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1 Definitions and basic results
1.1 Syntax

The alphabet of the propositional language £ consists of:
e the propositional variables py, p1,. ..
e the propositional constant L
e the propositional connectives: N, V, —
e the punctuation marks: (and )
The formulas of L are inductively defined as
e the constant 1 and all propositional variables are L—formulas
o if p, ¢ are Lformulas then (p A ), (¢ V), (¢ — ) are also L—formulas

The set of variables and the set of formulas of £ are denoted by VarL and ForL respec-
tively.

We prefer to limit the alphabet, in order to have shorter inductive definitions and proofs.
As a result, the propositional constant T and the propositional connectives = and < are not

included in our language, but are introduced as abbreviations in the usual way:

T=(L—-1)
(~p) = (p—1)
(p =) = (=)A= )

n

We will also use the notation A ¢; = ¢1 A ¢i1...¢, and AI' to denote the conjunction
i=1

of the formulas of the finite set I". The corresponding notation for disjunction is defined

analogously. Finally, we define

A0=T and \/0=1L

A restricted finite language is presented in § 2.7.1.

1.2 Intuitionistic propositional calculus

As the main objective of this text is to investigate metamathematical properties, we will
present a Hilbert—style formal system for intuitionistic propositional logic. However, in the
few cases where an actual formal proof will be needed, we will deploy the corresponding
natural deduction system.

Intuitionistic Propositional Calculus (IPC) consists of the following axiom schemes
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A= (B—-0)—=((4—=B)—(A=C0C)

A A—>(B—>A/\B)
AANB — A
AANB — B

V A— AV B
B— AV B

(A-C)—(B—=C)— (AVvB—(0))

1 1—-A
and its unique inference rule is modus ponens, namely
From A and A — B conclude B

Classical propositional calculus CPC is obtained by replacing the | —axiom with the law

of double negation -—A — A or equivalently with the law of the excluded middle AV —A.

Definition 1.1. A derivation in IPC of a formula ¢ from assumptions I is a finite sequence of
formulas 61, ..., 0, = ¢, each of which either is an axiom of IPC or belongs to I' or is obtained
by applying the modus ponens rule to two formulas occurring earlier in the sequence. If such

a derivation exists, we write I' - .
Theorem 1.2 (Deduction Theorem). If T U{p} ¢ then T F ¢ — .

Proof. By induction on the length of any given derivation 61,...,60, = 1, we prove that

1.3 Intermediate logics

Definition 1.3. A substitution is an extension to ForL of a function from VarL to ForL, that
commutes with the connectives. Notice that by this requirement | and T are fixed points of

every substitution.

Definition 1.4. A logic in the language L is any set L C ForL which satisfies the following

conditions:
1. L is closed under modus ponens, i.e L is a theory
2. L is closed under substitution, i.e. if ¢ € L then o(yp) € L for every substitution o

According to the above definition IPC and CPC are logics. The set ForL is also a logic;

the inconsistent logic.



1.3 Intermediate logics

Lemma 1.5. For every logic L and every formula @,
F @ <= for every substitution o, k5 o(y)

Proof. The left—to-right holds since L is closed under substitution and the right—to—left is

shown using the identity substitution. O

Observe that in classical propositional logic we only have to be concerned about variable

free substitutions.

Definition 1.6. An intermediate logic in the language £ is any consistent logic extending
IPC.

The term “intermediate” is justified by the following theorem.
Theorem 1.7.

1. For every variable free formula ¢, ¢ € IPC or ~¢ € IPC

2. All intermediate logics contain the same variable free formulas

3. Every intermediate logic is a subset of classical logic
Proof.

1. By induction on the construction of ¢

2. By the first item and the consistency of every intermediate logic

3. ¢ € L= for every substitution o : o(p) € L
= for every variable free substitution o : o(¢) € L
= for every variable free substitution o : o(p) € CPC [by the second item]
= ¢ € CPC [by the nature of classical logic]

O

Definition 1.8. Derivations in an intermediate logic L are defined similarly to IPC, but
now in addition to the axioms of IPC we can use the extra axioms of L. In case we are not

aware of an axiomatisation of L, then this merely means that we may use every L—theorem.

Observe that

I'H ¢ <= there is a finite set A of formulas in L such that T UA F ¢
<~ T'ULF o

therefore the deduction theorem holds for every intermediate logic.
The set of consequences of a set of formulas I' in an intermediate logic L is denoted by
Cn(I), i.e.
Cn*(T) = {p € ForL | Tk ¢}
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1.4 The slash method

Kleene introduced in [Kle62] the notion of slash to investigate disjunction and existence
properties under implication for intuitionistic arithmetic. We present Aczel’s alternative

version which has the additional property of being closed under deduction.

Definition 1.9. (Aczel slash for IPC) Let I' be a set of formulas and ¢ a formula. T' | ¢ is
defined by induction on the construction of ¢

| R <= I'F ¢, if ¢ is a propositional variable or L

F'leAnYy <= T|pand I'|¢

PV <= Tlpor |y

Flp—9 <= TI'to—-yand (T'|p= T[y)

Theorem 1.10. Let T’ be a (possibly empty) set of formulas.
1.To=TkFeo
2. Vel :T|yY)= TFe=T]|y)
Proof.
1. By induction on formula ¢
2. By induction on the derivation I' F ¢

O]

If we denote Kleene’s slash with |X then a straightforward induction on the construction

of formula ¢ establishes that
I pandTF ¢ < T'|gp

Therefore, result 1.10.2 holds for both versions.
The next theorem, as well as theorem 1.26, indicate the power of the slash-method in

obtaining results related to the disjunction property.

Definition 1.11. A set of formulas X has the disjunction property if
pVypeX=>peXorypelX
Theorem 1.12. IPC has the disjunction property

Proof. Let - ¢ V1. Then | V1), by theorem 1.10.2 for empty I', hence | or |, therefore
F ¢ or F ¢ by theorem 1.10.1. O

In 1968 de Jongh confirmed Kleene’s conjecture that IPC is characterised in terms of the

slash relation. In order to state this result we need some generalisations.



1.5 Propositional rules

Definition 1.13. A formula ¢ has the L—disjunction property if for all formulas 1, 6
PP VO= phdorphd
The slash relation can be defined for every intermediate logic L, by replacing - with H.

Theorem 1.14 (De Jongh). IPC is the only intermediate logic with the property that for

every formula ¢

© | ¢ < ¢ has the L—disjunction property

Proof. In [dJ70] O

1.5 Propositional rules

DLy
Definition 1.15. A propositional rule is an expression of the form ————— | where

©1, ..., Pn, Y are propositional formulas.

In the current framework we may as well assume that every rule, except modus ponens,

has a single premise.

Definition 1.16. The derivations in an intermediate logic with additional rules R are defined
similarly to the derivations in intermediate logics, but now in addition to modus ponens we

can use the rules of R. In other words,

r l—f @ <= there is finite sequence of formulas 01, ...,6, = ¢, each of which is
either an axiom of L

or it belongs to '

Oiry. .., 0i

or there are 41, ...,7; < ¢ such that is an instance of

a rule of R or of modus ponens

Note that adding a rule to a formal system is weaker than adding the corresponding
axiom scheme. For example, it is not generally true that ¢ — 1) is derivable in IPC plus the

. 2
inference rule — .

Definition 1.17. A set of formulas X is closed under a rule if whenever there are formulas
©1,...,n in X such that ¢1,..., ¢, /1 is an instance of the rule, then 9 is also in X. X is

closed under a set of rules R if it is closed under every rule of R.

Py P
Definition 1.18. A rule —————— is derivable in an intermediate logic L if the conclusion

n
is derivable in L from the premises, i.e. if A ¢; 5 .
i=1
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n
In view of lemma 1.5, instead of demanding “for every substitution o, o( A\ ¢;) F o()”
i=1

n
we chose the more intuitive “ A ¢; 5 ¢”, which by the deduction theorem is also equivalent
" =1
to 44|_L /\ 0; — wvv'
i=1

Modus ponens is derivable in IPC. It is also not difficult to establish that

o e e | (p
i and

- Y —p

are both derivable in IPC. Since derivability is stable under extensions, these rules are also

derivable in every intermediate logic.

The addition of derivable rules to a formal system may result in shorter formal proofs,
therefore it is a method used to obtain proof—theoretic results. However, it is gratuitous in
terms of theory, since it does not enlarge the set of provable formulas. On the other hand,
the addition of non—derivable rules invalidates the corresponding deduction theorem, thus

rendering FLR impractical.

1.6 Admissibility

The admissible rules of a theory are the rules under which the theory is closed. In our context

this is formed as

Definition 1.19. The rule ¢/t is admissible in the intermediate logic L if the conclusion is

derivable in L whenever the premise is derivable in L, i.e. if for every substitution o

In such a case we write ¢ |’Z .
Observe that every derivable rule is also admissible.

Theorem 1.20. For every intermediate logic L and every formula ¢
1. ko <= T/pis admissible in L <= ¢

2. If every admissible rule of L is also admissible in an intermediate logic L' then L C L'

Proof.
L ke = The
<= Vo(ho(T)=Hop)
< Vo (K T=Hhop) [since o(T) = T]
— Vo Koy [since 5 T]
— ho [by lemma 1.5]

2. p € L= T/¢is admissible in L = T /¢ is admissible in L' = ¢ € L’



1.6 Admissibility

O]

The converse of the second part of the above theorem is not valid, since unlike derivability,

admissibility is not stable under extensions.

Theorem 1.21. Consider an intermediate logic L and formulas v, 1.
1. If o ¢ then bope p — ¥, therefore L + (¢ — 1)) is consistent
2. Fvery admissible rule of CPC is derivable

Proof.

1. Let o be variable free substitution. By theorem 1.7, o(p) € IPC or —o(p) € IPC. In

the first case we have that

Fo(p) =holp) =hH o) =halp) = o) =Ho(e = ¢) =Kol = ¢)

and in the second that

Foo(p) =Folp =) =kpcole — )
Therefore in any case o(p — 1) is in CPC, so ¢ — 1 is in CPC, by theorem 1.7.

The extended logic is consistent since

L+ (¢ — 1) CCPCH+ (¢ — ¢p) = CPC

2. By the first item for L = CPC

O]

Intuitionistically, the situation is as usual more complicated. Probably Harrop first ob-

served that the Kreisel-Putnam rule

-A— BvVvC
(wA— B)V (-4 —(C)
is admissible though not derivable in IPC. Later, Mints observed that

(A—-B)— AVC
(A—=B)—A)V(A—B)—C)

is a rule of the same kind. Abstracting more, de Jongh and Visser discovered an infinite
collection of non—derivable, admissible rules and conjectured that they form a basis for intu-

itionistic propositional logic.

Definition 1.22. A set or rules R is a basis for the admissible rules of an intermediate logic

L if for all formulas ¢, 1,
R
ey = ohy
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Iemhoft’s theorem which confirmed in [Iem01b] this conjecture is one of the main theorems
presented in this thesis. Meanwhile, Rybakov showed that the problem of whether a rule is
admissible in IPC or not is decidable and that there is no finite basis for IPC.

We end this section with some remarks about the bases.

Lemma 1.23. Let L be an intermediate logic and let R be a set of rules that are derivable
in L. Then,

1. for all formulas @, ¥
R
‘2 '_L Y = phY

2. if R is a basis for admissibility in L, then L does not have non—derivable admissible

rules
Proof.
1. By induction on the length of given derivation
2. By the previous item

O]

It will also become clear in § 4.4, that even if two logics have the same basis for admissi-

bility, they do not have the same set of admissible rules, unless they are equal.

1.7 The Visser rules
Definition 1.24. For n > 1, V,, is the rule

(A—-BVvC)VD

V(A= E)V(A— B)V(A—C)vD
=1

n

where A = A (E; — F;). The collection of all Visser rules is denoted by V. The restricted
i=1
V,, rule is defined by omitting the disjunct D from both premise and conclusion.

Observe, that both Kreisel-Putnam and Mints rule are instances of the restricted V4 rule.
Theorem 1.25. Let L be an intermediate logic.

1. If V,, is admissible in L then so is the restricted V. If L has the disjunction property

then the converse also holds
2. The V, and the restricted V,, rule are equiderivable in L

3. If V,, is admissible (derivable) in L, then for every m < n, Vi, is also admissible

(derivable) in L
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4. If V1 is not admissible in L then none of the Visser rules is admissible in L

5. [First observed by Roziere in [Roz93]] If Vi is derivable in L, then every Visser rule is

derivable in L. Therefore, either all or none of the Visser rules are derivable in L
Proof.

1. and 2. By the fact that the formulas ¢ < @V L and (¢ — ¢) — (¢ VO — ¥V ) are
both derivable in IPC

m n—m
3. Just observe that A = A (E; — F;) is equivalent to AN A (E; — Fy)
i=1 =1

4. By the previous item

5. Let L be an intermediate logic in which V; is derivable. For clarity we will only show

that V5 is also derivable in L. The general case is similar. So,
(E1—>F1)/\<E2—>F2)—>B\/C
is equivalent to
(El — Fl) — ((EQ — Fg) — B\/C)
and using the assumption to the antecedent and the transitivity of implication we obtain
(Ey — F1) — (B2 — F2) — E2) V (B2 — F2) — B) V (B2 — F3) — C)
Now by two consecutive uses of V; (as a scheme) or equivalently by using the generalised
form 1.27 of the Visser rules we get
(E1 — F1) — E1)V ((E1 — F1) — (B2 — F3) — E9))
V ((E1 — F1) — ((F2 — F2) — B))
V((EL— F1) = (B2 — F2) — C))

which obviously implies
(A= Ey)V(A— E)V(A— B)V(4—C)

where A = (E; — Fi) A (Ey — F).

Theorem 1.26. The Visser rules are admissible in IPC

Proof. By the fact that IPC has the disjunction property, theorem 1.12, and the previous

theorem it suffices to show that the restricted Visser rules are admissible in IPC. So assume
n

that AF BV C, where A= A (E; — F;). If A| A then A| BV C by theorem 1.10.2, hence

=1
A| B or A|C, therefore A+ B or A+ C by theorem 1.10.1. If A t A then there exists
an ¢ < n such that A t E; — F;, hence A| E;, since A - E; — F;, therefore A - E; by
theorem 1.10.1. O
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The following generalised form of the Visser Rules is particularly convenient.

Definition 1.27. For each m, the V,,,, rule is of the form

(A4— VB)ve

(A—>Ez)\/

)

—_

T<s
T<s

where A = A (E; — F).
i=1

Observe that V,,5 = V,, and that

-AvC (A= B)VvC
Voo = and Vo1 =

(A— E)VC V(A= E)V (A= B)VC
=1 =1

are both derivable in IPC. Therefore, rarely will we refer to them.

Theorem 1.28. Let X be a set of propositional formulas which is closed under deduction in

IPC. If it is closed under the Vi, rule, then it is closed under every Vy,, rule.

