an intermediate logic with the disjunction property in which

the Visser rules are admissible. Then for all n ∈ ω and all L–saturated sets X1, . . . , Xn there

exists a tight predecessor.

Proof. Define X =
n⋂

i=1
Xi and Y0 = IX . Based on corollary 2.39, we will equivalently establish

that Y0 is strongly L–saturated in X. So, assume that Y0 L̀

m∨
i=1

Bi, therefore there are

E1 → F1, . . . , Ek → Fk ∈ IX such that A ≡
k∧

i=1
(Ei → Fi) L̀

m∨
i=1

Bi. Theorem 1.28 verifies the

admissibility of the generalised Visser rules in L, which in turn along with the disjunction

property imply that A L̀ Ei for some i ≤ k or that A L̀ Bi for some i ≤ m. In either case

Ei ∈ X or Bi ∈ X, since for every formula ϕ

A L̀ ϕ ⇒ IX L̀ ϕ ⇒ ϕ ∈ X

But by their definition, no Ei is included in X, therefore there exists an i ≤ m such that Bi

is contained in X.

An immediate corollary of this lemma, already discussed in 3.2, is that the canonical

model of IPC is an AR–model.

Lemma 3.30 (Iemhoff). If the Visser rules are admissible in an intermediate logic L with

the disjunction property then L has the extension property.

Proof. Let K1, . . . , Kn be rooted models of an intermediate logic L satisfying the hypothesis.

By lemma 3.29 there exists a tight predecessor of Th(K1), . . . , Th(Kn) and so by theorem 2.33

we can define a variant of
n∑

i=1
Ki which is a model of L.

Lemma 3.31 (Iemhoff). Every basic model on a full, non–linear tree is a model of every

intermediate logic with the extension property.

Proof. Let L be an intermediate logic with the extension property and consider a basic model

K on a full, non–linear tree. The proof proceeds by fan induction. The leaves generate

classical models, thus models of L. Consider a non–terminal node u and let u1, . . . , un,

be its immediate successors. By the induction hypothesis the submodels Ku1 , . . . ,Kun are
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models of L, therefore Ku is a model of L, as it is the only well-defined variant of
n∑

i=1
Kui by

theorem 3.28 and since L has the extension property up to n.

Lemma 3.32 (Iemhoff). The only intermediate logic satisfying the property that every basic

model on a full, non–linear tree is its model, is IPC.

Proof. Let L be an intermediate logic satisfying the hypothesis. We will show the contrapos-

itive, so assume that there exists a formula ϕ such that 0 ϕ. By corollary 2.30, there exists a

countermodel K of ϕ based on a full, non–linear tree. Consider any basic model M based on

that frame. By assumption M is a model of L. Furthermore, there exists by theorem 3.26,

a substitution σ such that for every formula ψ

K |= ψ ⇐⇒ M |= σ(ψ)

Therefore,

K |6= ϕ ⇒ M |6= σ(ϕ) ⇒ 0L σ(ϕ) ⇒ 0L ϕ

Theorem 3.33 (Iemhoff). For any intermediate logic L the following are equivalent:

1. L has the disjunction property and the Visser rules are admissible in it

2. L has the extension property

3. L = IPC

Proof. Immediate by 1.12, 1.26 3.30, 3.31 and 3.32.

An important corollary of this theorem is 4.1.

3.3.3 Extension property, disjunction property and the Visser rules

In this section we refine the results led to the characterisation of IPC in order to tightly

interconnect extension property, disjunction property and the admissibility of Visser rules.

Lemma 3.34 (Gabbay and de Jongh). Every intermediate logic with the extension property

up to 2 has the disjunction property.

Proof. Consider an intermediate logic L with the extension property up to 2 and towards a

contradiction, assume that there are formulas B, C such that L̀ B ∨ C and 0L B and 0L C.

Let KB, KC be respectively their countermodels. By assumption a variant K of KB + KC is

a model of L. However, K does not satisfy B ∨ C, a contradiction.

Lemma 3.35 (Iemhoff). For every n ≥ 2, the Vn rule is admissible in every intermediate

logic with the extension property up to n.
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Proof. Consider an intermediate logic L with the extension property up to n, where n ≥ 2.

By lemma 3.34 L has the disjunction property, so it suffices to show that the restricted Vn

rule is admissible in L. So, let L̀ A → B ∨ C, where A ≡
n∧

i=1
(Ei → Fi) and towards a

contradiction assume that 0L
n∨

i=1
(A → Ei) ∨ (A → B) ∨ (A → C), hence 0L A → Ei for

every i ≤ n, 0L A → B and 0L A → C. Therefore, there exist models K1, . . . ,Kn,KB, KC

of L that satisfy A and are such that Ki |6= Ei for every i ≤ n, KB |6= B and KC |6= C.