Proof. Trying to simplify a little bit the notation, we define the formulas

n n k

A=N\E-F) e=\/A—-E) F=\/(4-B)
i=1 i=1 i=1

It is already mentioned that for m = 0, 1 the corresponding implications are derivable in IPC,
therefore they are in X. For m > 2, the proof proceeds by induction on m. The basis case is
treated by assumption. For the inductive step assume that

m—+1

(A— \/B)vCeX
i=1

m+1 m
Considering \/ B; as \/ B; V B,11, the fact that X is closed under the V,, rule implies that
i=1

= =1
eV(A— \/B)V(A—Bn)VCeX
=1

Reading the above formula as (4 — \/ B;)V (eV(A — By,11)VC) and applying the induction
i=1
hypothesis we get that

eV V(eV(A— Bpny1)VC) eX

which is equivalent to
eVb"tlv e e X

10



1.8 A proof system for admissibility

1.8 A proof system for admissibility

The fact that we cannot rely on the well-known properties of | in order to manipulate
f—f makes this notion rather cumbersome. Furthermore, there is a lurking danger of using
accidentally properties that do not hold in general, for example the deduction theorem, in
the middle of a long, involved proof. So, instead of manipulating l—f—relation directly, we will

develop an equivalent, but easier to handle proof system.

1.8.1 A class of proof systems

Although we intend to use a single proof system, we define a whole class of them, exploiting

the fact that the theorem below holds in such a broad context.

Definition 1.29. Fix an intermediate logic L and a set of rules R. The PS7, gp—proof system
is specified by the following axioms and rules:

Axioms L If ok 4 then o>

Pl Pn n
R If lw is an instance of a rule of R then A ¢; > ¢
i=1
0> 0> > 0 0>
Rules L id Conj i v Cut
0> o N >

Theorem 1.30. For every intermediate logic L, every set of rules R and all formulas ¢, ¥
R
oY <= PS Fo>vy

Proof. =) Let &1,...,&, be a derivation of ¢ I—LR ¢. We will inductively prove that PS, .
p > &, for every ¢« < n. Formula & is either derivable in L or it is ¢. In either case ¢ K &1,
hence PS, ¢ > & by the L-axiom.

Now consider &41. If it is L—derivable or ¢, then it is treated as above. If it is derived
from an application of modus ponens, then there are formulas &;,&; — &1 which occur

earlier in the sequence and so

by LH. : : by LH. by the L—axiom
& > & —in _ J

onj

> & A (& = &iv1) &N (& — &) D> &t

o> &1

Cut

If &1 is derived from an application of a rule of R, then there are formulas &;,, ..., &;,, which

£i17"‘?£’£m

occur earlier in the sequence such that —— " is an instance of a rule of R. Therefore,
§it1

11



1 DEFINITIONS AND BASIC RESULTS

by LH. ! by LH.
p > gil P> 51'2 .
onj
B> bis i by LH.
¢ the R—axiom
P> Gin
! Conj U
n n
o> A&, A&, > i
j=1 j=1
Cut

o> &1

<) By induction on the depth of any given PSy, r—proof of ¢ > 1. A single line proof
of ¢ > 1 is due to the L or the R—axiom. In either case, ¢ I—I;w.

Now assume that there is an (n 4 1)-deep PSy, p—proof of ¢ > . If the last rule applied
is that of conjunction, then 1 = 1)1 A1 and there are PSy, p—proofs of ¢ > 11 and ¢ > 1o of
depth < n. The induction hypothesis implies that ¢ I—LR 11 and @ I—IZ' 12, therefore ¢ I—LR 1 A
by concatenating the derivations and appending the obvious three lines. The case of the cut

rule is similar. O

1.8.2 The AR—proof system

As our main aim is to study the connection of the Visser rules with the admissible rules of
intuitionistic propositional logic, it is logical to focus on PStpc,y. This proof system was
defined by Rosalie Iemhoff in [Iem01b] and it will be denoted as AR, standing for Admissible

Rules, and its axioms as I and V respectively.
Theorem 1.31 (Iemhoff). Let ¢, ¥ be formulas
1. If AR+ o> then ARFoVO>Y Vo
2. If ARF o> then ARFOV >0V
3. If ARF o> 60 and ARF ¢ >0 then ARF (o V) >0
4. If AR+ >0 then ARF o AY >0

Proof.

1. The proof proceeds by induction on the depth of any given proof. For axioms, just
observe that ¢ — 1 F @V 0 — 1V 0 and that if /1) is an instance of a Visser rule then
@V /¢ V0 is also an instance of the same Visser rule.

Now assume that there is an (n + 1)-deep AR-—proof of ¢ > 1. If the last rule applied
is that of conjunction, then @ = 11 A 99 and there are AR—proofs of ¢ > 11 and ¢ > 1) of
depth < n. Therefore,

12



1.9 Saturation

by LH. : : by LH. by the I-axiom
VoY Ve VO Yy Ve Con \(8
onj
VO (Y1 VO)A (P2 VO) (Y1 VO)A (P2 V) > (Y1 Atp2) VO

Cut
VO (Y1 Ag) Vo

The case of the cut rule is similar.

2. Assuming AR F ¢ > 1, we get that

by the I axiom

U : by the previous item by the I-axiom
OV e>eVe Vo>V c (2
t
OV o>V o " DV OOV
Cut
OV >0V
3. Assuming ARF o> 0 and ARF ¢ > 0, we get that
by the I-axiom
by item 2 U
by item 1 : AVEUEAVA’) AVA A’ o
t
OV >0V b OV >0 b
Cut

V>0
4. Apply the cut rule to assumption and to ¢ A1 > ¢, which is valid by the I-axiom. [
1.9 Saturation
Definition 1.32. Let L be an intermediate logic and let X, Y be sets of formulas.
1. X is L-saturated if X 5 oV = pec X ory € X

2. X is strongly L-saturated in Y if for every n € w and for all o1, ..., @,

n
It XK \/<pi then ¢; € Y for some i < n
i=1

Note that the following items could have been added in the previous definition.

1. X is strongly L—saturated if for every n € w and for all ¢1,...,¢n

n
If XH \/gpi then ¢; € X for some i <n
i=1

2. X is L-saturated in Y if X 5 oV = pecYoryp eV

13



1 DEFINITIONS AND BASIC RESULTS

However, they both seem to lack mathematical interest. The first because it coincides with
the notion “X is L—saturated” and the second because it is weaker than what we need.

We start by listing some basic properties of the saturated sets.
Theorem 1.33 (Saturation properties). Let L be a logic and X, Y be sets of formulas.

1. X is L-saturated <= X is closed under deduction in L and has the disjunction
property

2. X is L—-saturated <= X 1is strongly L—saturated in X
3. If X is L—saturated, then every subset of X is strongly L—saturated in X
4. If X s strongly L—saturated in'Y, then X C Y
5. If X is strongly L—saturated in'Y and Z C X then Z is also strongly L—saturated in'Y
6. If X is strongly L-saturated in'Y and X b ¢ then X U{p} is also strongly L-saturated
mY
Proof. The first is proved using the fact that - ¢ < @V . The rest are completely trivial. [

Theorem 1.34. Consider an intermediate logic L and a set of formulas I'. Then for all

formulas ¥, ¢ the following are equivalent:
e 'Y — o
o for every L-saturated set Y DI, v €Y = p €Y

Proof. The left-to-right direction is obvious; the converse will be established by proving the
contrapositive. Assume that I' ¥4 1) — ¢ and let &y, 1, ... be an enumeration of all formulas in
which every formula appears infinitely often. We inductively define a sequence Yy C Y7 C ...

of sets of formulas satisfying the invariant property Y; ¥; ¢, as follows:
Yo =TU{v}, LG EYi = YU{&LI K

Clearly, Y = |, Y; contains v, but not ¢. We will show that Y is also L-saturated, so
assume that Y = 1V 6, hence there is an ¢ such that Y; | n Vv 6. Pick indices j, k such that
E>j>d4 ¢ =nand & =60. fY;U{n} H ¢ and Y, U{0} H ¢, then Y, U{nV 60} H ¢, hence
Y}, 5 ¢, a contradiction. Therefore, n € Y41 or 6 € Y11, andsonor fisin Y. ]

Corollary 1.35. Consider an intermediate logic L, a set of formulas I' and a formula ¢.
Then,

1. T'H ¢ <= ¢ is contained in every L-saturated superset of I'

2. ' —p <= there is no consistent L—saturated superset of I' containing ¢

Proof. Apply theorem 1.34 to ¢ = T and ¢ = L respectively. O

14



2 Kripke model constructions
2.1 Kripke models

We start by setting up the notation for the semantics.

Definition 2.1. A Kripke frame is a partially ordered set, i.e. a pair (W, <) where W is a
non—empty set and < is a partial order on W. The elements of W are called nodes. If W

has a <-minimum element then the frame is rooted.

According to the preceding definition, a Kripke frame is not necessarily rooted or finite

or even connected if it is considered as a graph! For example, the following structure is a

b c

a
Definition 2.2. A Kripke model over the language L is a tuple (W, <, V'), where (W, <) is a
Kripke frame and V' is a function from W to P(VarL) that satisfies the following monotonicity

well-defined Kripke frame.

condition:

u<v= V(u) CV(v), forall u,v e W

Definition 2.3. Let K = (W, <,V) be a Kripke model and let u be a node of W. By
induction on the construction of a formula ¢ we define the notion of being true in K at u (or

@ is forced at u) as follows

e Kiulkp <= peV(u)

Kul¥F L

KulFoANy < K,ulFpand K,ulF 1

KullkpVy < Kullkypor K,ul-vy

KulFp—19Y <= Yv>u, KjolFp= KvlFvy

It follows from the definition that the abbreviated connectives behave properly
e K ulkT

o KulF-p < Yv>u K, viFop

e KjulFp =1 <= Yo>u (K,vlkyp < K,vlF1)

Although we demand the monotonicity condition only for propositional variables, it turns

out that it holds for every formula.

15



2 KRIPKE MODEL CONSTRUCTIONS

Lemma 2.4. For every formula ¢, for every Kripke model K and for all nodes u, v of K
If K,ulF o and u <wv then K,vlF ¢
Proof. By induction on the construction of . O

Definition 2.5.

o A Kripke model K satisfies a formula ¢ (notation K |= ¢) if ¢ is true at every node of
K

A class of Kripke models & satisfies a formula ¢ if ¢ is satisfied in every model of J#°

A Kripke frame F satisfies a formula ¢ if ¢ is satisfied in every model based on F

A class of Kripke frames .F satisfies a formula ¢ if ¢ is satisfied in every frame of .#

The theory of a Kripke model K, denoted by Th(K), is the set of formulas satisfied by
K. The term “theory” is justified by the fact it is closed under modus ponens. The

notion is extended to classes of models and frames in the obvious way.

Two Kripke models K, M are equivalent if they have the same theory, i.e. if for all
formulas ¢:
KEp <= MEoy

The theory of every rooted Kripke model has obviously the disjunction property. There-
fore, if a rooted Kripke model is a model of an intermediate logic L, then its theory is by
theorem 1.33 an L—saturated set. This result does not in general hold for non—rooted models,

as the following two—node example establishes

p q

Figure 1: A model the theory of which does not have the disjunction property

2.1.1 Generated submodels

Only the case of implication in the inductive definition 2.3 differentiates the Kripke model
truth from the classical one, since all the other connectives are also treated locally. However
even in this case, the nodes below a given node u cannot affect what formulas are true at wu.

This observation suggests the following definition.
Definition 2.6.
e A frame (W, <) is a subframe of a frame (Z, <) if W C Z and < is the restriction of <

in W

16



2.1 Kripke models

e A subframe is generated if it is upwards closed

e The subframe of a frame F' generated by a node u consists of all nodes of F' greater or

equal to u and is denoted by F},. Such frames are also called generated rooted subframes

e A model (W, <,V) is a (generated) submodel of (Z,=<,U) if (W, <) is a (generated)
subframe of (Z, <) and V(w) = U(w) for every node w of W

Theorem 2.7. Let u be a node of a Kripke model K. Then, for every formula ¢
K,EF¢ < Kulkyp
Proof. By induction on the construction of . O

2.1.2 Soundness

Theorem 2.8 (Soundness). If I' - ¢ then ¢ is satisfied in every Kripke model the theory of

which is a superset of T".

Proof. This is a quite easy and rather tedious proof, so we will only provide a sketch of it.
First, we show that each axiom of IPC is satisfied by every Kripke model. The closure under
modus ponens is treated by the fact that a theory of a model is obviously a theory. Then we
prove by induction on the length of the given derivation &1,...,&, of I' F ¢ that each &; is
satisfied in every Kripke model the theory of which is a superset of T'. O

The completeness theorem of IPC with respect to Kripke frames is deferred until § 2.3.

2.1.3 Kripke frames and intermediate logics

Definition 2.9. Given a substitution ¢ and a Kripke model K, we construct the Kripke

model o*(K) based on the frame of K and with assignment V,, defined as:
p€Vo(u) < Kul=o(p)

for every propositional variable p and every node u of K. The monotonicity condition K

satisfies implies that o*(K) is a well-defined Kripke model.
Lemma 2.10. For every Kripke model K, every substitution o and every formula ¢
oK) ¢ > K Eo(p)
Proof. By a straightforward induction on the construction of formula ¢ O

Theorem 2.11. The set of formulas satisfied in the arbitrary class of Kripke frames is an

intermediate logic.

17



2 KRIPKE MODEL CONSTRUCTIONS

Proof. Let L be the set of formulas satisfied in a class of Kripke frames .#. By the soundness
theorem 2.8, IPC C L. Consider a formula go in L, a substitution o and a Kripke model

= (W, <, V) based on some frame F' in .%. The model o*(K) is also based on F, thus it
satisfies ¢, therefore K = o(¢) by lemma 2.10. O

The converse of the above theorem does not hold, see for example [CZ97], where a Kripke
incomplete intermediate logic is constructed. This result demonstrates the inadequacy of the
Kripke semantics in the general framework of intermediate logics and turns our attention to

algebraic semantics (Heyting algebras) and relational semantics (general frames).

2.1.4 Extension property

We end this section by defining a property which, as we will show in § 3.3, characterises
intuitionistic propositional logic. The variations related to intermediate logics and the Visser

rules are defined in § 4.3.

Definition 2.12. Let Kj,..., K, be rooted Kripke models and let X be a set of formulas.
n
The structure (Y. K;)X is constructed by taking an isomorphic copy of each K; so that their

=1
frames are disjoint and then adding below the roots a new node r at which a propositional

variable is true if and only if it belongs to X. Therefore (ZK )X is a well-defined Kripke

model if and only if X C p, where p'is the set of proposmonal variables satisfied in every Kj.
We also define,

ZK = (ZKi)ﬁ and (ZKZ-)’ = (ZKi)@

n
Observe that (> K;) is always well-defined. This construction is due to Smorynski,

i=1
see [Smo73], and is called (Smorynski) gluing. > is the Smorynski operator.
Definition 2.13.

e Two rooted Kripke models are wvariants if they are based on the same frame and their

assignments may only differ in the roots.

e A class of rooted Kripke models JZ has the extension property up to n, if for every

n
Ki,...,K, € X there exists a variant of Y K; in J¢ .
i=1

e A class of rooted Kripke models has the extension property if it has the extension

property up to n, for every n > 1.

e A set of formulas has the extension property (up to n) if its class of rooted Kripke

models has the extension property (up to n).

18



2.2  Truth—preserving operations

Note that by adding below the root r of a Kripke model K a new node at which exactly
the same as r propositional variables are true, we get a variant of > K which is equivalent
to K, as a bounded morphic preimage. Therefore, every set of formulas has the extension

property up to 1.

Definition 2.14. A class of Kripke models is stable if it is closed under generated rooted

submodels.

2.2 Truth—preserving operations

We proceed to investigate several truth—preserving operations between Kripke models.

2.2.1 Isomorphisms

The forcing relation of a Kripke model (W, <, V) is completely determined by the assignment
V and the <-structure of its domain. By relabelling the elements of W and suitably modifying

the ordering and the assignment we obtain an essentially identical Kripke model.

Definition 2.15. A bijective function f from model K = (W, <, V) to model K’ = (W', <’

, V') is an isomorphism if for all nodes u,v of K
L V() = VI(f(w)
2. u<v <= f(u) < f(v)
Theorem 2.16. If f is an isomorphism from K to K' then,
1. for allu e K : Th(K,) = Th(K}(u))
2. K and K' are equivalent

Proof. will come as a corollary of theorem 2.20. O

2.2.2 Bounded morphisms

Model-isomorphism is not expected to capture the whole notion of model-equivalence. For
example, the models in figure 2 are equivalent, though not isomorphic for cardinality reasons.
In terms of their theories, models (b), (¢) and (d) contain redundant information and it seems
that they can be reduced to the plain model (a). This type of reduction is defined by relaxing

the order—preserving condition of isomorphism.

Definition 2.17. Let K = (W, <, V) and K’ = (W', <’/ V') be Kripke models. A surjective

function f: K — K’ is a bounded morphism' if it satisfies the following conditions:

L V(u) = V'(f(u))

n the literature is also known as reduction or p-morphism, which is short for pseudo-epimorphism.
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2 KRIPKE MODEL CONSTRUCTIONS

(a) (b) () (d)
Figure 2: Equivalent Models
2. u<v= flu) < f(v)
3. f(u) <" f(v) implies the existence of a w > w such that f(w) = f(v)

If there is a bounded morphism from K to K’, then we say that K’ is a bounded morphic
image of K, and write K — K'.

Theorem 2.18. If f is a bounded morphism from K to K' then,
1. for allu € K : Th(K,) = Th(K}(u))
2. K and K' are equivalent
Proof. will come as a corollary of theorem 2.20. O

2.2.3 Bisimulations

Consider once more models (b) and (c) of figure 2. The fact that there is no bounded
morphism between them can be established either intuitively, since neither one is considered
simpler than the other, or formally, since there is no surjective function between them that
preserves the assignment. However, they are equivalent indeed as bounded morphic preimages
of model (a). The notion that directly links such models, without referring to their reduct, is
bisimulation. It is a relational generalisation of bounded morphism whereby the directionality
from elaborate to plain is replaced by a back—and—forth system of moves between nodes of

models.
Definition 2.19.

1. A relation R C X x Y is serial if

(Vx € X)(Jy € Y)zRy

2. Let (W, <) and (W', <') be posets. A relation R C W x W' is a simulation preorder if
uRY & u<v= > u:vR

20
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3. Let K = (W, <,V) and K' = (W', <", V') be Kripke models. A relation R C W x W’

is a bisimulation if it satisfies the following conditions:

e R and R™! are serial
e uRu' = V(u)=V'(v)
e R is a simulation preorder (forth—condition)

e R~ !is a simulation preorder  (back—condition)
Theorem 2.20. If R is a bisimulation of K to K' then,
1. for allu € K : uRu' = Th(K,) = Th(K],)
2. K and K' are equivalent

Proof.

1. By induction on the construction of the arbitrary formula ¢. The basis is true by
the second condition of the definition of “bisimulation” and the cases of disjunction and
conjunction are straightforward. For the case of implication, assume that K, E @1 — ¢
and let v' >" ' such that K’ = ¢1. Back—condition implies that there exists a v > u such
that vRv'. Therefore,

I.H.
K,U’ ):301 = K, ):(Pl

|} [since K, = ¢1 — @2 and v > u]

I.H.
K,U’ ):902 = K, ):@2

Forth—condition treats similarly the other direction.

2. Assume that K = ¢ and let u/ be a node of K’. The fact that R~! is serial implies
that there is a u in K such that uRw’. Therefore, K',; = ¢ by the previous item and so
K' = @, since v’ was arbitrary. The other direction is symmetrical.

O

The preceding comments and definitions convincingly establish that
isomorphism = bounded morphism = bisimulation

thus theorems 2.16 and 2.18 are in fact corollaries of theorem 2.20.
Note that the frame counterparts of the above operations, which are defined by dropping
the condition relating the assignments, are also of interest. Such an example we will meet in

the proof of theorem 2.28.

2.3 Completeness results for IPC

Following Craig Smorynski in [Smo73|, we present several well-known completeness results

for intuitionistic propositional logic.
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2.3.1 The canonical model

Definition 2.21. The canonical model K = (W, <, V) of IPC is defined as follows:
e )W is the set of all IPC—saturated sets of propositional formulas
e =< is the subset relation

e ) maps each node u to the set of propositional variables contained in the IPC—saturated

set associated with u

Each node of K is identified with the IPC—saturated set attached to it. Note that I is
rooted, with root Cn(), which is IPC-saturated because IPC has the disjunction property.

Theorem 2.22. For every IPC-saturated set X
Th(Kx)=X

Proof. By induction on the construction of the arbitrary formula ¢; the basis is true by

definition.

N Kx ):gol/\gog — Kx ):gol and Kx ):(pg
p1 € X and @9 € X [by the induction hypothesis]
p1r AP € X [because X is closed under deduction]

<~

<~
V KxEei1Ver <= Kx e orKx 2

— pr1€XorgpeX [by the induction hypothesis]
<~

p1VereX [because X is IPC-saturated]

— KxkEor—op <= W =X (Ky EFor1= Ky [ p2)
— VW OX (p1€Y = py€Y) [by the induction hypothesis]
= p1 o€ X [by theorem 1.34]
O

Theorem 2.23 (Strong completeness). IfI' ¥ ¢ then there exists a Kripke model that satisfies

every formula in I', but not .

Proof. Assume that I' ¥ . By corollary 1.35, there exists an IPC—saturated superset A of I’
which does not contain ¢. Therefore by theorem 2.22, KC is the Kripke model we are looking
for. O

The completeness theorem for I' = () was first proved by Saul Kripke. Strong completeness
is due independently to Peter Aczel, Melvin Fitting and Richmond Thomason.
A corollary of the strong completeness theorem is that every intermediate logic L is sound

and strongly complete with respect to a class of models, since

I'bp <= T'ULF g
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2.3.2 Finite tree theorem

Definition 2.24.

e A Kripke frame F' = (W, <) is a tree if it is rooted and for every node u € F' the set of

its predecessors {v € F' | v < u} is linearly ordered and finite

e A Kripke frame is an n—ary tree if it is a tree such that every node has at most n
immediate successors. Note that a O—ary tree consists just of its root. A unary tree is

also called linear
e An n-ary tree is full if every non—terminal node has exactly n immediate successors

Theorem 2.25 (Smorynski). For every formula ¢ and every countermodel M = (W, <, V)
of  there is a finite tree submodel K of M which does not satisfy ¢ and is such that

(Vi) € S)(Vu € K)(Ky b= ¥ <= M, =) (2.1)

where S is the set of subformulas of .
Proof. First, we define the function f : M — P(S) as follows:
flu)={¢ € S[ My =4} =Th(Mu) NS
Note that
1. the values of f are finite by assumption
2. f is monotonically non—decreasing by the monotonicity condition Kripke models satisfy
3. Vu,v e M)(f(u) = f(v) = Th(M,)NS =Th(M,)NS)

The nodes of the submodel K are selected inductively and are denoted by (,, where o is
a finite sequence of natural numbers that keeps track of their order. Let u be any node of M
that does not force ¢. Define ) = u.

Assume that (, is already selected. The property we would like to hold is that for every
u > [, there is a 3; >’ B, such that f(3;) = f(u) (where <’ will be the ordering of model
K). So, define

We={ue M|u>p;and f(u) D f(fs) and
VoeM: B, <v<u= f(v)=f(B,)or f(v)= f(u)}

If W, = () then the process stops for this specific branch and the node (3, will be a leaf of
K. Otherwise, although W, is in general infinite, f[W,] is finite, since S is finite. So, let

ug, . . . , Uy, be nodes in W, such that
L YveW,3i: f(v) = f(w), ie fl{uo, ..., um}] = f[Wo]
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2. i j = flw) # fuy)

Define 5, (;y = ;. In this way, we are assured that the branching of K is finite. Moreover,
the length of every sequence o is < |S|, hence the height is also finite.
The submodel K = (W', <’/ V') is defined as follows

e W’ consists of all the 3, that have been defined
e <’ is the usual ordering of finite sequences, i.e.
Bo <'Br <= Fp:T=0xp
Note that 8, <' 8; = (5 < -
o V=V W

We proceed to prove (2.1) by induction on the construction of the arbitrary subformula
of .
Kg, Ep <= peV'(B,) <= peV(B,) < My, =p

The cases of conjunction and disjunction are straightforward. For the case of implication,
assume that K =6 — v and consider a u > (3, such that M, = 0. Then, f(u) D f(8,) so
there is a 3, >’ 3, such that

f(Br) = f(u) (2.2)
Therefore,

MyE6 == Mz =60 25 Ky 6

I [since Kg, =60 — v and 3, > (3]

For the other direction, assume that Mg, |= 6 — 1 and let 5, >’ 8, such that Kz [ 6.
Then,
Kg =0 = Mg |0
I [since Mg, =0 — 4 and 3; > [55]

LH.
Kg, Ey <= Mg o
Finally, the fact that K |~ ¢ is a result of the way the root of K is defined and (2.1). O

Corollary 2.26 (Kripke). IPC is (sound and) complete with respect to finite tree models.

Proof. Consider a non—derivable in IPC formula ¢ and let M be its countermodel. Define F'
as the set of subformulas of ¢ and S = {¢}. By the previous theorem, there is a finite tree

model K which does not satisfies . O
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Figure 3: A finite tree extension

2.3.3 Extension theorem

Definition 2.27. Let T' = (W, <), T’ = (W', <') be finite trees such that T" is a subframe of

T'. Then, T" is a finite tree extension of T if for all nodes u, v of T

u<v= ' eT'\T:u<" v < v

Theorem 2.28 (Smorynski). Consider a finite tree T and a model K based on T. Then, for

every finite tree extension T' of T, there is an extension K' of K such that:
Vu € K : Th(K,) = Th(K])

Proof. Let r be the root of T and define T as T\ T, where T is the subframe of 7" generated
by r. Associate with each node u of T" a terminal (in 7') node t,, > u and define the function
f:T) — T as follows:

o If u e T then f(u) =u

e If u € Ty then there is a maximum predecessor p, of u in T, since the trees T/ and T

share the same root. Define f(u) =t,,

We proceed to establish that f is a (frame) bounded morphism from 7). to T'. So, assume

that v <’ v and distinguish cases.
1. If u,v € T then f(u) =u <wv = f(v)
2. fueT and v € Tk then f(u) =u < p, <tp, = f(v)
3. If u € Tk then also v € Tg and so p, = p,. Therefore f(u) =1t,, =t,, = f(v)

For the other condition, we should prove that whenever f(u) < f(v), then there exists a

w >’ u such that f(w) = f(v). By distinguishing we get that
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1. If u,v € T then u = f(u) < f(v) = v, hence w = v
2. Ifue T and v € Tg then u = f(u) < f(v) =tp,, hence w = tp,
3. If u € Tg then t,, = f(u) < f(v) = tp,, therefore t,, =1t,,, hence w =u

Define K| as the Kripke model based on 7] with assignment V' = V o f. By the weak
preserving property of bounded morphism V' satisfies the monotonicity condition, hence K.

is well-defined. f is now a model bounded morphism from K/ to K, therefore for every

u € K,
Th(Ky.) = Th((K})w)) [by theorem 2.18]

= Th((K])u) [by the definition of f]
Finally, the model K’ is any extension of K| based on T". O

Corollary 2.29. Let J# be a class of finite tree models such that every finite tree can be
embedded in a model of J#, in the sense that for every finite tree there exists a finite tree
extension of it in & . Then IPC is (sound and) complete with respect to ¥ .

Corollary 2.30. IPC is (sound and) complete with respect to full, non—linear trees.

2.4 From a class of models to a single model

Exploiting the generality of the Kripke model definition, we may obtain a single Kripke model
equivalent to a whole class of models, by replacing every model of the class with an isomorphic

copy so that their domains are disjoint. This section develops this idea more rigorously.

2.4.1 The model ¥+t

Let % be a class of models indexed by A and for each o € A let K¢ = (W, <, V,) be the
model of # with index o. We define the Kripke model ¢+ = (W*, <t V1) as follows:

o WT ={{a,z) | x is a node of the model K of ¢}
i <O‘7$> S+ (ﬂ,y> <— a=pfand x <,y
o V*((a,@) = Voc(x)

In other words, W is the disjoint union of W, and <*, V* are the inherited ordering and
assignment respectively. #t is obviously well-defined and a straightforward induction on

the construction of the arbitrary formula ¢ can establish that
HE e == Ko forall (a,z) e WF

therefore
HTEp = X Ey

To avoid confusion, from now on x, y, z will denote the nodes of the models of J# and w,
v, w the nodes of ¢ T.
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2.4 From a class of models to a single model

2.4.2 The model 7"

We will now construct a more compact model which is still equivalent to the class, by merging

the identical branches of .# . So, let ~ be the following equivalence relation on W™:
u~v <= 4, and ;" are isomorphic
Define the Kripke model £ = (W, <, V) as follows:
o W=Wt/~
o [u <] & I >Tu:u ~v
o V([ul) =V¥(u)

We have yet to establish (a) that < is a partial order on W,
(b) that V' is indeed a function and (c) that V satisfies the monotonicity condition. But
first, we list some properties that interconnect the two models and derive from the notion of

model-isomorphism.
Lemma 2.31. Let v, w be nodes of #+. Then,

vew= Vi) =V (w) (2.3)

v w= (Vo' > w)(F > o) w = (2.4)

v <t w= [v] < [w) (2.5)

[v] < [w] = I >T v ~w (2.6)

v<v <V & v v =0 (2.7)

Now, we turn to prove that .#" is indeed a well-defined Kripke model.

(a) < is a partial order.
Reflexivity Trivial

Antisymmetry Assume that [u] < [v] and [v] < [u]. Since two equivalence classes are
either equal or disjoint, it suffices to show that v ~ v. By definition, there are nodes

w' >T wand v/ >F v such that ' ~ v and v/ ~ .
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v ~ v and v <T v/, therefore there exist by (2.4) a u” >T «’ such that u” ~ v'. Then,

Transitivity Assume that [u] < [v] and [v] < [w]. Hence there are nodes u’ > u and

v/ >T v such that v/ ~ v and v/ ~ w.

\ / \ / \ /
\ / \ / \ /

/,

/ \
/ / \
\
/ \
/
T \ v
\ / \ / \ /
\ |/ \ |/ \
\1/ \I/ \/

v ~ v and v <T v/, therefore there exist by (2.4) a u” >* ' such that u” ~ v', hence

\
\ U
\
\
\

IS
S
S

u” ~ w and so [u] < [w].