By assumption a variant K ′ of
n∑

i=1
Ki is a model of L. Observe that A is valid in all the

successors of the root of K ′ and that if there were an i ≤ n such that K |= Ei, then Ki |= Ei,

a contradiction. Therefore K ′ |= A. Applying twice the same syllogism we obtain a variant

K ′′ of (K ′ + KB) + KC which is a model of L and satisfies A. However, K ′′ obviously does

not satisfy B ∨ C, a contradiction.

Lemma 3.36 (Iemhoff). Let L be an intermediate logic with the disjunction property in which

Vn is admissible. Then for all L–saturated sets X1, . . . , Xn there exists a tight predecessor.

Proof. The proof is similar to that of lemma 3.29. The sole difference lies in the fact that

although Y0 L̀

m∨
i=1

Bi implies that
k∧

i=1
(Ei → Fi) L̀

m∨
i=1

Bi, we cannot use directly the hypothesis

that Vn is admissible in L, since k could in general be greater than n. What we need is to

define (using Ei and Fi) a formula A with the following properties:

• A is a conjunction of no more than n implications, the negative part of which should

not belong in X

• IX L̀ A

• L̀ A →
m∨

i=1
Bi

To avoid conflict, for the rest of this proof indices i and j will range over {1, . . . , k} and

{1, . . . , n} respectively.

For each j define Gj =
∨

Ei /∈Xj

Ei. Note that if {Ei | Ei /∈ Xj} = ∅ then Gj = ⊥, by

convention. Each Gj is constructed so that it is not in Xj ; otherwise the L–saturation of Xj

would imply the existence of a disjunct of Gj in Xj contrary to the definition, hence Gj /∈ X.

Let F ≡ ∧
Fi, thus F ∈ X and Gj → F ∈ IX . Let A ≡ ∧

(Gj → F ), therefore IX L̀ A.

For each i there is a j such that Ei /∈ Xj , since Ei /∈ X, hence Ei is a disjunct of Gj , thus

Ei L̀ Gj . The following formal proof shows that L̀ A →
m∨

i=1
Bi.
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∧
(Ei → Fi) L̀

m∨
i=1

Bi

L̀ F → Fi

[A]

Gj → F

L̀ Ei → Gj [Ei]

Gj

F

Fi

Ei → Fi
, since this holds for every i∧

(Ei → Fi)

m∨
i=1

Bi

A →
m∨

i=1
Bi

Having constructed a formula A with the desired properties, the rest of the proof proceeds

as that of lemma 3.29, substituting only n for k and Gi for Ei.

Lemma 3.37 (Iemhoff). For every n ≥ 2, if Vn is admissible in an intermediate logic L with

the disjunction property then L has the extension property up to n.

Proof. Similar to the proof of lemma 3.30, but now based on lemma 3.36.

Theorem 3.38 (Iemhoff). For every n ≥ 2, an intermediate logic L has the extension

property up to n if and only if L has the disjunction property and Vn is admissible in it.

Proof. By 3.34, 3.35 and 3.37.

3.4 The Tn logics

D. M. Gabbay and D. H. J. de Jongh introduced in [GdJ74] “a sequence of decidable finitely

axiomatisable intermediate logics with the disjunction property”. Each Tn–logic7 is defined

as the logic of n–ary trees, e.g. T1 is the logic of linear frames, T2 is the logic of binary trees.

The main properties of these logics, already stated in the title of the article, are grouped in

the following theorem.

Theorem 3.39 (Gabbay and de Jongh).

1. CPC = T0 ⊃ · · · ⊃ Tn ⊃ Tn+1 ⊃ · · · ⊃ ⋂
n∈ ω

Tn = IPC

2. If n ≥ 2 then Tn has the disjunction property

3. Tn is decidable

4. Tn is axiomatised over IPC by

tn =
n∧

i=0

(
(Ai →

j 6=i∨

i=1

Aj) →
j 6=i∨

i=1

Aj

) →
n∨

i=0

Ai

7Originally the logics were denoted by Dn and in fact Dn = Tn+1. We use the name established in [CZ97]
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Proof. We will include proofs only for the properties that are relevant to our subject.

1. The first equation holds since a nullary tree consists only of its root and the second

because IPC is complete with respect to finite trees by corollary 2.26. For the strict

inclusion, we first show that tn ∈ Tn and then we provide an n + 1–tree countermodel

to tn.

p0 p1 ... pn

Figure 5: An n + 1–ary tree countermodel to the formula tn

2. Towards a contradiction, assume that there are formulas B, C such that T̀n
B ∨C and

0Tn
B and 0Tn

C. Let KB, KC be respectively their n–ary tree countermodels. Since

n ≥ 2, (KB + KC)∅ is an n–ary tree model, thus a model of Tn, which however does

not satisfy B ∨ C, a contradiction.

Theorem 3.40. Let n ≥ 2. Then,

1. the Vn rule is admissible in Tn, therefore Tn has the extension property up to n

2. the Vn+1 rule is not admissible in Tn, therefore Tn does not have the extension property

up to n + 1

Proof.