(b) Let u, v be ~—equivalent nodes of # . Then

(c) Assume that [u] < [v], hence there is a node ' <™ u such that v’ ~ v. Then

V([u]) =V (u) S V(W) =V([]) = V([v])

Finally, observe that the surjective mapping u — [u] is a bounded morphism, as prop-
erty (2.5) and the definitions of V' and < verify. Therefore # and ¥ are equivalent, by
theorem 2.18.

2.5 Set tight predecessor

In order to show that an intermediate logic L has certain extension properties we will usually
have to construct a model of L by gluing together given models of L using the Smorynski
operator. In general, the L—provable formulas are not forced downwards in the new root, so
we have to search for an additional condition, the satisfaction of which will guarantee that
the extended model is indeed a model of L. There is where the notion of tight predecessor
emerges. Its exact definition arose in a reversed way; it is the notion for which theorem 2.33
holds.

Definition 2.32. Let L be an intermediate logic and let X7, ..., X,, be L-saturated sets of
propositional formulas. The set Y is a (set) tight predecessor of X1,..., X, in L if

1. Y is L-saturated



2.5 Set tight predecessor

n
2.Y C NX;
=1

1=

3. for every L-saturated set Y’ DY there exists an 7 such that X; C Y’

Theorem 2.33 (Tight Predecessor Property). Consider models K, ..., K, of an interme-
diate logic L such that there exists a tight predecessor Y of their theories in L. Then

Th((d K)")=Y

Proof. Let M = (3 K;)Y. The proof proceeds by induction on the construction of an arbi-

trary formula . The basis is true by definition.

M = p1 and M = ¢
p1 €Y and @y € Y [by the induction hypothesis]
p1ANpa €Y [because Y is closed under deduction in L]

AN ME o1 Ap2

M @1 or M = @9
pr1E€Y or pa €Y [by the induction hypothesis]

p1VeaeY [because Y is L-saturated]

V. M eV

(p1 — 2) € Th(K;), for all i <n

K= 1 — o, foralli <n

M = @1 — @2 [because Y is closed under deduction in L and
by the induction hypotheses for ¢; and 2]

— (p1 = p2) €Y

ves 100 117

Now, assume that M | p1 — @2 and let Y/ 2 Y be an L-saturated set that contains
1. By theorem 1.34, it suffices to show that p9 € Y.

If Y/ =Y then using the induction hypotheses for ¢1, po we get that

peY = MEpi=> MEgps= @gs€Y’

If Y/ DY then there is an i < n such that Th(K;) C Y’, thus ¢1 — 2 € Y/ and so

2 €Y.
0
Corollary 2.34. Under the hypotheses of theorem 2.33, (3. K;)Y is a model of L.
Proof Lo=Y ko < pcY «—= K)o O

2.5.1 The construction of a tight predecessor

Definition 2.35. Let X be a set of formulas. Then Ix ={¢ = ¢ | p ¢ X and ¢ € X}

Lemma 2.36. Ix C Cn(X), for every set of formulas X, therefore Ix C X if X is closed

under deduction in IPC.
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Proof.
p—ovelx=>yveX=velnX)= p—1eln(X)

O]

Lemma 2.37. Let L be an intermediate logic, X, Y be sets of formulas such that Y is
strongly L—saturated in X and ¢, ¥ be formulas such that Y U{@V )} is strongly L—saturated
in X. Then at least one of Y U{@} or Y U {4y} is strongly L—saturated in X.

Proof. Assume that Y U{@V 1} is strongly L-saturated in X and Y U{¢} is not strongly L—
n
saturated in X, so there are By, ..., By, none of which belongs to X such that YU{p} 5 \ B;.
i=1

m n n
Let Ay,..., Ay, be formulas such that Y U{y} 5 \V 4;. V A; V V B; is derived in L from

=1 =1 =1
Y U{pV}, as it is derived in L by both Y U{¢} and Y U{v}. Therefore, since no B; is in
X, there is an ¢ < m such that A; is in X, hence Y U {4} is strongly L-saturated in X. [

Theorem 2.38 (Tight Predecessor Construction). Let L be an intermediate logic, X1, ..., X,
n

be L—saturated sets of formulas and X = (X;. If there is a Yy 2 Ix which is strongly L—
i=1

saturated in X, then there exists a tight predecessor’Y O Yy of X1,..., X, in L.

Proof. Let £y,&1,... be an enumeration of all formulas in which each formula appears in-
finitely often. Given Yj satisfying the hypotheses, we define inductively a sequence of sets of

formulas Yy C Y7 C ... as follows:
& €Yy < Y;U{¢} is strongly L—saturated in X

Define Y = |, Y; and observe that Y is strongly L-saturated in X, since each Y; is strongly
L-saturated in X, hence Y C X by theorem 1.33.

We will show that Y is L-saturated, so assume that Y 5 AV B, hence there is an ¢ such
that ¥; AV B. Remember that each formula appears infinitely often in the enumeration
of formulas we chose, so there are indices a, b, k such that {, = A, § = B, & = AV B and
kE>a>i,k>b>i Y,U{AV B} is strongly L-saturated in X, since Yy is and Yy 5 AV B,
therefore Y, U{A} or Y, U{B} is strongly L-saturated in X by lemma 2.37, hence Y, U {A}
or Y, U {B} is strongly L—saturated in X. Therefore A or B belongs to Y.

Consider an L-saturated Y/ D Y. Let ¢ € Y/ \'Y and let ¢ be an index such that
& = . IfY U{p} were strongly L-saturated in X, then so would be its subset Y; U {¢},
therefore ¢ would be in Yj;1, hence in Y contrary to the assumption. Hence Y U {¢} is not

strongly L—saturated in X, so there exist A1, ..., Ax none of which belongs to X such that

k

YU{e} H VA Since Y’ is L-saturated and Y U {¢} C Y’, it follows that for some j,
i=1

Aj e Y’ , thus Aj e Y’\X.

Towards a contradiction, assume that there exists an L-saturated Y/ O Y such that
X; € Y' for all i < n, hence for each ¢ < n there is a formula B; € X; \ Y'. Therefore
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2.5 Set tight predecessor

\/ B; € X \'Y’, since X and Y’ are closed under deduction in L, thus A4; — \/ B; € Ix,
Where Aj; is the formula in Y\ X of the prev10us part of the proof. But Ix C YO C Y CY’

and Y’ is closed under deduction in L, so \/ B; € Y’, contradicting the L— saturation of
i=1
Y’ O

A converse also holds.

n
Corollary 2.39. Consider L-saturated sets X1,...,X, and let X = () X;. Then the fol-
i=1

lowing are equivalent:
o There exists a tight predecessor of X1,..., Xy, in L
o Ix is strongly L—saturated in X

Proof. =) First, we will show that Ix C Y, where Y is a tight predecessor of X1,..., X,
in L. So, let ¢ — ¢ € Ix and let Y/ O Y be an L-saturated set that contains ¢. By
theorem 1.34 it suffices to show that ¢ € Y’. Y’ cannot be equal to Y, because it contains
o, while Y does not, as a subset of X. So Y’ DY, hence there exists an 7 such that X; C Y”.
PYeXCX;CY' soypeY

Now, consider formulas &1, . . ., &, such that Ix - \/ &, hence Y F \/ &. Y is L-saturated
therefore there is a & in Y, thus in X.

<) By theorem 2.38. O

It is already mentioned that the above results will be used extensively in the following
sections in order to prove that an intermediate logic L has an extension property. The sketch

of those proofs is the following:
1. a preceding lemma will establish that the hypothesis of theorem 2.38 is satisfied,
2. thus (the proof of) theorem 2.38 will construct a tight predecessor,

3. which will be used by theorem 2.33 and corollary 2.34 to construct an extended model
of L.

We end this section with a final remark. The tight predecessor, if any, is not in general
unique. It is therefore possible for a tight predecessor to be suitable for our purposes, whereas
another one is not. Cases where selection is involved occur when the process is iterated more
than once, i.e. when we would like to obtain a tight predecessor of a tight predecessor, see
figure 4. Such an example is lemma 4.15 and its proof shows a possible solution. Namely,
to direct the construction of the first tight predecessor by including a specific set of formulas
A, apart from [Ix, to the initial set Yy. In this way, you will be assured that the formulas in
A are also contained in the tight predecessor. This example shows that theorem 2.38 should

be considered as an algorithm. Given a finite collection of L—saturated sets Xi,...,X,, its
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2 KRIPKE MODEL CONSTRUCTIONS

Figure 4: Selection of tight predecessors. While both Z and Y are
tight predecessors of Xi,...,X,, Y is preferable since it has a tight
predecessor with X, whereas Z has not.

n

input is a set Y which is strongly L-saturated in (] X; and its output is a tight predecessor
i=1

Y of X1,...,X, in L, that is a superset of Yj.

2.6 AR-models

Rosalie Temhoff defined in [IemO1b] a class of models characterising the AR—proof system,

being thus closely related to the admissible rules of intuitionistic propositional logic.

Definition 2.40. A node u of a Kripke model K is a (node) tight predecessor of a finite

collection of nodes uy,...,u, of K if
1. Viiu<wy; (henceforth, this will be denoted as u < uy, ..., uy)
2. (Yo > u)(30)(u; <)

Definition 2.41. A Kripke model K is an AR-model if every finite collection w1, ..., u, of
nodes of K has a tight predecessor in K.?

In contrast to the well-known classes of models, like trees or linear models, the AR—models
are defined by a technical property which does not provide insight into their form. Their links
with the canonical model and the classes of models with the extension property established
below, indicate high complexity and dense connectivity. However, we are not able yet to

visualise them.
Definition 2.42. A set of formulas is adequate if it is closed under subformulas.
Theorem 2.43.

1. For every stable class with the extension property J£ of finite rooted Kripke models
there exists an AR-model M equivalent to &

2The original definition also included that an AR-model should be rooted.
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2.6 AR-models

2. For every AR-model M and for every finite, adequate set S there exists a stable class

with the extension property J of finite rooted models such that

Th(#)NS =Th(M)N S

Proof.

1. Consider M and S satisfying the hypotheses. If Th(M) 2 S then we define # = (),
which is trivially a stable class with the extension property and its theory is ForLl,
therefore

Th(M)NS=S=Th(Z)NS

Now, assume that Th(M) 2 S and define %" as the class of all finite rooted submodels
K of M satisfying the condition:

(Vu € K)(Th(K,) NS = Th(M,) N S) (2.8)

By assumption there is a formula ¢ € S such that M £ ¢. Theorem 2.25 constructs
a finite rooted submodel of M that satisfies (2.8) and does not satisfy ¢. Hence, ¢ is
not empty and does not satisfy ¢, therefore by contrapositive reasoning Th(.#) NS C
Th(M)NS. Furthermore, Th(M) C Th(#") since # contains generated submodels of
M, therefore Th(M) NS =Th(#)NS.

A is stable, since if a model K satisfies (2.8) then every generated submodel K, of it

also satisfies this condition.

As far as the extension property is concerned, consider models K7y, ..., K, in JZ and let

u be the tight predecessor in M of their roots. Q = (3. K;)V® is a well-defined finite
=1

1=
rooted submodel of M. Moreover, every successor of u satisfies (2.8). A straightforward
induction on the construction of the arbitrary formula ¢ in S shows that u does the

same.

2. Consider a stable class with the extension property % of finite rooted Kripke models
and let ¢ be the model obtained by the method described in § 2.4. Let [u1],. .., [uy]
be nodes of #"; remember that each u; is equal to {«a;, z;), where x; is a node of the

model K% contained in .#. The stability of # implies that each (K%);, is in %,
n

hence there is a variant K of ) (K%);, in %, since £ has the extension property.
i=1
Let r be the isomorphic copy of the root of K in ¢ *; we will show that [r] is the tight

predecessor we are looking for.

First, note that [r] < [ui],...,[un], by property (2.5). Now consider a [v] > [r]. There
exists, by (2.6), a " >T r such that " ~ v. The fact that r is tight predecessor of
U1,y ..., Uy in T implies that for some i : u; <* /. Therefore [u;] < [r'], by (2.5).
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O]

Definition 2.44. A set X of propositional formulas is closed under the AR—proof system if
for all formulas ¢, 1
peXand ARFop>Y=9¢peX

Theorem 2.45. If S is an IPC-saturated set closed under the AR—proof system then Kg is
an AR-model, where IC is the canonical model of TPC.

Proof. The key observation is that since the domain of K is the set of all [IPC—saturated sets,

the node tight predecessor coincides with the set tight predecessor in this model. So, let
n

X1,...,X, be IPC—saturated supersets of S and define X = [ X; and Y = SUIx. Observe

=1
that S C Yy C X. In order to construct a tight predecessor Y 2 S of Xi,...,X,, it suffices
by theorem 2.38 to prove that Yj is strongly IPC—saturated in X.
k

So, assume that Yy - \/ ;. Therefore there are formulas £y — Fi,..., E,, — F, € Ix
i=1
m ' k m
such that S+ A (E; — F;) — \/ ;. Define A= A (E; — F;) and observe that
i=1 i=1 =

7 1= =1

k
A— \/SOz‘
i=1

\"/L(A—>Ez')v \k/(A—HPi)

i=1 i=1
is an instance of the V,,,; rule. The fact that S an IPC-saturated set closed under the AR—
proof system along with theorem 1.28 imply that there is an ¢ < m such that A — E; € S or
there is a j < k such that A — ¢; € S. Furthermore, X is a closed under deduction in IPC
superset of S that contains A, therefore, either there is an i < m such that E; € X or there
is a j < k such that ¢; € X. But the first is impossible by the definition of E;, hence there

is a j < k such that ¢; € X. OJ

This theorem indicates the high correlation between the AR—proof system and the AR—
models and it justifies their common name. Moreover, the complexity of the canonical model

is reflected upon the AR—models, revealing once more their intricate nature.

2.7 Bounded bisimulations

2.7.1 Restriction into finite language

Definition 2.46. Consider a finite set of propositional variables p.
e The language L(p)

— The alphabet of £(p) is the same as that of language £ defined in § 1.1, but
restricted to the propositional variables of p. In other words, VarL(p) = p
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— The formulas of £(p) are defined analogously and its set is denoted by ForL(p)

— A formula ¢ is over p'if ¢ € ForL(p)
e Kripke models over p’

— The restriction of a model (W, <,V) over p is the model (W, <,V’), where the
image of every node u € W under the assignment V' : W — P(p) is

— The p-theory of a Kripke model K is the set of formulas over p that are valid in
K. In other words,

p-Th(K) = Th(K) N ForL(p)

A Kripke model (W, <, V') is over p if the variables forced in its nodes are among

those of p) i.e. if

— The class of Kripke models over p’ of a formula ¢ is denoted by Modz(y) or by

mere Mod(y) if it is obvious the set of propositional variables we are referring to
Theorem 2.47. Let p be a finite set of propositional variables.

1. Consider a Kripke model K and let K' be its restriction over p. Then K and K' have

the same p—theory.

2. Consider a class  of Kripke models and let " be the class of the restrictions over p
of models in % . Then,

(a) the two classes have the same p-theory
(b) if X has the extension property, then so does '

(c) if H is stable, then so is H~'
3. For all formulas ¢, ¥ over p

pFY < Modz(yp) € Mods(v))

Proof. The first is shown by induction on the arbitrary formula over p, the second is trivial

and the last is a corollary of the completeness theorem 2.26. O
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2.7.2 Bounded bisimulations

In this section we turn our attention to another kind of equivalence, wherein we are no longer
interested in models with the same theory, but in models satisfying the same formulas of a
certain complexity. Two equivalent definitions of the same notion are presented; the first is
in terms of back—and—forth conditions and the second in terms of Ehrenfeucht games.

The back—and—forth method was invented by Roland Fraissé in order to study elementary
equivalence in model theory and it was later formulated as a game by Andrzej Ehrenfeucht.
Kit Fine in [Fin74] adapted this technique to the context of Kripke semantics for modal logic

and Silvio Ghilardi in [Ghi99] presented an analogue for intuitionistic propositional logic.

Definition 2.48 (back-and—forth conditions).
Consider two finite rooted Kripke models K, K’ over a finite set of propositional variables
p. Let r, 7’ be respectively their roots. The relations ~, (n-bisimilarity) and <,, (n—

subsumption) are defined inductively as follows

K<o K <+« V)2V

K~ K = K<oK and K' <o K
K<pi1 K' = (Vue K)(3ud € KKy ~n K'w)
K ropi1 K' = K <, K" and K <41 K

The relation ~,, defined as
K~y K <— VYnKn~, K
is a bisimulation.

Definition 2.49 (Ehrenfeucht games).
Let p be a finite set of propositional variables. Consider two finite rooted Kripke models
K, K' over p and fix a number n > 13. The n-round Ehrenfeucht game on K, K’ has two

players, usually named Spoiler and Duplicator, and is played as follows:
e At the first round Spoiler selects a node in one model, Duplicator a node in the other.

e At the (i + 1)-th round, Spoiler selects one of the two models, name it M; and let Mo
be the other. Let wi, wy be the nodes chosen from M; and My respectively at the

previous round. Then, Spoiler picks a node >1 w; and Duplicator picks a node >3 ws.

In this way sequences ui,...,un, u},...,ul, of nodes of K and K’ respectively are cre-
ated. Duplicator wins if he succeeds in keeping the forcing of propositional variables pairwise

identical, i.e. if V(u;) = V'(u;), for every i < n. Otherwise, Spoiler wins.

3We avoid defining a 0-round game, since in that game the players could not actually play. Besides,
O—bisimilarity is checked by just looking at the propositional variables forced at the roots.
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It is not hard to prove that for n > 1 the Kripke models K, K’ are n-bisimilar if and
only if Duplicator has a winning strategy in the n-round game on K, K’'. Moreover, the
relation K <,, K’ is characterised similarly by a variant of the above game, in which Spoiler
is required to select a node from K at the first round.

We proceed to define a measure of complexity for formulas and state the main result

about bounded bisimulations.

Definition 2.50. The complezity (or the implicational degree) of a formula ¢ is inductively
defined as

e ¢c(p)=0
e c(p10¢2) =max{c(pr),c(p2)}, where o € {A, V}
o c(p1 = ) = maz{c(pr), c(p2)} + 1
In other words, ¢(y) is the maximum number of nested implications in ¢.

Theorem 2.51 (Ghilardi). Let ' be a finite set of propositional variables. Consider two
finite rooted Kripke models K, K' over p and fiz a number n > 0.

1. K<, K' < for every formula ¢ over p with c(¢) <n
KEp=> KEyp
2. K r~yp K' < for every formula ¢ over § with c(¢) <n
KlEp << KkEy
Proof. In [Ghi99]. =

We end this section by grouping some results into a theorem.

Definition 2.52. Let p be a finite set of propositional variables and ¢ a class of finite
rooted Kripke models over p. Fix a number n. (), is the class of the finite rooted Kripke
models M over p for which there exists a model K € J# such that M <,, K. In other words
(A )y, is the smallest <,,—closed class of Kripke models extending ¢

Note that for every formula ¢ over p and for every n > c(p),
HEe=> (HnEe

Theorem 2.53 (Ghilardi). Let ¢ be a finite set of propositional variables and consider a

class & of finite rooted Kripke models over p.

1. 2 is downwards closed under <,, if and only if & = Modz(y) for some formula ¢
over p with ¢(¢) < n.

2. If & is stable and has the extension property then so does ('), for every n.

Proof. In [Ghi99]. O
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3 INTUITIONISTIC PROPOSITIONAL LOGIC

3 Intuitionistic propositional logic
3.1 Projectivity
3.1.1 Substitutions as mappings

In this section we will elaborate on the substitution construction used in § 2.1.3 on page 17,

therefore we repeat the definition 2.9.

Definition 3.1. Given a substitution ¢ and a Kripke model K, we construct the Kripke

model 0*(K') based on the frame of K and with assignment V, defined as:
pEVo(u) &= Kul=o(p)

for every propositional variable p and every node u of K. The monotonicity condition K

satisfies implies that o*(K) is a well-defined Kripke model.

If we consider a class of Kripke models as a kind of an algebraic space S, then each
formula A may be considered as a subspace of S; the subspace containing the models that

satisfy A. In this context, a substitution is a mapping between such subspaces.
Theorem 3.2. Let o, T be substitutions, A be a formula and K be a Kripke model. Then,
1 (0°(K))u = 0*(K,)
2. KEo(Ad) < o"(K) A
5. (o7)"(K) = 7°(0°(K))
4. 0*(K) =1%(K) <= for all variables p : K |= o(p) < 7(p)
Proof.
L (o"(K))u Fp < Klo(p) <= o"(Ku) Fp

2. By a straightforward induction on the construction of the formula A

3. (on)(K) Ep < K= (0o7)(p)
= KEo(r(p)
= o"(K) = 7(p)
= (0" (K)) Fp

4. o*(K) =1"(K) <= for all u € K, for all variables p : (¢"(K), Fp < 7(K), E D)
<= for all u € K, for all variables p : (K, = o(p) & K, = 7(p))
<= for all u € K, for all variables p : K, = o(p) < 7(p)
<= for all variables p : K | o(p) < 7(p)

38



3.1 Projectivity

In view of theorem 3.2.1 the term o*(K),, is not ambiguous. We will also write o*7*(K)
instead of o*(7*(K)) and abusing the notation we will denote with V(K) the set of proposi-

tional variables forced in the root of a rooted Kripke model K.

Definition 3.3. A unifier o of a formula A is a substitution such that - o(A). A formula is

unifiable if it has at least one unifier.
Theorem 3.4. For every formula A the following are equivalent:
1. A is unifiable
2. F-A
3. there exists a one—node model of A
4 Fopo ™A

Proof. 1 — 2) Because IPC is consistent and closed under substitutions, as an intermediate
logic

2 — 3) Since IPC is complete with respect to finite models, see corollary 2.26, there
exists a finite model K that does not satisfy —=A. Therefore any one—node model generated
by a leaf of K satisfies A

3 —4) Trivial

4 — 1) Since ¥

CpC

theorem 1.7, either o(A) or —o(A) are derivable in IPC, therefore - o(A). O

—A, there exists a variable-free substitution o such that ., o(A). By

3.1.2 Projective substitutions

Definition 3.5. Let A be a formula and o be a substitution.

1. o is a projective substitution for A if for every variable p

AbFo(p) = p

2. A is projective if there exists a projective unifier of A

Theorem 3.6 (Properties of projective substitutions). Let o be a projective substitution for
the formula A. Then,

1. For every formula B : A+ o(B) < B (a generalisation of the projectivity condi-
tion)

2. Ak o(A)
3. If K = A then o*(K) = K

4. The class of projective substitutions for A is closed under composition
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Proof.

1. A straightforward induction on the construction of B, based on the fact that the basis

holds by definition and the substitution commutes with the connectives
2. By the previous item

3. If K = A then for every propositional variable p : K |= o(p) < p, therefore o*(K) = K,
by applying theorem 3.2.4 for 7 equal to the identity substitution.

4. If 7 is also a projective substitution for A then,
Ak T(p)<p

therefore,
o(A) Fo(r(p)) < a(p)
Since A - o(A) by a previous item, we can rewrite this as

At o(r(p)) < o(p)

and so since AF o(p) < p
AFo(r(p) <p

O

Theorem 3.7. Let C be a projective formula and let o be a projective unifier of C. Then C

is an axiom for o, which means that for every formula A,
Fo(A) < CFA
Proof. The left—to—right holds because
Fo(A)= Cko(A)= CFA

and the right—to-left since

CFA= o(C)Foa(A)

o(C) } = Fo(A4)
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3.1 Projectivity

3.1.3 O—substitutions

Definition 3.8. Let A be a formula and a be a set of propositional variables. Then, the

substitution 0§ is defined as

02 (p) = A—p, ifpea
A= ANp, ifpda

Theorem 3.9 (Properties of f—substitutions). Let A be a formula, a be a set of propositional

variables and K be a Kripke model.
1. Every 04 -substitution is a projective substitution for A

2. F0%0%(p)) « 04(p), for every propositional variable p

Proof.

1. If p € a then
AF05(p) = p <= AF(A—p) <p

and if p ¢ a then
AFO03(p) = p < AF(AADp) <D

Both are derivable in IPC.
2. If p € a then
F04(04(p)) < 04(p) <= F (04(A) — (A —p)) < (A —p)

The left—to—right implication is shown using the deduction theorem and the fact that
AF 64(A), established in theorem 3.6. The right-to-left is an axiom of IPC.

If p ¢ a then
F0i(04(p) < 04(p) <= FOL(A)ANANp = ANp

Now, the left—to-right implication is an axiom of IPC and the right—to—left is shown
using A+ 60%(A).

3. Corollary of the above item by theorem 3.2.4

O]

The 6 try to make models satisfy A. Therefore, they leave intact, identical the models
that do satisfy A nad

Theorem 3.10. Let A be a formula, a be a set of propositional variables and K be a rooted
Kripke model. Define M = (04)*(K).
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1. If K = A then M = K
2. If K £ A then one of the following holds:

(a) V(M) =a

(b) V(M) C a and for all propositional variables p € a\ V(M) there is a node u of K
different from the root such that K, = A and K, £ p

Proof.
1. By theorems 3.6.3 and 3.9.1.

2. Let p be a propositional variable in V (M).
peV(M) <= (03)"(K) Ep < K [E0i(p)

Since K does not satisfy A, §{(p) cannot be A A p, therefore §$(p) = A — p and p € a.

Now, let ¢ be a propositional variable in a \ V (M), thus 04(q) = A — g and M F q.
Therefore, K £ A — ¢, so a node u of K forces A but not q. Moreover, u is different

from the root, since K does not satisfy A.
O

Corollary 3.11. Let A be a formula, a be a set of propositional variables and K be a one-node
Kripke model. Then,
K# A= V((05)(K)) =a

Corollary 3.12. Let A be a formula and K be a rooted Kripke model which does not satisfy
A. If there is a variant K' of K which satisfies A, then (HX(K/))*(K) =K'

Proof. Define M = (HX(K/))*(K). Observe that K, K’ and M are all based on the same
frame, name it F. For every node u of F' different from the root, it holds that K, = K/, = A,
therefore M, = K,, = K], by theorem 3.6.3. By theorem 3.10, either V(M) = V(K’) and so
M = K’, or there is a propositional variable p that is satisfied by K’ and it is refuted by a

node u of K different from the root, which is impossible since K and K’ are variants. O

3.1.4 Projectivity and the extension property

Definition 3.13. Let A be a formula over a finite set of propositional variables p. Let

ai,as,...,as be a linear ordering of the subsets of P’ such that
aigaj:>z'§j (31)

For each i < s, we define the substitution 04 | i = 03°...04". The substitution 64 is defined
as 04 | 1.
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Note that by theorem 3.6.4 64 is a projective substitution for A as a composition of

projective substitutions, and that 8} = (#3")*...(03°)* by theorem 3.2.

Theorem 3.14. Let A be a formula over a finite set of propositional variables p. Then, the

following are equivalent:
1. A is projective
2. Mody(A) has the extension property *
3. 04 is a unifier for A

Proof. 1 — 2) Assume that A is a projective formula; let o be its projective unifier. Let
Kq,..., K, be finite rooted models over p that satisfy A. Then,

n

Fo(d)= ) KikEo(Ad) = 0" () _K)EA
=1

i=1
therefore by theorem 3.2.1

(Do (E))* A
i=1

where X = {p e p| Y K, = o(p)}. By theorem 3.6.3 and the fact that each K; satisfies A
i=1
we have that

D _K) EA
=1

So, Modz(A) has the extension property.

2 — 3) By theorem 3.2 and the fact that IPC is complete with respect to finite rooted
models, see corollary 2.26, it suffices to establish that for every finite rooted Kripke model
K, (0,)*(K) is a model of A. We will prove by fan induction on K that for every u € K
there exists an ¢ such that

(0a L0)"(Ku) = A

and that if K, £ A then 7 is maximum with that property, i.e for every j > ¢

(0a 1 J)" (Ku) A

Note that the first condition is satisfied by every node u of K that forces A, since then
for every i, (64 | i)*(Ky) = Ky.

Let u be a leaf of K that does not force A. Since A is unifiable there exists by theorem 3.4
a one—node model that satisfies A. Therefore, there exists a maximum index ¢ such that the
one—node model M defined as

MEp < peaq;

“See § 2.7.1 for the definition of Mody(A)
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satisfies A. By corollary 3.11 and the fact that ¢ is maximum, we obtain that
(0a ] )" (Ku) = (04")"(Ku) =M E A

Let u be a non-terminal node of K that does not force A and let uq, . .., u, be its immediate
successors. By the induction hypothesis for each u; that does not force A there is a j; such
that M; = (04 | 7i)"(Ky,) is a model of A. Moreover, the fact that j; is maximum with
that property implies that V' (M;) C aj,, by theorem 3.10. For each node u; that forces A we
define M; = K,,, so in any case M; satisfies A.

Let j = min{j;} and consider N = (04 | j)*(K,) (if for every i, K,, = A, then take N as
K,). If N = A then j is a maximum such index since it is equal to a j;, which is maximum
for K,,. If N £ A then for every i such that K,, = A we have that

and for every i such that K,, # A we have that

(0a )" (Ku,)

= (04)7(0"")" .. (04 | ji)*(Ku,) [by the definition of (6.4 | 5)°]
) (07 ) .. (M) [by the definition of M;]

= M; [by theorem 3.10.1 since M; = A]

So, N is a model in which A is forced at every node different from the root. The fact that
A has the extension property implies that there exists a variant Q@ of IV that satisfies A; let
aq = V(Q). Observe that since for every i, a;, C V(M;), then for every u; that does not force
A, aq C aj,, thus a; C a; and so ¢ < j by equation (3.1).

If there exists an index k such that ¢ < k < j and (64 | k)*(K,) = A, then select the
maximum such index.

Otherwise, consider (04 | ¢+ 1)*(K,). Obviously, it is variant of @) that does not satisfy
A. Therefore by corollary 3.12, Q@ = (03%)*(04 | ¢+ 1)*(Ky) = (04 | ¢)*(K,) and so g is the
index we are looking for.

For the root of K there exists an ¢ such that (64 | i)*(K) = A, therefore 6}(K) = A.

3 — 1) By the definition of 64

3.1.5 Projectivity and admissibility

Definition 3.15. Let A be a formula.
1. A formula B is contained in S4 if and only if

(a) B is projective

(b) BF A
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3.1 Projectivity

(¢) ¢(B) < c(A), where ‘¢’ is the measure of complexity defined in § 2.7.2
2. A projective approximation I14 of A is a subset of S4 such that

(a) for every formula B € Sy, there exists a C' € II4 such that B+ C
(b) if both C, Cy are contained in I14 and C F Cy, then Cy = Cy

Intuitively, 14 is constructed by ordering the formulas of S4 according to - and then
selecting one formula from each maximal class of provably equivalent formulas in S4.