1. For n ≥ 2, the logic Tn has the disjunction property, so it suffices to show that the

restricted Vn rule is admissible in L. So, let A T̀n
B ∨ C, where A ≡

n∧
i=1

(Ei → Fi)

and, towards a contradiction, assume that 0Tn

n∨
i=1

(A → Ei) ∨ (A → B) ∨ (A → C),

hence A 0Tn
Ei for every i ≤ n, A 0Tn

B and A 0Tn
C. Therefore, there exist models

K1, . . . , Kn,KB,KC based on an n–ary tree that satisfy A and are such that Ki |6= Ei

for every i ≤ n, KB |6= B and KC |6= C. Note that K ′ = (
n∑

i=1
Ki)∅ is a model based

on an n–ary tree, thus a model of Tn
8. Observe that A is valid in all the successors of

the root of K ′ and that if there were an i ≤ n such that K |= Ei, then Ki |= Ei, a

8In fact every well–defined variant of
nP

i=1

Ki would be suitable. The same comment holds for the definition

of K′′
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3 INTUITIONISTIC PROPOSITIONAL LOGIC

contradiction. Therefore K ′ |= A. Applying twice the same syllogism we obtain that

K ′′ = ((K ′ + KB)∅ + KC)∅ is a model of Tn and satisfies A. However, K ′′ obviously

does not satisfy B ∨ C, a contradiction.

2. By the fact that Tn has the disjunction property and theorem 3.38, it suffices to show

that Tn does not have the extension property up to n + 1. So, let K be the model in

figure 5 and let K1, . . . , Kn+1 be the models generated by the leaves of K. Each Ki is

a model of Tn, as a classical model and K is the only well–defined variant of
n+1∑
i=1

Ki.

However, by its construction K is not a model of Tn.

Corollary 3.41. For every n ≥ 2, there is an intermediate logic in which Vn is admissible,

but Vn+1 is not.

Although we are not aware of a basis for admissibility in Tn, the previous theorem indicates

that it contains only the Vn rule. In § 4.2.1 we deploy a method for proving that the whole

collection of the Visser rules forms a basis for admissibility in an intermediate logic. The

example of the connection between the extension property and the admissibility of the Visser

rules suggests that an analogous refinement of this method may offer a solution.

Observe that the seemingly obvious fact that Tn has the extension property up to n is not

proved straightforwardly, but through the admissibility of the Vn rule, thus using the tight

predecessor machinery. However, the similarity of the proofs that Tn has the disjunction

property and that Vn is admissible in it with the proofs of lemmas 3.34 and 3.35 suggests

that a simpler proof is likely to exist.

Using the following corollary of the extension theorem 2.28, we prove an analogous to 3.33

theorem for the Tn logics.

Corollary 3.42. Tn is sound and complete with respect to full n-ary trees.

Lemma 3.43. For n ≥ 2, every basic model on a full n-ary tree is a model of every inter-

mediate logic with the extension property up to n.

Proof. Similar to the proof of lemma 3.31, but now n is specified in the statement of the

lemma.

Lemma 3.44. For n ≥ 2, if every basic model on a full n-ary tree is a model of the inter-

mediate logic L, then L ⊆ Tn.

Proof. Similar to the proof of lemma 3.32, now using corollary 3.42 for the completeness of

Tn.

Theorem 3.45. For n ≥ 2, if an intermediate logic has the extension property up to n, or

equivalently if it has the disjunction property and Vn is admissible in it, then it is a sublogic

of Tn.
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3.4 The Tn logics

Proof. Immediate by 3.38, 3.43, 3.44
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4 THE ADMISSIBLE RULES OF INTERMEDIATE LOGICS

4 The admissible rules of intermediate logics

The role of intuitionistic propositional logic in the lattice of intermediate logics is dominant.

Therefore, in order to study the general problem of admissibility in the intermediate logics,

it is logical to start by generalising the results and the methods deployed for the case of

IPC. Such an effort led to results about the Tn logics, see § 3.3.3 and 3.4. Here we present

Iemhoff’s work, presented in [Iem05] and [Iem], on the admissibility of the Visser rules in the

intermediate logics.

4.1 A list of intermediate logics

We start by listing some well–known intermediate logics.

KC The logic of the weak law of the excluded middle is one of the most extensively studied

intermediate logics. In the literature it is also known as Jankov logic (Jn) or de Morgan logic

(Dm). It is axiomatised by any of the following schemas

¬p ∨ ¬¬p The weak law of the excluded middle

¬(p ∧ q) → ¬p ∨ ¬q The de Morgan law not valid in IPC

(¬¬p → p) → p ∨ ¬p The 8–th Nishimura formula

and it is sound and complete with respect to frames with one maximal node.

Gn Gödel introduced these logics in order to show that IPC is infinite–valued. Each Gn

logic is finite–valued, is axiomatised by

n∨

i=1

(
i−1∧

j=1

pj → pi) and (p → q) ∨ (q → p)

and is sound and complete with respect to the linear frame of (n − 1) nodes. They are still

studied intensely, primarily due to their connection with linear Kripke frames, but also in

terms of applications to fuzzy logic and computer science.