Therefore, II 4 is unique up to provable equivalence.

Theorem 3.16 (Ghilardi).

1. Every formula A has a finite projective approximation 114

2. Every unifier of a formula A is also a unifier of a formula in 114
Proof. In [Ghi99] O
Definition 3.17. A formula C is stable for admissibility in IPC if for every formula A,

ChhA = CFA

Theorem 3.18 (Ghilardi).

1. Every projective formula C is stable in IPC °

2. For all formulas A, B,

A B < foreveryCelly:CF B

Proof.
1. Assume that C'|~ A and let o be a projective unifier of C.
Fo(C)=tFo(A)= Cko(A)= CFA
since C - A < o(A)

2. =) Assume that Aj~ B and let C be a formula in I14, therefore C' is projective and

derives A.
CHFA= CpKA

= C'|~ B [|by the transitivity of |~ ]
= CF B [|because C is stable, as projective]

<) Let o be a unifier of A. By theorem 3.16.2, o is also a unifier of a formula C' € Tl 4.
By assumption C F B, therefore F o(B).

5In fact, every projective formula is stable in every intermediate logic, see § 4.2.1
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3.1.6 Projectivity and the slash

Theorem 3.19. Let L be an intermediate logic and A a projective formula. Then for all
formulas B, C

FA—-BVC=HK(A—-B)V(A—-C)

Proof. Let o be a projective unifier of A. So,

HA—BVC = kK o(A) —o(B)Vao(C)
= K o(B)Va(C) [since - o(A)]
Moreover,
AFo(B)~ B=+FoB)—(A—B)=HFoB)— (A— B)
Similarly, we obtain that i o(C') — (A — C). Therefore, | (A — B) vV (A — C). O

Corollary 3.20. If A is a projective formula, then for all formulas B, C

FA—-BVC=FA—-Bort+A—-C

Definition 3.21. A set of formulas I' is e-compact if whenever I' - A then there exists a
projective formula E such that ' - E and E+ A.S

Theorem 3.22. If a set of formulas I' is e—compact then for every formula A,

I|A <= T+A

Proof. The left—to—right holds by theorem 1.10.1. The other direction is proved by induction
on the construction of formula A. The cases of the propositional variable and the conjunction
are straightforward.

For disjunction, assume that I' = B V C. Therefore, there exists a projective formula E
such that I' - F and E+ BV C. By corollary 3.20 E- Bor EFC,so'FBorI'-C. By
the induction hypothesis I'| B or I'| C, hence I'| BV C.

For implication, assume that I' - B — C and I'| B. Therefore I' - B, by theorem 1.10.1,
so I' = C, by modus ponens. Hence I'| C' by the induction hypothesis and soI'| B — C. [

Corollary 3.23. Ewvery projective formula A satisfies A| A.

SThe original definition, as produced by Visser in [Vis99], asserts that the formula E has the extension
property rather than it is projective. In view of theorem 3.14, the two notions coincide. In the same article
Visser proved that a set of formulas is e-compact if and only if it has the extension property.
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3.2 The admissible rules of intuitionistic propositional logic

3.2 The admissible rules of intuitionistic propositional logic

Building on Ghilardi’s results presented in [Ghi99], Iemhoff proved in [IemOlb] that the
Visser rules form a basis for admissibility in intuitionistic propositional logic, confirming thus

a conjecture by de Jongh and Visser.

Theorem 3.24 (Iemhoff). For all formulas ¢, 1 the following are equivalent:

1. o9

2. 1 is satisfied in every stable class of finite rooted Kripke models with the extension

property in which ¢ is satisfied
3. 1 is satisfied in every AR-model in which ¢ is satisfied
4. ARF o>

5. kY

Proof.

1 — 2) Assume that ¢~ and let J# be a stable class with the extension property
of finite rooted Kripke models in which ¢ is satisfied. Let p be the set of propositional
variables of ¢ and 1 and let .#” be the class containing the models of J# restricted over p.
By theorem 2.47, .#” is also a stable class with the extension property of finite rooted Kripke
models. Consider (7).
exists by theorem 2.53.1 a formula 6 over p’such that (7).

Since it has the extension property by theorem 2.53.2, there
¢) = Modz(0). Furthermore,

theorem 3.14 implies that 6 is projective; let ¢ be its projective unifier. Then,

HEe= HEp [by theorem 2.47]
= (H")e(p) F ¢ [by the remark after definition 2.52]
= Mody(0) = ¢ [since (F7)c) = Mods(0)]
= 0k ¢ [by theorem 2.47]
= O [since by assumption ¢ |~ 9]
= 0k [since 6 is stable in IPC as projective, see theorem 3.18.1]
= Modz(0) =
= (A )ep) E ¥ Isince () yp) = Mody(0)]
= X' = [since " C (H) o))
= A=y [by theorem 2.47]

2 — 3) Apply theorem 2.43 to the set S that contains the subformulas of ¢ and .

3 —4) In fact we will show the contrapositive, so assume that AR ¥ ¢ > . In order to
obtain an AR—model which satisfies ¢ and not 1, it suffices by theorem 2.45 to construct a
closed under the AR—proof system, IPC—saturated set X that contains ¢ and not .
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Let &,&1,... be an enumeration of all formulas in which each formula appears infinitely
often. We define inductively a sequence Xg C X7 C ... of finite sets of formulas satisfying
the invariant property AR ¥ A\ X; > 1.

Xo={p} & €Xiy1 < AR¥F /\Xi/\&bqj)

Define X = J; X;.

X is closed under the AR—proof system Consider formulas 7, 6 such that n € X and
AR F 1> 0; hence there is an 4 such that n € X;. Select an index j > 7 such that & = 0.
Towards a contradiction, assume that AR = A X; A6 > 1. Then, applying the properties of
theorem 1.31, we obtain that

/\ Xj >n n> 0
AX;> AKX NX;e>0 :
Conj
/\XjD/\Xj/\Q /\Xj/\QDI/J
ANX;
which is a contradiction by the invariant property X; satisfies. Therefore 0 is in X1, thus
in X.

Cut

Cut

X is IPC—saturated Consider formulas 7, 6 such that X F 7n V 6; hence there is an ¢ such
that X; =7V 6. Select indices j, k such that £ > j > 4, § = n and & = 6. Towards a
contradiction, assume that AR+ A X; Anr>1 and AR A\ X A 0> 1. Then, applying the

properties of theorem 1.31, we obtain that

ANX;An>

AXeAn>y  AXpAO>y
ANXe > AXie A(nV0) ANXpA(nVo)>y ot
u

A X >

which is a contradiction by the invariant property every X; satisfies. Therefore n € X;;1 or
0 € Xi11, thusnpor 8 is in X.

4 —5) Apply theorem 1.30 for L =IPC and R=V.

5 — 1) By theorem 1.26. O

The importance of this theorem, apart from the apparent fact that it provides a basis for
admissibility, lies in the equivalences established during its proof. First, we get a proof system
for admissibility in IPC, namely AR. Second, admissibility is semantically characterised in
two ways, both related with the extension property. Moreover, a connection with parts of

the canonical model is established. And finally, it leads us to the next result.
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Corollary 3.25. The class of AR-models is not stable.

Proof. Assume that for every IPC-saturated set X, Kx is an AR—model. Then for all
formulas @, ¥

ey = forevery ARmodel K, K Fp= K 1
= for every IPC—saturated set X, Kx F ¢y = Kx =1
= for every IPC—saturated set X, p € X = v € X
= pkY

which is obviously a contradiction. Therefore, there exists a node X of the canonical model

[by theorem 3.24]

[by assumption)]

[by theorem 2.22]

[by theorem 1.34]
such that Cx is not an AR-model. However, K itself is an AR-model, by lemma 3.29 on
page 51. 0

3.3 A characterisation of intuitionistic propositional logic

In 1932 Godel showed that the intuitionistic propositional logic has the disjunction property.
Lukasiewicz conjectured in 1952 that no proper consistent extension of IPC has the disjunc-
tion property, therefore this property characterises IPC among the intermediate logics. In
1957 Kreisel and Putnam disproved this conjecture by proving a specific counterexample,
now referred as the Kreisel-Putnam logic, see § 4.1. In 1962 Kleene conjectured that IPC
is characterised in terms of his ‘slash’; a relation with apparent disjunction features, and de
Jongh in 1968 confirmed this conjecture , see § 1.4. In this section we present the charac-
terisation discovered by Iemhoff, see [Iem0Ola]. In fact, it is a double characterisation. The
first is in terms of the disjunction property plus the admissibility of the Visser rules, thus
filling in the missing part of Lukasiewicz’s conjecture. The second is in terms of the extension

property, a semantically defined property extending the disjunction property.

3.3.1 Basic models

Theorem 3.26 (Smorynski). Let K be a finite tree model satisfying the property that each

terminal node t is characterised by a formula 0, in the sense that for every terminal node
ze K
K.FbO — z=t

Then,

1. [Node Characterisation Formulas] For every node u of K there is a formula 1, such

that for every v € K
v>u = K, E,

2. |Generated Set Characterisation Formulas] For every generated set S of nodes of K
there is a formula Bs such that S ={u € K | K, |= s}
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3. [Substitution Property| For every model M based on the frame of K there is a substi-

tution o such that for every formula ¢ and every node u of their joint frame
My ¢ <= Kyl=o(p)

Proof.

1. Let K be a model satisfying the hypothesis. For every node u of K define T}, to be the

set of terminal nodes above u and v, = == \/ ;. Then,

t€Tu
Ko EtYy <= K,E—-V b
teT,
<= \/ 6, is true at every leaf above v [because K is finite]
teTu
— T,27T,
— u<v [because K is a tree-model]

2. Define s = \ ¥y
u€eS

3. For every propositional variable p we define o(p) as fs,, where S, is the generated set
of nodes of K at which p is true and (g, is its characterising formula defined in the
previous item. The property is proved by induction on the construction of the formula

. For the basis consider a propositional variable p.

=) Let u be a node of M at which p is true. Then 1), is one of the disjuncts of o(p).
Observe that K, = 1, therefore K, = o(p).

<) Let u be a node of K at which o(p) is true, hence a disjunct of o(p) is true at
u. S0, there is a node v < w in M at which p is true, therefore p is true at u by the

monotonicity condition.

The proofs of the other cases are straightforward and are based on the fact that o

commutes with the connectives.

Definition 3.27. A model K based on a finite tree is basic if
e A single propositional variable is true at the each leaf and is not true at any other leaf
e the non-terminal nodes do not force propositional variables

Note that every basic model satisfies the hypothesis of theorem 3.26, since each terminal
node is characterised by the propositional variable it forces. The basic models on full, non—

linear trees are singled out because of their following property.
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Theorem 3.28 (Unique Extension). Let n > 2 and let K1, ..., K, be basic models on a full
n-ary tree that are disjoint, in the sense that the sets of propositional variables forced in their

n
leaves are disjoint. Then (ZKZ)(ZJ is also a basic model on a full n-ary tree and it is the only
i=1

well-defined variant of > K.
i=1
Proof. Obvious 0

3.3.2 The characterisation

Lemma 3.29 (Iemhoff). Let L be an intermediate logic with the disjunction property in which
the Visser rules are admissible. Then for alln € w and all L—saturated sets Xy, ..., X, there

exists a tight predecessor.
Proof. Define X = [ X; and Yy = Ix. Based on corollary 2.39, we will equivalently establish
i=1

m
that Yj is strongly L-saturated in X. So, assume that Yy b \/ B;, therefore there are

=1
E,— Fi,...,Ex — Fj, € Ix such that A = /\ (Ei — F;) H \/ B;. Theorem 1.28 verifies the
admissibility of the generalised Visser rules 1n L, which in turn along with the disjunction
property imply that A | E; for some ¢ < k or that A | B; for some ¢ < m. In either case
E; € X or B; € X, since for every formula ¢

Abe=>IxHep=>peX

But by their definition, no E; is included in X, therefore there exists an ¢ < m such that B;

is contained in X. O

An immediate corollary of this lemma, already discussed in 3.2, is that the canonical
model of IPC is an AR-model.

Lemma 3.30 (Iemhoff). If the Visser rules are admissible in an intermediate logic L with

the disjunction property then L has the extension property.

Proof. Let Ky, ..., K, be rooted models of an intermediate logic L satisfying the hypothesis.
By lemma 3.29 there exists a tight predecessor of Th(K}4), ..., Th(K,) and so by theorem 2.33

n
we can define a variant of )  K; which is a model of L. O]
i=1

Lemma 3.31 (Iemhoff). Every basic model on a full, non—linear tree is a model of every

intermediate logic with the extension property.

Proof. Let L be an intermediate logic with the extension property and consider a basic model
K on a full, non—linear tree. The proof proceeds by fan induction. The leaves generate
classical models, thus models of L. Consider a non-terminal node u and let wuy,...,uy,,

be its immediate successors. By the induction hypothesis the submodels K,,,, ..., K, are
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n
models of L, therefore K, is a model of L, as it is the only well-defined variant of > K,,, by
i=1
theorem 3.28 and since L has the extension property up to n. ]

Lemma 3.32 (Iemhoff). The only intermediate logic satisfying the property that every basic

model on a full, non—linear tree is its model, is IPC.

Proof. Let L be an intermediate logic satisfying the hypothesis. We will show the contrapos-
itive, so assume that there exists a formula ¢ such that ¥ ¢. By corollary 2.30, there exists a
countermodel K of ¢ based on a full, non-linear tree. Consider any basic model M based on
that frame. By assumption M is a model of L. Furthermore, there exists by theorem 3.26,

a substitution ¢ such that for every formula

Ky < ME o)

Therefore,
KFpo= MPEo(p)= Holp)= Ko

O
Theorem 3.33 (Iemhoff). For any intermediate logic L the following are equivalent:
1. L has the disjunction property and the Visser rules are admissible in it
2. L has the extension property
3. L =1PC
Proof. Immediate by 1.12, 1.26 3.30, 3.31 and 3.32. 0

An important corollary of this theorem is 4.1.

3.3.3 Extension property, disjunction property and the Visser rules

In this section we refine the results led to the characterisation of IPC in order to tightly

interconnect extension property, disjunction property and the admissibility of Visser rules.

Lemma 3.34 (Gabbay and de Jongh). Every intermediate logic with the extension property
up to 2 has the disjunction property.