LC The “limit” of the Gödel logics is the infinite–valued Gödel–Dummett logic. It is

axiomatised by (p → q) ∨ (q → p) and it is sound and complete with respect to the linear

frames.

Sm The Smetanich logic is the greatest intermediate logic properly contained in classical

logic. It is also known as the 3–valued logic, G3 and the logic of “here and there”. The latter

originates in the area of logic programming where it was recently applied, see [LPV01]. It is

axiomatised by

(p → q) ∨ (q → p) and p ∨ (p → q ∨ ¬q)
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or equivalently by

p ∨ (p → q) ∨ ¬q

and it is sound and complete with respect to the 2–node frame.

KP The logic axiomatised by the corresponding to the Kreisel–Putnam rule scheme

(¬p → q ∨ r) → (¬p → q) ∨ (¬p → r)

It was the first proper extension of IPC known to have the disjunction property, thus dis-

proving the ÃLukasiewicz’s conjecture that IPC is maximal with respect to that property.

Tn The Tn logics were introduced by D. M. Gabbay and D. H. J. de Jongh in [GdJ74] as

the logic of n–ary trees. 9 Their basic properties along with Iemhoff’s results concerning

their admissibility are presented in § 3.4.

ML It was introduced by Medvedev in order to formalise the idea of Kolmogorov that propo-

sitional formulas should be considered as abstract problems and propositional connectives as

operations between them. Apart from its initial definition in terms of finite problems, other

semantic characterisations have been discovered, including realizability and Kripke frames.

However, the problem of its axiomatisation is still open, although we know that it is not

finitely axiomatisable. It has also been proved that it has the disjunction property and in

fact, it is maximal with respect to it.

Bdn The logics of bounded depth – that is what ‘Bd’ stands for. Each Bdn logic is sound

and complete with respect to the frames of depth n and it is axiomatised by the bdn scheme,

defined inductively as:

bd1 =p1 ∨ ¬p1

bdn+1 =pn+1 ∨ (pn+1 → bdn)

Ndn The logics of the frames with n nodes, are also referred to as Bcn, where ‘Bc’ stands for

bounded cardinality. For n ≥ 2 each one is axiomatised by (¬p →
n∨

i=1
¬qi) →

n∨
i=1

(¬p → ¬qi)

(Nd1 is classical logic).

Mn The logics of the frames with n maximal nodes, are also referred to as Btwn, where

‘Btw’ stands for bounded terminal width. They are axiomatised by the following scheme

∧

0≤i<j≤n

¬(¬pi ∧ ¬pj) →
n∨

i=0

(¬pi →
∨

j 6=i

pj)

9In fact, they used the term Dn to refer to Tn+1. We use the current notation, established in [CZ97].
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4.1.1 Constructing intermediate logics

The frequently used methods for constructing or defining intermediate logics are:

Adding axioms Take any set of formulas, add it to IPC as an axiom scheme and then

close under modus ponens and substitution. Unless you get the inconsistent logic, the result

is an intermediate logic. For example, KC and KP are constructed in this way.

The logic of frames By theorem 2.11, the set of formulas satisfied by a class of frames

is an intermediate logic. Usually the result is sequence of logics, for example Tn, Bdn, Mn,

Ndn.

The propositional logic of a theory Let T be a predicate theory formulated in an

extension L∗ of our language L and let Sub(L∗) be the set of substitutions from propositional

variables of L to the sentences of L∗, extended as usual in order to commute with the

connectives. The set of formulas

ΛT = {ϕ ∈ ForL | ∀σ ∈ Sub(L∗), σ(ϕ) ∈ T}

is the propositional logic of T . It is not hard to prove that this is indeed an intermediate

logic, provided that T is consistent. It is already known that

ΛPA = CPC

where PA is Peano arithmetic and that

ΛHA = ΛHA+MP = ΛHA+ECT0 = IPC

where HA is Heyting arithmetic, MP is Markov’s principle and ECT0 is the extended Church’s

thesis. Surprisingly,

ΛHA+MP+ECT0 6= IPC

and its characterisation is still an open problem. For a survey in related results the reader is

referred to [Vis99].

4.1.2 First results

In § 3.4 we have already presented the results about the Tn logics. Concerning the Visser

rules, it is interesting that in each Tn the Vn rule is admissible, while Vn+1 rule is not.

Moreover, an important corollary of the characterisation theorem 3.33 is

Corollary 4.1. If an intermediate logic different from IPC has the disjunction property, then

not all the Visser rules are admissible in it.
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4.2 Maximal admissible consequence

So, this corollary is applied to the logics Tn, ML and KP . In fact, we can prove something

stronger for the case of KP .