Proof. Consider an intermediate logic L with the extension property up to 2 and towards a
contradiction, assume that there are formulas B, C such that 5 BV C and ¥, B and ¥, C.
Let Kp, K¢ be respectively their countermodels. By assumption a variant K of Kg+ K¢ is

a model of L. However, K does not satisfy B V C, a contradiction. ]

Lemma 3.35 (Iemhoff). For every n > 2, the V,, rule is admissible in every intermediate

logic with the extension property up to n.
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Proof. Consider an intermediate logic L with the extension property up to n, where n > 2.
By lemma 3.34 L has the disjunction property, so it suffices to show that the restricted V,,

rule is admissible in L. So, let 5 A — BV C, where A = A (E; — F;) and towards a
i=1

contradiction assume that ¥ \/ (A — E)V(A— B)V(A— C), hence ¥ A — E; for
every ¢ < n, ¥, A — B and J?‘ A — (. Therefore, there exist models Ky,..., K,, K, K¢
of L that satisfy A and are such that K; B¢ E; for every i < n, Kg £ B and K¢ F C.
By assumption a variant K’ of ZK is a model of L. Observe that A is valid in all the

successors of the root of K’ and that if there were an i < n such that K |= E;, then K; = E;,
a contradiction. Therefore K’/ = A. Applying twice the same syllogism we obtain a variant

"of (K'+ Kp) + K¢ which is a model of L and satisfies A. However, K obviously does
not satisfy B V C, a contradiction. O

Lemma 3.36 (Iemhoff). Let L be an intermediate logic with the disjunction property in which

V,, is admissible. Then for all L-saturated sets X1,...,X, there exists a tight predecessor.

Proof. The proof is similar to that of lemma 3.29. The sole difference lies in the fact that

although Yp H \/ B; implies that /\ (B — F) K \/ B;, we cannot use directly the hypothesis
=1 = i=1
that V), is admissible in L, since k could in general be greater than n. What we need is to

define (using F; and F;) a formula A with the following properties:

e A is a conjunction of no more than n implications, the negative part of which should

not belong in X
o IxH A
m
i=1

To avoid conflict, for the rest of this proof indices i and j will range over {1,...,k} and
{1,...,n} respectively.

For each j define G; = \/ E;. Note that if {E; | E; ¢ X;} = () then G; = L, by
Ei¢X;
convention. Each G; is constructed so that it is not in X;; otherwise the L—saturation of X

would imply the existence of a disjunct of G; in X contrary to the definition, hence G; ¢ X.
Let ' = A\F;, thus F € X and G; — F € Ix. Let A = \(G; — F), therefore Ix 5 A.
For each ¢ there is a j such that E; ¢ X, since E; ¢ X, hence E; is a disjunct of G, thus
E; 1 G;. The following formal proof shows that 5 A — \W}Bi.

i=1
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[A] RE— G [E]
G; — F Gj
EF — F; F
F;
m M , since this holds for every ¢
N(E; = Fy) i\z/le- NE; — F)
VB
i=1
A— '{n/lBi

Having constructed a formula A with the desired properties, the rest of the proof proceeds
as that of lemma 3.29, substituting only n for k and G; for E;. O

Lemma 3.37 (Iemhoff). For every n > 2, if V,, is admissible in an intermediate logic L with
the disjunction property then L has the extension property up to n.

Proof. Similar to the proof of lemma 3.30, but now based on lemma 3.36. O
Theorem 3.38 (lemhoff). For every n > 2, an intermediate logic L has the extension

property up to n if and only if L has the disjunction property and V,, is admissible in it.
Proof. By 3.34, 3.35 and 3.37. O

3.4 The T, logics

D. M. Gabbay and D. H. J. de Jongh introduced in [GdJ74] “a sequence of decidable finitely
axiomatisable intermediate logics with the disjunction property”. Each T}, -logic” is defined
as the logic of n—ary trees, e.g. 17 is the logic of linear frames, 75 is the logic of binary trees.
The main properties of these logics, already stated in the title of the article, are grouped in

the following theorem.
Theorem 3.39 (Gabbay and de Jongh).

1.CPC=TyD---2T, D2Tp41D---D> () T, =1PC

ne w

2. If n > 2 then T, has the disjunction property
3. T, is decidable

4. T, is axiomatised over IPC by

n J#i J#i n
tn= N\ ((4i = \/4) > \/4;) = A
=0 =1 i=1 =0
7O]riginally the logics were denoted by D,, and in fact D,, = T,,+1. We use the name established in [CZ97}
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3.4 The T, logics

Proof. We will include proofs only for the properties that are relevant to our subject.

1. The first equation holds since a nullary tree consists only of its root and the second
because IPC is complete with respect to finite trees by corollary 2.26. For the strict
inclusion, we first show that ¢,, € T;, and then we provide an n + 1-tree countermodel
to t,,.

Po P1 ce Pn

Figure 5: An n + l-ary tree countermodel to the formula ¢,

2. Towards a contradiction, assume that there are formulas B, C' such that I, BV C and
J,é

7, B and ¥, C. Let Kp, K¢ be respectively their n—ary tree countermodels. Since

n>2, (Kp+ KC)‘D is an n—ary tree model, thus a model of T;,, which however does

not satisfy B V (', a contradiction.

Theorem 3.40. Let n > 2. Then,
1. the V,, rule is admissible in T, therefore T, has the extension property up to n

2. the Vi1 rule is not admissible in T,,, therefore T,, does not have the extension property

up ton +1
Proof.

1. For n > 2, the logic T}, has the disjunction property, so it suffices to show that the

n

restricted V;, rule is admissible in L. So, let A &, BV C, where A = A (E; — F))
i=1

and, towards a contradiction, assume that ¥, \/ (A — E;) V(A — B)V (A — C),
i=1
hence A ¥, E; for every i < n, A¥, B and A¥. C. Therefore, there exist models

Tn

Ki,...,K,, Kp, Kc based on an n—ary tree that satisfy A and are such that K; * E;
n

for every i < n, Kp # B and K¢ £ C. Note that K’ = (3. K;)? is a model based
i=1

on an n-ary tree, thus a model of 7},%. Observe that A is valid in all the successors of
the root of K’ and that if there were an i < n such that K = E;, then K; E E;, a

8In fact every well-defined variant of > K; would be suitable. The same comment holds for the definition

=1
of K"
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contradiction. Therefore K’ = A. Applying twice the same syllogism we obtain that
K" = (K' + Kg)? + K¢)? is a model of T}, and satisfies A. However, K" obviously

does not satisfy B V C, a contradiction.

2. By the fact that T, has the disjunction property and theorem 3.38, it suffices to show
that T, does not have the extension property up to n + 1. So, let K be the model in

figure 5 and let Ky, ..., K1 be the models generated by the leaves of K. Each K; is
n+1

a model of T}, as a classical model and K is the only well-defined variant of > Kj.
i=1

However, by its construction K is not a model of T,.

O]

Corollary 3.41. For every n > 2, there is an intermediate logic in which V,, is admissible,

but V41 s not.

Although we are not aware of a basis for admissibility in T},, the previous theorem indicates
that it contains only the V), rule. In § 4.2.1 we deploy a method for proving that the whole
collection of the Visser rules forms a basis for admissibility in an intermediate logic. The
example of the connection between the extension property and the admissibility of the Visser
rules suggests that an analogous refinement of this method may offer a solution.

Observe that the seemingly obvious fact that 7}, has the extension property up to n is not
proved straightforwardly, but through the admissibility of the V), rule, thus using the tight
predecessor machinery. However, the similarity of the proofs that 7T, has the disjunction
property and that V,, is admissible in it with the proofs of lemmas 3.34 and 3.35 suggests
that a simpler proof is likely to exist.

Using the following corollary of the extension theorem 2.28, we prove an analogous to 3.33

theorem for the T, logics.
Corollary 3.42. T, is sound and complete with respect to full n-ary trees.

Lemma 3.43. For n > 2, every basic model on a full n-ary tree is a model of every inter-

mediate logic with the extension property up to n.

Proof. Similar to the proof of lemma 3.31, but now n is specified in the statement of the

lemma. O

Lemma 3.44. For n > 2, if every basic model on a full n-ary tree is a model of the inter-
mediate logic L, then L C T,.

Proof. Similar to the proof of lemma 3.32, now using corollary 3.42 for the completeness of
T,. O

Theorem 3.45. For n > 2, if an intermediate logic has the extension property up to n, or
equivalently if it has the disjunction property and V, is admissible in it, then it is a sublogic
of Tp,.
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Proof. Immediate by 3.38, 3.43, 3.44 O
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4 THE ADMISSIBLE RULES OF INTERMEDIATE LOGICS

4 The admissible rules of intermediate logics

The role of intuitionistic propositional logic in the lattice of intermediate logics is dominant.
Therefore, in order to study the general problem of admissibility in the intermediate logics,
it is logical to start by generalising the results and the methods deployed for the case of
IPC. Such an effort led to results about the T}, logics, see § 3.3.3 and 3.4. Here we present
Iemhoff’s work, presented in [Iem05] and [lem], on the admissibility of the Visser rules in the

intermediate logics.

4.1 A list of intermediate logics

We start by listing some well-known intermediate logics.

KC The logic of the weak law of the excluded middle is one of the most extensively studied
intermediate logics. In the literature it is also known as Jankov logic (Jn) or de Morgan logic

(Dm). It is axiomatised by any of the following schemas

=p V ——p The weak law of the excluded middle
-(pAq) — —pV-q Thede Morgan law not valid in IPC
(=——p —p) = pV -p The 8th Nishimura formula

and it is sound and complete with respect to frames with one maximal node.

G, Godel introduced these logics in order to show that IPC is infinite—valued. Each G,

logic is finite—valued, is axiomatised by
n
\V(Apj—pi) and (p—q)V(g—Dp)

and is sound and complete with respect to the linear frame of (n — 1) nodes. They are still
studied intensely, primarily due to their connection with linear Kripke frames, but also in

terms of applications to fuzzy logic and computer science.

LC The “limit” of the Godel logics is the infinite-valued Godel-Dummett logic. It is
axiomatised by (p — ¢) V (¢ — p) and it is sound and complete with respect to the linear

frames.

Sm The Smetanich logic is the greatest intermediate logic properly contained in classical
logic. It is also known as the 3—valued logic, G5 and the logic of “here and there”. The latter
originates in the area of logic programming where it was recently applied, see [LPVO01]. It is

axiomatised by

(p—q)V(g—p) and pV(p—qV-q)
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or equivalently by
pV(p—q) Vg

and it is sound and complete with respect to the 2-node frame.

KP The logic axiomatised by the corresponding to the Kreisel-Putnam rule scheme
(7p—qVr)—=(p—=qV(wp—r)

It was the first proper extension of IPC known to have the disjunction property, thus dis-

proving the Lukasiewicz’s conjecture that IPC is maximal with respect to that property.

T, The T, logics were introduced by D. M. Gabbay and D. H. J. de Jongh in [GdJ74] as
the logic of n—ary trees. ? Their basic properties along with Iemhoff’s results concerning

their admissibility are presented in § 3.4.

ML It was introduced by Medvedev in order to formalise the idea of Kolmogorov that propo-
sitional formulas should be considered as abstract problems and propositional connectives as
operations between them. Apart from its initial definition in terms of finite problems, other
semantic characterisations have been discovered, including realizability and Kripke frames.
However, the problem of its axiomatisation is still open, although we know that it is not
finitely axiomatisable. It has also been proved that it has the disjunction property and in

fact, it is maximal with respect to it.

Bd,, The logics of bounded depth — that is what ‘Bd’ stands for. Each Bd, logic is sound
and complete with respect to the frames of depth n and it is axiomatised by the bd,, scheme,

defined inductively as:

bdy =p1 V —p1

bdn+1 =pn+1 V (pn+1 — bdn)

Nd,, The logics of the frames with n nodes, are also referred to as Bcy, where ‘B¢’ stands for
n n

bounded cardinality. For n > 2 each one is axiomatised by (—=p — \ —g¢;) — V (-p — —q¢:)
i=1 i=1

(Nd; is classical logic).

M, The logics of the frames with n maximal nodes, are also referred to as Btw,, where
‘Btw’ stands for bounded terminal width. They are axiomatised by the following scheme

n

N =i n=p) =\ (=pi = /1))

0<i<j<n i=0 i

n fact, they used the term D,, to refer to T,4+1. We use the current notation, established in [CZ97].
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4.1.1 Constructing intermediate logics

The frequently used methods for constructing or defining intermediate logics are:

Adding axioms Take any set of formulas, add it to IPC as an axiom scheme and then
close under modus ponens and substitution. Unless you get the inconsistent logic, the result

is an intermediate logic. For example, KC and K P are constructed in this way.

The logic of frames By theorem 2.11, the set of formulas satisfied by a class of frames
is an intermediate logic. Usually the result is sequence of logics, for example T;,, Bd,,, M,
Nd,.

The propositional logic of a theory Let T be a predicate theory formulated in an
extension L£* of our language £ and let Sub(L*) be the set of substitutions from propositional
variables of £ to the sentences of L*, extended as usual in order to commute with the

connectives. The set of formulas
Ar = {p € ForL | Vo € Sub(L"), o(p) € T}

is the propositional logic of T. It is not hard to prove that this is indeed an intermediate

logic, provided that T is consistent. It is already known that
App = CPC
where PA is Peano arithmetic and that

Aua = Aga+mp = Arayrct, = IPC

where HA is Heyting arithmetic, MP is Markov’s principle and ECTj is the extended Church’s
thesis. Surprisingly,

Ana+mp+ECT, 7# IPC

and its characterisation is still an open problem. For a survey in related results the reader is
referred to [Vis99].

4.1.2 First results

In § 3.4 we have already presented the results about the T, logics. Concerning the Visser
rules, it is interesting that in each 7T, the V,, rule is admissible, while V,,;1 rule is not.

Moreover, an important corollary of the characterisation theorem 3.33 is

Corollary 4.1. If an intermediate logic different from IPC has the disjunction property, then

not all the Visser rules are admissible in it.
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So, this corollary is applied to the logics T,,, M L and K P. In fact, we can prove something

stronger for the case of K P.
Theorem 4.2 (Iemhoff). None of the Visser rules is admissible in K P

Proof. By theorem 1.25 it suffices to show that V; is not admissible. So, assume the contrary
and let ¢ = —p — (¢Vr), Y= (-p—q)V(-p—r). Note that ¢ — 1) is derivable in K P,
in fact the corresponding scheme axiomatises K P. Now observe that ¢ — 1) is the premise
of an instance of Vi, therefore K P derives one of the formulas ¢ — (-p — ¢q), ¢ — (-p — 1)
and ¢ — —p, since it has the disjunction property. But this is a contradiction, since these

formulas are not derived even in classical logic. O

4.2 Maximal admissible consequence

Any attempt to study admissibility explicitly stumbles on the difficult to handle notion
of substitution. On the contrary, derivability is a more familiar notion, for which many
tools have been deployed. So, any correlation of admissibility with derivability that avoids

substitutions, besides being technically convenient, will make this notion more approachable.

Definition 4.3. A formula A is a mazimal admissible consequence (mac) for a formula A

in an intermediate logic L if for every formula B,
AR B < Mih B

An intermediate logic L has the mac property if every formula has a mac in L.
We reserve the symbol A 4 for the mac of A in IPC, i.e Ay = )\Ifc.

It should be clear that a mac does not always exist. However, for simplicity we will use

the following convention:
Any reference to a mac will imply its existence.

This does not mean that we hypothesise the existence but rather that there is a proof of it,
albeit it may not be included. So A% = ¢ means that there exists a mac of A in L and it is

equal to .