Theorem 4.2 (Iemhoff). None of the Visser rules is admissible in KP

Proof. By theorem 1.25 it suffices to show that V1 is not admissible. So, assume the contrary

and let ϕ = ¬p → (q ∨ r), ψ = (¬p → q) ∨ (¬p → r). Note that ϕ → ψ is derivable in KP ,

in fact the corresponding scheme axiomatises KP . Now observe that ϕ → ψ is the premise

of an instance of V1, therefore KP derives one of the formulas ϕ → (¬p → q), ϕ → (¬p → r)

and ϕ → ¬p, since it has the disjunction property. But this is a contradiction, since these

formulas are not derived even in classical logic.

4.2 Maximal admissible consequence

Any attempt to study admissibility explicitly stumbles on the difficult to handle notion

of substitution. On the contrary, derivability is a more familiar notion, for which many

tools have been deployed. So, any correlation of admissibility with derivability that avoids

substitutions, besides being technically convenient, will make this notion more approachable.

Definition 4.3. A formula λL
A is a maximal admissible consequence (mac) for a formula A

in an intermediate logic L if for every formula B,

A |∼
L

B ⇐⇒ λL
A L̀ B

An intermediate logic L has the mac property if every formula has a mac in L.

We reserve the symbol ΛA for the mac of A in IPC, i.e ΛA = λIPC
A .

It should be clear that a mac does not always exist. However, for simplicity we will use

the following convention:

Any reference to a mac will imply its existence.

This does not mean that we hypothesise the existence but rather that there is a proof of it,

albeit it may not be included. So λL
A = ϕ means that there exists a mac of A in L and it is

equal to ϕ.

Definition 4.4. A formula A is stable for admissibility in an intermediate logic L if for every

formula B,

A |∼
L

B ⇐⇒ A L̀ B

Theorem 4.5 (Iemhoff).

1. A mac is unique up to provable equivalence

2. A |∼
L

λL
A and λL

A L̀ A
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4 THE ADMISSIBLE RULES OF INTERMEDIATE LOGICS

3. λL
A is stable in L

4. Properties 2 and 3 characterise mac up to provable equivalence

Proof.

1. Let λ1, λ2 be two macs of A in L, thus for every formula B,

λ1 L̀ B ⇐⇒ A |∼
L

B ⇐⇒ λ2 L̀ B

Therefore λ1 L̀ λ2, since λ2 L̀ λ2

2. They follow immediately from the definition, since λL
A L̀ λL

A and A |∼
L

A

3. Let B be a formula such that λL
A |∼L B. Then, A |∼

L
B since A |∼

L
λL

A and |∼
L

is transitive.

Therefore λL
A L̀ B by definition. The converse holds because L̀ is a subrelation of |∼

L

4. Consider formulas A, C such that A |∼
L

C L̀ A and C is stable in L. Then for every

formula B,

• if C L̀ B, then A |∼
L

B, since A |∼
L

C

• if A |∼
L

B then C |∼
L

B, since C L̀ A. Therefore C L̀ B, because C is stable in L

Based on the properties proven above, we proceed to establish the link between admissi-

bility and derivability we were seeking for.

Theorem 4.6 (Iemhoff). Let L be an intermediate logic with the mac property and let R be

a set of admissible rules in L. Then,

R is a basis for the admissible rules in L ⇐⇒ for every formula A, A `R
L

λL
A

Proof. Remember that R is a basis for the admissible rules in L if and only if

A |∼
L

B ⇐⇒ A `R
L

B

⇒) A |∼
L

λL
A holds by theorem 4.5, therefore A `R

L
λL

A.

⇐) Assume that A |∼
L

B, hence λL
A L̀ B, therefore A `R

L
B, since A `R

L
λL

A. The other

direction holds since R is admissible in L.

So, provided that the examined logic L has the mac property, a set R of rules is a basis for

the admissible rules in L if and only if it is sufficiently strong to derive the mac of a formula

A from assumptions A, but not too strong, otherwise it will contain non–admissible rules.

Before celebrating the reduction of admissibility to derivability we made, we should first

elaborate on the mac property. As the persistent reader might have already noticed, we have

yet to show that the premise of theorem 4.6 is satisfiable. That is, we have not established
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so far that there are there any intermediate logics with the mac property. In the absence of

such result, our efforts are futile.

In the next sections we will first prove that IPC has the mac property and then we will

provide a sufficient condition for the identification of these logics. This condition along with

its semantic counterpart developed in § 4.3 will lead us to proofs that various well–known

intermediate logics have this property.

4.2.1 IPC and the Visser rules

In addition to the mac machinery we have deployed so far, in this section we will once more

exploit the stability qualities of the projective formulas and the existence of a finite projective

approximation. These notions were introduced by Ghilardi in [Ghi99] and are presented in

detail in § 3.1.

Theorem 4.7 (Iemhoff).

• A projective formula is stable in every intermediate logic.

• A disjunction of projective formulas is stable in every intermediate logic.

Proof.

• Assume that C |∼
L

B and let σ be a projective unifier of C.

` σ(C) ⇒ L̀ σ(C) ⇒ L̀ σ(B) ⇒ C L̀ σ(B)

C ` B ↔ σ(B) ⇒ C L̀ B ↔ σ(B)

}
⇒ C L̀ B

• Let Γ be a finite set of projective formulas and let B be a formula such that
∨

Γ |∼
L

B.

Consider a formula C ∈ Γ.

C L̀

∨
Γ ⇒ C |∼

L
B ⇒ C L̀ B

Since C is an arbitrary formula in Γ, this implies that
∨

Γ L̀ B.

Theorem 4.8 (Iemhoff). IPC has the mac property.

Proof. Let A be a formula A and ΠA be the finite projective approximation of A, see theo-

rem 3.16 on page 45. We will prove that for every formula A, ΛA =
∨

ΠA is the mac of A

in IPC. Note that ΛA is indeed a well-formed formula, because ΠA is finite. By theorem 4.5,

all we need to show is that

1. A |∼ ΛA

Proof: Every unifier of A is also a unifier of a formula in ΠA by theorem 3.16.2, thus

of ΛA.
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2. ΛA ` A

Proof: Since every disjunct of ΛA derives A

3. ΛA is stable in IPC

Proof: By theorem 4.7.

This result is important because it shows that there exists at least one intermediate logic

with the mac property. However, in terms of finding a basis for the admissible rules of other

intermediate logics, more helpful is its proof, a reformulation of which provides a sufficient

condition for a logic to have the mac property.

Corollary 4.9. Let L be an intermediate logic and A be a formula. Then,

λL
A = ΛA ⇐⇒ A |∼

L
ΛA

Note that, as stated in § 1.6 and will become transparent in § 4.4, the admissibility relation

is not preserved under extending or restricted logics. Therefore, the fact that A |∼ ΛA, does

not vacuously imply that for every intermediate logic L, A |∼
L

ΛA.

Theorem 4.10 (Iemhoff). If the Visser rules are admissible in an intermediate logic L, then

• L has the mac property. Moreover, λL
A = ΛA.

• V is a basis for L

Proof.

• A `V ΛA, since A |∼ ΛA and the Visser rules are a basis for the admissible rules in IPC by

theorem 3.24. Therefore A `V
L

ΛA, hence A |∼
L

ΛA, since the Visser rules are admissible

in L and so, λL
A = ΛA by corollary 4.9.

• By theorem 4.6 and the previous item of the proof.

Corollary 4.11. If the Visser rules are derivable in an intermediate logic L, then L does

not have non–derivable admissible rules

Proof. By lemma 1.23 and the previous theorem.
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4.3 Extension properties

In the following sections we will try to apply theorem 4.10 to various intermediate logics, in

order to get a basis for their admissible rules. However, most of these logics are naturally

approached semantically, by virtue of their completeness with respect to classes of Kripke

frames, rather than syntactically, because their additional axiom scheme is too complicated

and counterintuitive or because no axiomatisation is known at all. Therefore, a semantic

criterion for the admissibility of Visser rules is essential.

Definition 4.12. Let K be a class of rooted Kripke models

• K has the weak extension property if for every model K ∈ K and every finite collection

of nodes k1, . . . , kn of K different from the root there is a model M ∈ K which is

bisimilar to a variant of
n∑

i=1
Kki

.

• K has the offspring extension property if for every model K ∈ K and every finite

collection of nodes k1, . . . , kn of K different from the root there is a model M ∈ K

which is bisimilar to a variant S2 of S1 + K, where S1 is a variant of
n∑

i=1
Kki .

An intermediate logic has an extension property if there is a class of models with respect to

which L is sound and complete that has that extension property.

Note that once we have stability (e.g. if K is the class of models of an intermediate logic)

then

extension property ⇒ offspring extension property ⇒ weak extension property

4.3.1 The weak extension property

Lemma 4.13 (Iemhoff). Let L be an intermediate logic in which the restricted Visser rules

are admissible and let X0, X1, . . . , Xn be L–saturated sets such that X0 ⊆
n⋂

i=1
Xi. Then there

exists a tight predecessor of X1, . . . , Xn in L.

Proof. By corollary 2.39 it suffices to show that IX is strongly L–saturated in X, where X =
n⋂

i=1
Xi. So, assume that IX L̀

n∨
i=1

Ai, therefore there are E1, . . . , Em /∈ X and F1, . . . , Fm ∈ X

such that A ≡
m∧

i=1
(Ei → Fi) L̀

n∨
i=1

Ai. The restricted Vnm rules are admissible in L, by

assumption and by theorem 1.28, thus L̀

m∨
i=1

(A → Ei) ∨
n∨

i=1
(A → Ai). The L–saturation

of X0 implies the existence of a j ≤ m such that A → Ej ∈ X0 or of a k ≤ n such that

A → Ak ∈ X0, hence Ej ∈ X or Ak ∈ X, because A ∈ X ⊇ X0. But the first case is excluded

by assumption, therefore Ak ∈ X.