Definition 4.4. A formula A is stable for admissibility in an intermediate logic L if for every
formula B,
AN B <= AR B

Theorem 4.5 (Iemhof).
1. A mac is unique up to provable equivalence
2. Ay X and X H A
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3. )\ﬁ is stable in L
4. Properties 2 and 8 characterise mac up to provable equivalence
Proof.
1. Let A1, A2 be two macs of A in L, thus for every formula B,
M B < AR B < \MH B
Therefore A\; 5 Ao, since Ag 5 Ao
2. They follow immediately from the definition, since )\ﬁ F )\ﬁ and A Pf A

3. Let B be a formula such that A% r B. Then, A}y B since A 1 AL and b is transitive.
Therefore A I B by definition. The converse holds because | is a subrelation of 0%

4. Consider formulas A, C' such that A I’z C H A and C is stable in L. Then for every

formula B,

o if C'F; B, then Ay B, since A C
Al B then C' | B, since C k; A. Therefore C'

o if . . B, because C'is stable in L

O

Based on the properties proven above, we proceed to establish the link between admissi-

bility and derivability we were seeking for.

Theorem 4.6 (Iemhoff). Let L be an intermediate logic with the mac property and let R be

a set of admissible rules in L. Then,
R is a basis for the admissible rules in L. <= for every formula A, A l—i )\f‘

Proof. Remember that R is a basis for the admissible rules in L if and only if
AR B = A I—}; B

=) Apy M holds by theorem 4.5, therefore A I A%
<) Assume that A h B, hence )\f‘ . B, therefore A I—f B, since A l—f )\ﬁ. The other

direction holds since R is admissible in L. O

So, provided that the examined logic L has the mac property, a set R of rules is a basis for
the admissible rules in L if and only if it is sufficiently strong to derive the mac of a formula
A from assumptions A, but not too strong, otherwise it will contain non—-admissible rules.

Before celebrating the reduction of admissibility to derivability we made, we should first
elaborate on the mac property. As the persistent reader might have already noticed, we have

yet to show that the premise of theorem 4.6 is satisfiable. That is, we have not established
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so far that there are there any intermediate logics with the mac property. In the absence of
such result, our efforts are futile.

In the next sections we will first prove that IPC has the mac property and then we will
provide a sufficient condition for the identification of these logics. This condition along with
its semantic counterpart developed in § 4.3 will lead us to proofs that various well-known

intermediate logics have this property.

4.2.1 IPC and the Visser rules

In addition to the mac machinery we have deployed so far, in this section we will once more
exploit the stability qualities of the projective formulas and the existence of a finite projective
approximation. These notions were introduced by Ghilardi in [Ghi99] and are presented in
detail in § 3.1.

Theorem 4.7 (Iemhoff).

o A projective formula is stable in every intermediate logic.

e A disjunction of projective formulas is stable in every intermediate logic.
Proof.

e Assume that C I’} B and let ¢ be a projective unifier of C.

Fo(C)=HKo(lC)=HoB)= ChHo(B)

= ChHB
CHB~o(B)= CH B« d(B)

e Let I be a finite set of projective formulas and let B be a formula such that \/I" ) B.
Consider a formula C €T

Ch\/T=CKrB= CHB

Since C' is an arbitrary formula in I', this implies that \/T'H B.

Theorem 4.8 (Iemhoff). IPC has the mac property.

Proof. Let A be a formula A and II4 be the finite projective approximation of A, see theo-
rem 3.16 on page 45. We will prove that for every formula A, Ay = \/II4 is the mac of A
in IPC. Note that A4 is indeed a well-formed formula, because 114 is finite. By theorem 4.5,

all we need to show is that

1. A Ay
Proof: Every unifier of A is also a unifier of a formula in IT4 by theorem 3.16.2, thus
of A A-
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2. AyF A

Proof: Since every disjunct of A4 derives A

3. A4 is stable in IPC
Proof: By theorem 4.7.

O]

This result is important because it shows that there exists at least one intermediate logic
with the mac property. However, in terms of finding a basis for the admissible rules of other
intermediate logics, more helpful is its proof, a reformulation of which provides a sufficient

condition for a logic to have the mac property.
Corollary 4.9. Let L be an intermediate logic and A be a formula. Then,
MNi=Ax <= Ay As

Note that, as stated in § 1.6 and will become transparent in § 4.4, the admissibility relation
is not preserved under extending or restricted logics. Therefore, the fact that A |~ A4, does

not vacuously imply that for every intermediate logic L, A h’ Ay.

Theorem 4.10 (Iemhoff). If the Visser rules are admissible in an intermediate logic L, then
e L has the mac property. Moreover, )\ﬁ =Ay4.
e V is a basis for L

Proof.

e AFA A, since A | A4 and the Visser rules are a basis for the admissible rules in IPC by
theorem 3.24. Therefore A l—: A4, hence A "Z A4, since the Visser rules are admissible
in L and so, )\ﬁ = A4 by corollary 4.9.

e By theorem 4.6 and the previous item of the proof.

O]

Corollary 4.11. If the Visser rules are derivable in an intermediate logic L, then L does

not have non—derivable admissible rules
Proof. By lemma 1.23 and the previous theorem. O
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4.3 Extension properties

In the following sections we will try to apply theorem 4.10 to various intermediate logics, in
order to get a basis for their admissible rules. However, most of these logics are naturally
approached semantically, by virtue of their completeness with respect to classes of Kripke
frames, rather than syntactically, because their additional axiom scheme is too complicated
and counterintuitive or because no axiomatisation is known at all. Therefore, a semantic

criterion for the admissibility of Visser rules is essential.
Definition 4.12. Let . be a class of rooted Kripke models

e %7 has the weak extension property if for every model K € % and every finite collection
of nodes kq,...,k, of K different from the root there is a model M € # which is
n

bisimilar to a variant of ) Kj,.
i=1

e % has the offspring extension property if for every model K € % and every finite
collection of nodes k1,...,k, of K different from the root there is a model M € %

n
which is bisimilar to a variant Sy of S1 + K, where S} is a variant of ) Kj,.
i=1

An intermediate logic has an extension property if there is a class of models with respect to

which L is sound and complete that has that extension property.

Note that once we have stability (e.g. if % is the class of models of an intermediate logic)
then

extension property = offspring extension property = weak extension property

4.3.1 The weak extension property

Lemma 4.13 (Iemhoff). Let L be an intermediate logic in which the restricted Visser rules
n

are admissible and let Xo, X1, ..., X, be L—saturated sets such that Xo C () X;. Then there
i=1

exists a tight predecessor of X1,...,X, in L.

Proof. By corollary 2.39 it suffices to show that Ix is strongly L-saturated in X, where X =

n n

() Xi. So, assume that Iy H \/ A;, therefore there are Ey,...,E,, ¢ X and Fy,...,F, € X
i=1

=1

such that A = A (E; — F;) | \ A;. The restricted V,,, rules are admissible in L, by

i=1 i=1
assumption and by theorem 1.28, thus H \/ (A— E;)V \/ (A — A;). The L-saturation

of Xy implies the existence of a j < m such that A — E E Xp or of a k < n such that
A — Aj € Xo, hence Ej € X or Aj, € X, because A € X O Xj. But the first case is excluded
by assumption, therefore A; € X. O

Theorem 4.14 (Iemhoff). The restricted Visser rules are admissible in an intermediate logic

L if and only if L has the weak extension property.
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<—=>

Figure 6: The weak extension property

<==>

Figure 7: The offspring extension property

Proof. =) Consider an intermediate logic L in which the restricted Visser rules are ad-
missible, let K be a rooted model of L and let kq,...,k, be nodes of K distinct from the
root. Define Xo = Th(K) and X; = Th(Kjy,) for every i < n. Obviously Xy, X1, ..., X, are

L—saturated and Xy C () X, thus lemma 4.13 guarantees the existence of a tight predecessor
i=1
Y of X1,...,X, in L. Hence (3 Ky,)" is a model of L by corollary 2.34, so L has the weak

extension property.

<) Consider an intermediate logic L which is sound and complete to a class of rooted
n

models £ with the weak extension property and assume that A = A (E; — F;) 5 BV C.
i=1
n

We will show that L derives G = \/ (A — E;) V(A — B)V (A — C) by assuming the
contrary and then constructing a mé?llel of L that is also a countermodel to A — BV C'. So,
suppose that there is a model K € J# such that K #~ G, thus K # A — B, K ¥ A — C
and K £ A — E;, for every ¢ < n. Therefore there are nodes kg, k¢, k1, ..., k, of K that
force A and Ky, £ B, Ky, £ C and Ky, # E;.

If one of these nodes is the root of K then K, which forces A — BV C as a model of L,
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should also force A, thus BV C. But this is a contradiction, since neither B nor C are forced
in K. So, all of these nodes are distinct from the root, thus there is by assumption a model
M € 2 which is bisimilar to a variant S of Ky, + - -+ K, + K}, + K} . Now observe that
S = A, since it is forced in every successor of the root of S and since each Ej is not forced in
S, as it is not forced in Kj,. Moreover, S = BV C, since Ky, # B and Ky, # C. Thus, we
obtain that S £ A — BV C, therefore M # A — BV C. O

4.3.2 The offspring extension property

Lemma 4.15 (Iemhoff). Let L be an intermediate logic in which the Visser rules are admis-

n

sible and let Xy, X1,..., X, be L—saturated sets such that Xo C () X;. Then there exists a
i=1

tight predecessor Y of X1,...,X, in L and a tight predecessor Y' of Y and Xy in L.

n

Proof. Define X = ( X;, A ={G | 3H ¢ Xpsuch that 5 GV H} and Yy = AU Ix. The
1=

inclusion of A into Yy will be justified later on. For the moment we will prove that Yy is

n
strongly L-saturated in X, so assume that Yy b5 \/ A;. Therefore there are Gy,...,G € A
i=1

7

k n m
and By — Fi,...,Ey — Fy, € Ix such that B AN A G; — \/ Ai, where A= A (E; — F).
i=1 i=1 i=1

k n
By assumption there are Hy, ..., H ¢ Xo such that 5 A (G; V H;), thus 5 (A — \/ 4;) V
i=1 =1
k
\/ H;, using the obvious generalisation of the derived in IPC formula (AAG — B)A(GVH) —
i=1
(A — B)V H. The V,, rules are admissible in L, by assumption and by theorem 1.28, hence
n m k
EVA-—A)Vv V(A — E)Vv VH;. Xycontains a disjunct of the above formula, as
i=1 i=1 i=1
it is L—saturated, hence there is an ¢ < m such that A — A; € Xg or a j < n such that

A — Ej; € Xo, since no H; is in Xy. X is a closed under deduction in L superset of X, which
contains A, therefore A; € X or E; € X. But the latter is by definition impossible, so Y} is
strongly L—saturated in X and thus there exists a tight predecessor Y O Yy of Xy,..., X, in
L, by theorem 2.38.

We can now clarify the role of A. Since we want to construct a tight predecessor of Y and
Xp in L, we should at least be able to prove that an L—saturated set is contained in Y N X,
in other words that Cn’(()) is strongly L-saturated in Y N Xgo. As the following short proof
confirms, this can be achieved if A is a subset of Y.

n

Assume that 5 \/ ¢; and let I be the set of indices of the ¢;’s that are in X(. Note that
i=1

the L-saturation of X implies that I # (). If I = {1,...,n} then we are done, since there

exists a ¢; € Y by the L-saturation of Y. Solet I C {1,...,n}. 5 V¢V V
i€l ie{1,..n}\I
implies by definition that \/ ¢; € A, hence one of its disjuncts is in Y (remember that Y is
el
an L-saturated superset of A).

What remains to be done is to establish, using the previous claim, that Iynx, is strongly
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L—saturated in YNXy. Then we would be able to apply theorem 2.38 once more and construct

n

a tight predecessor of Y and Xy in L. So assume that Iynx, b V Ai, therefore there are
i=1
m n

E,— Fi,...,E, — F, € YNXgsuch that A= A (E; — Fi) 5\ Ai. The V,,,,, rules are

=1 =1
n

m

admissible in L, by assumption and by theorem 1.28, thus 5 \/ (A — 4;) V V (A — Ej;).
i=1 i=1

The fact that Cn* () is strongly L-saturated in Y N X implies that there exists an i < n

such that A — A; € Y N X or a j < m such that A — E; € Y N X, hence A; € Y N X,

since A is contained in Y N Xy, while Ej is not, and the lemma is proved. ]

Theorem 4.16 (Iemhoff). The Visser rules are admissible in an intermediate logic L if and

only if L has the offspring extension property.

Proof. =) Consider an intermediate logic L in which the Visser rules are admissible, let
K be a rooted model of L and let kq,...,k, be nodes of K distinct from the root. Define
Xo =Th(K) and X; = Th(Ky,) for every i < n. Obviously Xy, X1, ..., X, are L-saturated

and Xo C () X;, thus lemma 4.15 guarantees the existence of a tight predecessor X’ of
i=1
X1,...,X, in L and a tight predecessor X" of X', Xy in L. Hence (3 K,)X + K)X" is a

model of L by corollary 2.34, so L has the offspring extension property.
<) Consider an intermediate logic L which is sound and complete to a class of rooted

models #" with the offspring extension property and assume that - (A — BV C)V D, where

n n
A= A (E; — F;). We will show that L derives G = \/ (A — E;)V(A— B)V(A—C)VvD

i=1 i=
by assuming the contrary and then constructing a model of L that is also a countermodel to

(A— BVC)VD. So, suppose that there is a model K € % such that K £ G, thus K |~ D,
KH#FA—B KEFA—Cand K £ A— E,;, for every i < n. Therefore there are nodes
kp,kc,ki,...,k, of K that force A and Ky, ¢ B, Kj, F C and Ky, F E;.

K forces (A — BV C)V D as a model of L, therefore it forces A — BV C. If one of
these nodes is the root of K, then K forces A, thus BV C. But this is a contradiction, since
neither B nor C' are forced in K. So, all of these nodes are distinct from the root, thus there
is by assumption a model M € £ which is bisimilar to a variant 52 of S1+ K, where S1 is
a variant of Ky, + ---+ Ky, + Ky, + Kj,. Now observe that S; = A, since it is forced in
every successor of the root of S7 and since each FEj; is not forced in S7, as it is not forced in
Ky,. Moreover, S1 £ BV C, since Ky, = B and Ky,  C. Thus, we obtain that

S #A—>B\/C=> SQI#AHB\/C# M#AHB\/C
But M does not force D either, since K # D, therefore M £ (A — BV C)V D. O

4.4 Applications

A consequence of the combination of theorem 4.10 with theorem 4.16 is the following re-

markable result. We can prove, or at least intuitively decide, whether the Visser rules are
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4.4 Applications

admissible in an intermediate logic L or not by just looking at the form of the models of L. Of
course, the logic L in question should be defined by a intuitively approachable class of Kripke
frames, but this is true for the most well-known intermediate logics. Here we concentrate
results produced by Iemhoff in [Ilem05] and [lem], and present them in the following figure.

For a description of the intermediate logics in discussion, see § 4.1.

CPC=G,=Bd1=Nd1=Tp

SWFG3,=Nd2
&
Bd, G
)G
Bds Nd :
Nds
Bd4 \\ I LC=T1
\\ T2
\ KC=
| T3 M
ML T o\
" TS My
\\\ \\\ : % KP
\\‘;l/
| PC

@® The Visser rules are derivable
@® The Visser rules are admissible, but not derivable

Some, but not all of the Visser rules are admissible

The Visser rules are not derivable and we do not know if they are admissible
® None of the Visser rules is admissible

Figure 8: The admissibility of the Visser rules in certain intermediate logics
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