Theorem 4.14 (Iemhoff). The restricted Visser rules are admissible in an intermediate logic

L if and only if L has the weak extension property.
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Kk1 Kk2 Kkn
...

S

<-->

M

Figure 6: The weak extension property

Kk1 Kk2 Kkn
...

S1 K

S2

<-->

M

Figure 7: The offspring extension property

Proof. ⇒) Consider an intermediate logic L in which the restricted Visser rules are ad-

missible, let K be a rooted model of L and let k1, . . . , kn be nodes of K distinct from the

root. Define X0 = Th(K) and Xi = Th(Kki) for every i ≤ n. Obviously X0, X1, . . . , Xn are

L–saturated and X0 ⊆
⋂
i=1

Xi, thus lemma 4.13 guarantees the existence of a tight predecessor

Y of X1, . . . , Xn in L. Hence (
∑

Kki)
Y is a model of L by corollary 2.34, so L has the weak

extension property.

⇐) Consider an intermediate logic L which is sound and complete to a class of rooted

models K with the weak extension property and assume that A =
n∧

i=1
(Ei → Fi) L̀ B ∨ C.

We will show that L derives G ≡
n∨

i=1
(A → Ei) ∨ (A → B) ∨ (A → C) by assuming the

contrary and then constructing a model of L that is also a countermodel to A → B ∨C. So,

suppose that there is a model K ∈ K such that K |6= G, thus K |6= A → B, K |6= A → C

and K |6= A → Ei, for every i ≤ n. Therefore there are nodes kB, kC , k1, . . . , kn of K that

force A and KkB
|6= B, KkC

|6= C and Kki
|6= Ei.

If one of these nodes is the root of K then K, which forces A → B ∨ C as a model of L,
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should also force A, thus B ∨C. But this is a contradiction, since neither B nor C are forced

in K. So, all of these nodes are distinct from the root, thus there is by assumption a model

M ∈ K which is bisimilar to a variant S of Kk1 + · · ·+Kkn +KkB
+KkC

. Now observe that

S |= A, since it is forced in every successor of the root of S and since each Ei is not forced in

S, as it is not forced in Kki . Moreover, S |6= B ∨C, since KkB
|6= B and KkC

|6= C. Thus, we

obtain that S |6= A → B ∨ C, therefore M |6= A → B ∨ C.

4.3.2 The offspring extension property

Lemma 4.15 (Iemhoff). Let L be an intermediate logic in which the Visser rules are admis-

sible and let X0, X1, . . . , Xn be L–saturated sets such that X0 ⊆
n⋂

i=1
Xi. Then there exists a

tight predecessor Y of X1, . . . , Xn in L and a tight predecessor Y ′ of Y and X0 in L.

Proof. Define X =
n⋂

i=1
Xi, ∆ = {G | ∃H /∈ X0 such that L̀ G ∨H} and Y0 = ∆ ∪ IX . The

inclusion of ∆ into Y0 will be justified later on. For the moment we will prove that Y0 is

strongly L–saturated in X, so assume that Y0 L̀

n∨
i=1

Ai. Therefore there are G1, . . . , Gk ∈ ∆

and E1 → F1, . . . , Em → Fm ∈ IX such that L̀ A ∧
k∧

i=1
Gi →

n∨
i=1

Ai, where A ≡
m∧

i=1
(Ei → Fi).

By assumption there are H1, . . . , Hk /∈ X0 such that L̀

k∧
i=1

(Gi ∨Hi), thus L̀ (A →
n∨

i=1
Ai) ∨

k∨
i=1

Hi, using the obvious generalisation of the derived in IPC formula (A∧G → B)∧(G∨H) →
(A → B)∨H. The Vnm rules are admissible in L, by assumption and by theorem 1.28, hence

L̀

n∨
i=1

(A → Ai) ∨
m∨

i=1
(A → Ei) ∨

k∨
i=1

Hi. X0 contains a disjunct of the above formula, as

it is L–saturated, hence there is an i ≤ m such that A → Ai ∈ X0 or a j ≤ n such that

A → Ej ∈ X0, since no Hi is in X0. X is a closed under deduction in L superset of X0 which

contains A, therefore Ai ∈ X or Ej ∈ X. But the latter is by definition impossible, so Y0 is

strongly L–saturated in X and thus there exists a tight predecessor Y ⊇ Y0 of X1, . . . , Xn in

L, by theorem 2.38.

We can now clarify the role of ∆. Since we want to construct a tight predecessor of Y and

X0 in L, we should at least be able to prove that an L–saturated set is contained in Y ∩X0,

in other words that CnL(∅) is strongly L–saturated in Y ∩X0. As the following short proof

confirms, this can be achieved if ∆ is a subset of Y .

Assume that L̀

n∨
i=1

ϕi and let I be the set of indices of the ϕi’s that are in X0. Note that

the L–saturation of X0 implies that I 6= ∅. If I = {1, . . . , n} then we are done, since there

exists a ϕi ∈ Y by the L–saturation of Y . So let I ⊂ {1, . . . , n}. L̀

∨
i∈I

ϕi ∨
∨

i∈{1,...,n}\I
ϕi

implies by definition that
∨
i∈I

ϕi ∈ ∆, hence one of its disjuncts is in Y (remember that Y is

an L–saturated superset of ∆).

What remains to be done is to establish, using the previous claim, that IY ∩X0 is strongly
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L–saturated in Y ∩X0. Then we would be able to apply theorem 2.38 once more and construct

a tight predecessor of Y and X0 in L. So assume that IY ∩X0 L̀

n∨
i=1

Ai, therefore there are

E1 → F1, . . . , Em → Fm ∈ Y ∩X0 such that A ≡
m∧

i=1
(Ei → Fi) L̀

n∨
i=1

Ai. The Vnm rules are

admissible in L, by assumption and by theorem 1.28, thus L̀

n∨
i=1

(A → Ai) ∨
m∨

i=1
(A → Ei).

The fact that CnL(∅) is strongly L–saturated in Y ∩ X0 implies that there exists an i ≤ n

such that A → Ai ∈ Y ∩X0 or a j ≤ m such that A → Ej ∈ Y ∩X0, hence Ai ∈ Y ∩X0,

since A is contained in Y ∩X0, while Ej is not, and the lemma is proved.

Theorem 4.16 (Iemhoff). The Visser rules are admissible in an intermediate logic L if and

only if L has the offspring extension property.

Proof. ⇒) Consider an intermediate logic L in which the Visser rules are admissible, let

K be a rooted model of L and let k1, . . . , kn be nodes of K distinct from the root. Define

X0 = Th(K) and Xi = Th(Kki) for every i ≤ n. Obviously X0, X1, . . . , Xn are L–saturated

and X0 ⊆
⋂
i=1

Xi, thus lemma 4.15 guarantees the existence of a tight predecessor X ′ of

X1, . . . , Xn in L and a tight predecessor X ′′ of X ′, X0 in L. Hence (
∑

Kki)
X′

+ K)X′′
is a

model of L by corollary 2.34, so L has the offspring extension property.

⇐) Consider an intermediate logic L which is sound and complete to a class of rooted

models K with the offspring extension property and assume that L̀ (A → B∨C)∨D, where

A =
n∧

i=1
(Ei → Fi). We will show that L derives G ≡

n∨
i=1

(A → Ei)∨ (A → B)∨ (A → C)∨D

by assuming the contrary and then constructing a model of L that is also a countermodel to

(A → B∨C)∨D. So, suppose that there is a model K ∈ K such that K |6= G, thus K |6= D,

K |6= A → B, K |6= A → C and K |6= A → Ei, for every i ≤ n. Therefore there are nodes

kB, kC , k1, . . . , kn of K that force A and KkB
|6= B, KkC

|6= C and Kki |6= Ei.

K forces (A → B ∨ C) ∨ D as a model of L, therefore it forces A → B ∨ C. If one of

these nodes is the root of K, then K forces A, thus B ∨C. But this is a contradiction, since

neither B nor C are forced in K. So, all of these nodes are distinct from the root, thus there

is by assumption a model M ∈ K which is bisimilar to a variant S2 of S1 + K, where S1 is

a variant of Kk1 + · · · + Kkn + KkB
+ KkC

. Now observe that S1 |= A, since it is forced in

every successor of the root of S1 and since each Ei is not forced in S1, as it is not forced in

Kki . Moreover, S1 |6= B ∨ C, since KkB
|6= B and KkC

|6= C. Thus, we obtain that

S1 |6= A → B ∨ C ⇒ S2 |6= A → B ∨ C ⇒ M |6= A → B ∨ C

But M does not force D either, since K |6= D, therefore M |6= (A → B ∨ C) ∨D.

4.4 Applications

A consequence of the combination of theorem 4.10 with theorem 4.16 is the following re-

markable result. We can prove, or at least intuitively decide, whether the Visser rules are
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admissible in an intermediate logic L or not by just looking at the form of the models of L. Of

course, the logic L in question should be defined by a intuitively approachable class of Kripke

frames, but this is true for the most well–known intermediate logics. Here we concentrate

results produced by Iemhoff in [Iem05] and [Iem], and present them in the following figure.

For a description of the intermediate logics in discussion, see § 4.1.

CPC=G2=Bd1=Nd1=T0

IPC

LC=T1

Sm=G3=Nd2

KC=M1

ML

KP

T2

T3

T4

T5

G4

G5

G6

Bd2

Bd3

Bd4

Bd5
M2

M3

M4

M5

Nd3

Nd4

Nd5

w
w
w
w
w

The Visser rules are derivable
The Visser rules are admissible, but not derivable
Some, but not all of the Visser rules are admissible
The Visser rules are not derivable and we do not know if they are admissible
None of the Visser rules is admissible

Figure 8: The admissibility of the Visser rules in certain intermediate logics
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